Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline

Search Results (6)

Search Parameters:
Authors = Euh Duck Jeong

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3207 KiB  
Article
Enhancing Li-S Battery Performance with Porous Carbon from Hanji
by Yunju Choi, Jaeyeong Lee, Jong-Pil Kim, Sei-Jin Lee, Euh Duck Jeong, Jong-Seong Bae and Heon-Cheol Shin
Batteries 2025, 11(1), 4; https://doi.org/10.3390/batteries11010004 - 25 Dec 2024
Viewed by 1207
Abstract
Hanji-derived porous carbon has been developed and utilized as a cathode material for Li-S batteries, demonstrating exceptional electrochemical performance and stability. The unique porous structure and high surface area of Hanji-based carbon enhanced S utilization and significantly improved the overall efficiency of the [...] Read more.
Hanji-derived porous carbon has been developed and utilized as a cathode material for Li-S batteries, demonstrating exceptional electrochemical performance and stability. The unique porous structure and high surface area of Hanji-based carbon enhanced S utilization and significantly improved the overall efficiency of the battery. The material exhibited excellent electrical conductivity and structural stability, effectively addressing the major challenges of Li-S batteries, such as the polysulfide shuttle effect and active material loss. In addition, flake carbon-coated separators (FCCSs) were integrated into Li-S cells to further enhance their performance, achieving a high initial specific capacity of approximately 1200 mAh/g and maintaining a capacity of 620 mAh/g after 100 cycles. In contrast, cells with conventional polypropylene separators exhibited lower initial capacities (946 mAh/g), which decreased to 366 mAh/g after 100 cycles. FCCSs also demonstrated superior capacity retention and stability under varying charge–discharge rates, maintaining a capacity of 200 mAh/g at 3 C and recovering to 730 mAh/g when the rate was 0.1 C. This study provides valuable insights into the development of sustainable and efficient Li-S battery systems, with Hanji-based carbon and FCCSs emerging as promising components for commercial applications. Full article
Show Figures

Figure 1

12 pages, 4375 KiB  
Article
Porous Carbon Interlayer Derived from Traditional Korean Paper for Li–S Batteries
by Yunju Choi, Hyungil Jang, Jong-Pil Kim, Jaeyeong Lee, Euh Duck Jeong, Jong-Seong Bae and Heon-Cheol Shin
Nanomaterials 2024, 14(4), 385; https://doi.org/10.3390/nano14040385 - 19 Feb 2024
Cited by 2 | Viewed by 2099
Abstract
A carbonized interlayer effectively helps to improve the electrochemical performance of lithium–sulfur (Li–S) batteries. In this study, a simple and inexpensive carbon intermediate layer was fabricated using a traditional Korean paper called “hanji”. This carbon interlayer has a fibrous porous structure, with a [...] Read more.
A carbonized interlayer effectively helps to improve the electrochemical performance of lithium–sulfur (Li–S) batteries. In this study, a simple and inexpensive carbon intermediate layer was fabricated using a traditional Korean paper called “hanji”. This carbon interlayer has a fibrous porous structure, with a specific surface area of 91.82 m2 g−1 and a BJH adsorption average pore diameter of 26.63 nm. The prepared carbon interlayer was utilized as an intermediary layer in Li–S batteries to decrease the charge-transfer resistance and capture dissolved lithium polysulfides. The porous fiber-shaped carbon interlayer suppressed the migration of polysulfides produced during the electrochemical process. The carbon interlayer facilitates the adsorption of soluble lithium polysulfides, allowing for their re-utilization in subsequent cycles. Additionally, the carbon interlayer significantly reduces the polarization of the cell. This simple strategy results in a significant improvement in cycle performance. Consequently, the discharge capacity at 0.5 C after 150 cycles was confirmed to have improved by more than twofold, reaching 230 mAh g−1 for cells without the interlayer and 583 mAh g−1 for cells with the interlayer. This study demonstrates a simple method for improving the capacity of Li–S batteries by integrating a functional carbon interlayer. Full article
(This article belongs to the Special Issue Nanomaterials for Lithium-Sulfur Batteries)
Show Figures

