Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Authors = Cesidio Capoccia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 926 KiB  
Article
Testing the Pauli Exclusion Principle across the Periodic Table with the VIP-3 Experiment
by Simone Manti, Massimiliano Bazzi, Nicola Bortolotti, Cesidio Capoccia, Michael Cargnelli, Alberto Clozza, Luca De Paolis, Carlo Fiorini, Carlo Guaraldo, Mihail Iliescu, Matthias Laubenstein, Johann Marton, Fabrizio Napolitano, Kristian Piscicchia, Alessio Porcelli, Alessandro Scordo, Francesco Sgaramella, Diana Laura Sirghi, Florin Sirghi, Oton Vazquez Doce, Johann Zmeskal and Catalina Curceanuadd Show full author list remove Hide full author list
Entropy 2024, 26(9), 752; https://doi.org/10.3390/e26090752 - 2 Sep 2024
Cited by 1 | Viewed by 2017
Abstract
The Pauli exclusion principle (PEP), a cornerstone of quantum mechanics and whole science, states that in a system, two fermions can not simultaneously occupy the same quantum state. Several experimental tests have been performed to place increasingly stringent bounds on the validity of [...] Read more.
The Pauli exclusion principle (PEP), a cornerstone of quantum mechanics and whole science, states that in a system, two fermions can not simultaneously occupy the same quantum state. Several experimental tests have been performed to place increasingly stringent bounds on the validity of PEP. Among these, the series of VIP experiments, performed at the Gran Sasso Underground National Laboratory of INFN, is searching for PEP-violating atomic X-ray transitions in copper. In this paper, the upgraded VIP-3 setup is described, designed to extend these investigations to higher-Z elements such as zirconium, silver, palladium, and tin. We detail the enhanced design of this setup, including the implementation of cutting-edge, 1 mm thick, silicon drift detectors, which significantly improve the measurement sensitivity at higher energies. Additionally, we present calculations of expected PEP-violating energy shifts in the characteristic lines of these elements, performed using the multi-configurational Dirac–Fock method from first principles. The VIP-3 realization will contribute to ongoing research into PEP violation for different elements, offering new insights and directions for future studies. Full article
Show Figures

Figure 1

10 pages, 697 KiB  
Article
Testing the Pauli Exclusion Principle with the VIP-2 Experiment
by Fabrizio Napolitano, Sergio Bartalucci, Sergio Bertolucci, Massimiliano Bazzi, Mario Bragadireanu, Cesidio Capoccia, Michael Cargnelli, Alberto Clozza, Luca De Paolis, Raffaele Del Grande, Carlo Fiorini, Carlo Guaraldo, Mihail Iliescu, Matthias Laubenstein, Johann Marton, Marco Miliucci, Edoardo Milotti, Federico Nola, Kristian Piscicchia, Alessio Porcelli, Alessandro Scordo, Francesco Sgaramella, Hexi Shi, Diana Laura Sirghi, Florin Sirghi, Oton Vazquez Doce, Johann Zmeskal and Catalina Curceanuadd Show full author list remove Hide full author list
Symmetry 2022, 14(5), 893; https://doi.org/10.3390/sym14050893 - 27 Apr 2022
Cited by 17 | Viewed by 3640
Abstract
Violations of the Pauli Exclusion Principle (PEP), albeit small, could be motivated by physics beyond the Standard Model, ranging from violation of Lorentz invariance to extra space dimensions. This scenario can be experimentally constrained through dedicated, state-of-the-art X-ray spectroscopy, searching for a forbidden [...] Read more.
Violations of the Pauli Exclusion Principle (PEP), albeit small, could be motivated by physics beyond the Standard Model, ranging from violation of Lorentz invariance to extra space dimensions. This scenario can be experimentally constrained through dedicated, state-of-the-art X-ray spectroscopy, searching for a forbidden atomic transition from the L shell to the K shell already occupied by two electrons. The VIP-2 Experiment located at the underground Gran Sasso National Laboratories of INFN (Italy) tests PEP violations by introducing new electrons via a direct current in a copper conductor, measuring the X-ray energies through a silicon drift detector. Bayesian and frequentist analyses of approximately six months of data taken with the fully operational setup is presented, setting the strongest limit to date on the PEP violation shown by the VIP collaboration. The upper bound on PEP violation are placed at 90% CL β2/26.8×1042 with the Bayesian approach, and β2/27.1×1042 with the frequentist CLs technique. Full article
(This article belongs to the Special Issue Symmetries and the Pauli Exclusion Principle)
Show Figures

