Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Authors = Deepak Y. Patil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 916 KiB  
Article
Differential Cell Line Susceptibility to the SARS-CoV-2 Omicron BA.1.1 Variant of Concern
by Hitesh Dighe, Prasad Sarkale, Deepak Y. Patil, Sreelekshmy Mohandas, Anita M. Shete, Rima R. Sahay, Rajen Lakra, Savita Patil, Triparna Majumdar, Pranita Gawande, Jyoti Yemul, Pratiksha Vedpathak and Pragya D. Yadav
Vaccines 2022, 10(11), 1962; https://doi.org/10.3390/vaccines10111962 - 18 Nov 2022
Cited by 11 | Viewed by 3279
Abstract
The unique mutations of the SARS-CoV-2 Omicron variant are associated with increased transmissibility, immune escape, increased binding affinity to ACE-2, and increased viral load. Omicron exhibited a shift in tropism infecting the upper respiratory tract compared to other variants of concern which have [...] Read more.
The unique mutations of the SARS-CoV-2 Omicron variant are associated with increased transmissibility, immune escape, increased binding affinity to ACE-2, and increased viral load. Omicron exhibited a shift in tropism infecting the upper respiratory tract compared to other variants of concern which have tropism for the lower respiratory tract. The tropism of omicron variants in cell lines of different hosts and tissue origins still remains unclear. Considering this, we assessed the susceptibility of different cell lines to the SARS-CoV-2 omicron BA.1.1 variant and permissiveness among different cell lines for omicron replication. Susceptibility and permissiveness of a total of eleven cell lines, including six animal cell lines and five human cell lines for omicron BA.1.1 infection, were evaluated by infecting individual cell lines with omicron BA.1.1 isolate at a 0.1 multiplicity of infection. Virus replication was assessed by observation of cytopathic effects followed by viral load determination by real-time PCR assay and virus infectivity determination by TCID50 assay. The characteristic cytopathic effect, increased viral load, and productive omicron replication was detected in Vero CCL-81, Vero E6, Vero/hSLAM, MA-104, and Calu-3 cells. Although LLC MK-2 cells showed an increased TCID50 titer at the second infection, the viral load did not show much difference in both infections. Caco-2 cells did not show evident CPE, but they supported omicron replication at a low level. A549, RD, MRC-5, and BHK-21 cells supported omicron BA.1.1 replication without the CPE. This is the first study on the comparison of susceptibility of different cell lines to Omicron variant BA.1.1, which might be useful for future studies on emerging SARS-CoV-2 variants. Full article
(This article belongs to the Special Issue Research on Immune Response and Vaccines)
Show Figures

Figure 1

7 pages, 2263 KiB  
Brief Report
Isolation and Genomic Characterization of SARS-CoV-2 Omicron Variant Obtained from Human Clinical Specimens
by Pragya D. Yadav, Nivedita Gupta, Varsha Potdar, Sreelekshmy Mohandas, Rima R. Sahay, Prasad Sarkale, Anita M. Shete, Alpana Razdan, Deepak Y. Patil, Dimpal A. Nyayanit, Yash Joshi, Savita Patil, Triparna Majumdar, Hitesh Dighe, Bharti Malhotra, Jayanthi Shastri and Priya Abraham
Viruses 2022, 14(3), 461; https://doi.org/10.3390/v14030461 - 24 Feb 2022
Cited by 8 | Viewed by 3407
Abstract
Due to the failure of virus isolation of the Omicron variant in Vero CCL-81 from the clinical specimens of COVID-19 cases, an initial in vivo and subsequent in vitro approach was utilized for the isolation of the virus. A total of 74 oropharyngeal/nasopharyngeal [...] Read more.
Due to the failure of virus isolation of the Omicron variant in Vero CCL-81 from the clinical specimens of COVID-19 cases, an initial in vivo and subsequent in vitro approach was utilized for the isolation of the virus. A total of 74 oropharyngeal/nasopharyngeal specimens were collected from SARS-CoV-2 positive international travellers and a contact case at Delhi and Mumbai, India. All the specimens were sequenced using next-generation sequencing and simultaneously inoculated onto Vero CCL-81 cells for virus isolation. Subsequently, two omicron positive specimens were inoculated into Syrian hamsters for two passages. The initial passage of the positive hamster specimens was inoculated onto Vero CCL-81 cells. The clinical specimens, hamster specimens, and Vero CCL-81 passages were sequenced to assess the mutational changes in different host species. The replication of the Omicron variant in hamsters was confirmed with the presence of a high viral load in nasal turbinate and lung specimens of both passages. The successful isolation of the virus from hamster specimens with Vero CCL-81 was observed with cytopathic effect in infected cells and high viral load in the cell suspension. The genome analysis revealed the presence of L212C mutation, Tyrosine 69 deletion, and C25000T nucleotide change in spike gene of hamster passage sequences and an absence of V17I mutation in E gene in hamster passage sequences, unlike human clinical specimen and Vero CCL-81 passages. No change was observed in the furin cleavage site in any of the specimen sequences, suggesting intact pathogenicity of the virus isolate. Our data demonstrated successful isolation of the Omicron variant with the in vivo method first followed by in vitro method. The virus isolate could be used in the future to explore different aspects of the Omicron variant. Full article
(This article belongs to the Collection Coronaviruses)
Show Figures

Figure 1

Back to TopTop