Figure 1

16 pages, 6017 KiB  
Article
Synthesis and Electrochemical Performance of Microporous Hollow Carbon from Milkweed Pappus as Cathode Material of Lithium–Sulfur Batteries
by Jun-Ki Kim, Yunju Choi, Euh Duck Jeong, Sei-Jin Lee, Hyun Gyu Kim, Jae Min Chung, Jeom-Soo Kim, Sun-Young Lee and Jong-Seong Bae
Nanomaterials 2022, 12(20), 3605; https://doi.org/10.3390/nano12203605 - 14 Oct 2022
Cited by 4 | Viewed by 2002
Abstract
Microtube-like porous carbon (MPC) and tube-like porous carbon–sulfur (MPC-S) composites were synthesized by carbonizing milkweed pappus with sulfur, and they were used as cathodes for lithium–sulfur batteries. The morphology and uniformity of these materials were characterized using X-ray powder diffraction, Raman spectroscopy, scanning [...] Read more.
Microtube-like porous carbon (MPC) and tube-like porous carbon–sulfur (MPC-S) composites were synthesized by carbonizing milkweed pappus with sulfur, and they were used as cathodes for lithium–sulfur batteries. The morphology and uniformity of these materials were characterized using X-ray powder diffraction, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy with an energy-dispersive X-ray analyzer, thermogravimetric analysis, and X-ray photoelectron spectrometry. The electrochemical performance of the MPC-S cathodes was measured using the charge/discharge cycling performance, C rate, and AC impedance. The composite cathodes with 93.8 wt.% sulfur exhibited a stable specific capacity of 743 mAh g−1 after 200 cycles at a 0.5 C. Full article
Show Figures

Figure 1

10 pages, 2970 KiB  
Article
The Synthesis and Electrochemical Performance of Si Composite with Hollow Carbon Microtubes by the Carbonization of Milkweed from Nature as Anode Template for Lithium Ion Batteries
by Eun Hyuk Chung, Jong Pil Kim, Hyun Gyu Kim, Jae-Min Chung, Sei-Jin Lee, Jong-Seong Bae and Euh Duck Jeong
Energies 2020, 13(19), 5124; https://doi.org/10.3390/en13195124 - 1 Oct 2020
Cited by 2 | Viewed by 2254
Abstract
It has been reported that improving electrical conductivity and maintaining stable structure during discharge/charge process are challenge for Si to be used as an anode for lithium ion batteries (LIB). To address this problem, milkweed (MW) was carbonized to prepare hollow carbon microtubes [...] Read more.
It has been reported that improving electrical conductivity and maintaining stable structure during discharge/charge process are challenge for Si to be used as an anode for lithium ion batteries (LIB). To address this problem, milkweed (MW) was carbonized to prepare hollow carbon microtubes (HCMT) derived from biomass as an anode template for LIB. In order to improve electrical conductivity, various materials such as chitosan (CTS), agarose, and polyvinylidene fluoride (PVDF) are used as carbon source (C1, C2, and C3) by carbonization. Carbon coated HCMT@Si composits, HCMT@Si@C1, HCMT@Si@C1@C2, and HCMT@Si@C1@C3, have been successfully synthesized. Changes in structure and crystallinity of HCMT@Si composites were characterized by using X-ray diffraction (XRD). Specific surface area for samples was calculated by using BET (Brunauer–Emmett–Teller). Also, pore size and particle size were obtained by particle and pore size analysis system. The surface morphology was evaluated using high resolution scanning electron microscopy (HR-SEM), Field Emission transmission electron microscopy (TEM). The thermal properties of HCMT@Si composites were analyzed by thermogravimetric analysis (TGA). Our research was performed to study the synthesis and electrochemical performance of Si composite with HCMT by the carbonization of natural micro hollow milkweed to form an inner space. After carbonization at 900 °C for 2 h in N2 flow, inner diameter of HCMT obtained was about 10 μm. The electrochemical tests indicate that HCMT@Si@C1@C3 exhibits discharge capacity of 932.18 mAh/g at 0.5 A/g after 100 cycles. Full article
Show Figures

Figure 1

11 pages, 2944 KiB  
Article
Nitrogen and Sulfur Co-Doped Porous Carbon Derived from Thiourea and Calcium Citrate for Lithium-Sulfur Batteries
by Yunju Choi, Sun-Young Lee, Jong-Seong Bae, Sea-Jin Lee, Hyun Kyu Kim, Euh Duck Jeong and Heon-Cheol Shin
Appl. Sci. 2020, 10(4), 1263; https://doi.org/10.3390/app10041263 - 13 Feb 2020
Cited by 7 | Viewed by 4269
Abstract
Lithium-sulfur (Li-S) batteries have shown a high theoretical specific capacity of 1675 mAh g−1. However, amongst the issues they have, the low electron conductivity of sulfur and its dissolution represent the biggest challenge limiting its practical applications. This contributes to the [...] Read more.
Lithium-sulfur (Li-S) batteries have shown a high theoretical specific capacity of 1675 mAh g−1. However, amongst the issues they have, the low electron conductivity of sulfur and its dissolution represent the biggest challenge limiting its practical applications. This contributes to the low utilization of the active sulfur at the cathode—a phenomenon known as the “shuttling effect.” To overcome these limitations, some strategies such as physical confinement (sulfur–carbon composite), chemical adsorption (N and/or S doping) electrolyte design, and separator design have already been proposed. Calcium citrate is the most attractive carbon source because no activation process is necessary and the fabrication process is very simple. In this experiment, we synthesized calcium citrate and sulfur (S) to conduct a charging–discharging test and compared them by adding thiourea (TU) as well as S in the carbonized calcium citrate (CaC). This effective and simple technique for material production can accommodate the charge/discharge reactions and preserve the structure over long cycles. A CaC/TU-S composite is acceptable for an initial discharge capacity of 1051.6 mAh g−1 over 100 cycles at 1 C. The results show that the CaC-S and CaC/TU-S composites have a good, stable specific capacity. Full article
(This article belongs to the Special Issue Advanced Materials for Rechargeable Lithium Batteries II)
Show Figures

Figure 1

20 pages, 2164 KiB  
Article
Orbital Interaction and Electron Density Transfer in PdII([9]aneB2A)L2 Complexes: Theoretical Approaches
by Ock Keum Kwak, Mahreen Arooj, Yong-Jin Yoon, Euh Duck Jeong and Jong Keun Park
Molecules 2013, 18(10), 12687-12706; https://doi.org/10.3390/molecules181012687 - 14 Oct 2013
Cited by 1 | Viewed by 8143
Abstract
The geometric structures of Pd-complexes {Pd([9]aneB2A)L2 and Pd([9]aneBAB)L2 where A = P, S; B = N; L = PH3, P(CH3)3, Cl}, their selective orbital interaction [...] Read more.
The geometric structures of Pd-complexes {Pd([9]aneB2A)L2 and Pd([9]aneBAB)L2 where A = P, S; B = N; L = PH3, P(CH3)3, Cl}, their selective orbital interaction towards equatorial or axial (soft A…Pd) coordination of macrocyclic [9]aneB2A tridentate to PdL2, and electron density transfer from the electron-rich trans L-ligand to the low-lying unfilled a1g(5s)-orbital of PdL2 were investigated using B3P86/lanl2DZ for Pd and 6-311+G** for other atoms. The pentacoordinate endo-[Pd([9]aneB2A)(L-donor)2]2+ complex with an axial (soft A--Pd) quasi-bond was optimized for stability. The fifth (soft A--Pd) quasi-bond between the σ-donor of soft A and the partially unfilled a1g(5s)-orbital of PdL2 was formed. The pentacoordinate endo-Pd([9]aneB2A)(L-donor)2]2+ complex has been found to be more stable than the corresponding tetracoordinate endo-Pd complexes. Except for the endo-Pd pentacoordinates, the tetracoordinate Pd([9]aneBAB)L2 complex with one equatorial (soft A-Pd) bond is found to be more stable than the Pd([9]aneB2A)L2 isomer without the equatorial (A-Pd) bond. In particular, the geometric configuration of endo-[Pd([9]anePNP)(L-donor)2]2+ could not be optimized. Full article
(This article belongs to the Special Issue Macrocyclic Chemistry)
Show Figures

Figure 1

Back to TopTop