Figure 1

30 pages, 8933 KiB  
Article
The CYGNO Experiment
by Fernando Domingues Amaro, Elisabetta Baracchini, Luigi Benussi, Stefano Bianco, Cesidio Capoccia, Michele Caponero, Danilo Santos Cardoso, Gianluca Cavoto, André Cortez, Igor Abritta Costa, Rita Joanna da Cruz Roque, Emiliano Dané, Giorgio Dho, Flaminia Di Giambattista, Emanuele Di Marco, Giovanni Grilli di Cortona, Giulia D’Imperio, Francesco Iacoangeli, Herman Pessoa Lima Júnior, Guilherme Sebastiao Pinheiro Lopes, Amaro da Silva Lopes Júnior, Giovanni Maccarrone, Rui Daniel Passos Mano, Michela Marafini, Robert Renz Marcelo Gregorio, David José Gaspar Marques, Giovanni Mazzitelli, Alasdair Gregor McLean, Andrea Messina, Cristina Maria Bernardes Monteiro, Rafael Antunes Nobrega, Igor Fonseca Pains, Emiliano Paoletti, Luciano Passamonti, Sandro Pelosi, Fabrizio Petrucci, Stefano Piacentini, Davide Piccolo, Daniele Pierluigi, Davide Pinci, Atul Prajapati, Francesco Renga, Filippo Rosatelli, Alessandro Russo, Joaquim Marques Ferreira dos Santos, Giovanna Saviano, Neil John Curwen Spooner, Roberto Tesauro, Sandro Tomassini and Samuele Torelliadd Show full author list remove Hide full author list
Instruments 2022, 6(1), 6; https://doi.org/10.3390/instruments6010006 - 21 Jan 2022
Cited by 24 | Viewed by 8649
Abstract
The search for a novel technology able to detect and reconstruct nuclear and electron recoil events with the energy of a few keV has become more and more important now that large regions of high-mass dark matter (DM) candidates have been excluded. Moreover, [...] Read more.
The search for a novel technology able to detect and reconstruct nuclear and electron recoil events with the energy of a few keV has become more and more important now that large regions of high-mass dark matter (DM) candidates have been excluded. Moreover, a detector sensitive to incoming particle direction will be crucial in the case of DM discovery to open the possibility of studying its properties. Gaseous time projection chambers (TPC) with optical readout are very promising detectors combining the detailed event information provided by the TPC technique with the high sensitivity and granularity of latest-generation scientific light sensors. The CYGNO experiment (a CYGNus module with Optical readout) aims to exploit the optical readout approach of multiple-GEM structures in large volume TPCs for the study of rare events as interactions of low-mass DM or solar neutrinos. The combined use of high-granularity sCMOS cameras and fast light sensors allows the reconstruction of the 3D direction of the tracks, offering good energy resolution and very high sensitivity in the few keV energy range, together with a very good particle identification useful for distinguishing nuclear recoils from electronic recoils. This experiment is part of the CYGNUS proto-collaboration, which aims at constructing a network of underground observatories for directional DM search. A one cubic meter demonstrator is expected to be built in 2022/23 aiming at a larger scale apparatus (30 m3–100 m3) at a later stage. Full article
(This article belongs to the Special Issue Innovative Experimental Techniques for Direct Dark Matter Detection)
Show Figures

Figure 1

11 pages, 1169 KiB  
Article
Directional Dark Matter Searches with CYGNO
by Fernando Domingues Amaro, Elisabetta Baracchini, Luigi Benussi, Stefano Bianco, Cesidio Capoccia, Michele Caponero, Gianluca Cavoto, André Cortez, Igor Abritta Costa, Emiliano Dané, Giorgio Dho, Emanuele Di Marco, Giulia D’Imperio, Flaminia Di Giambattista, Robert R. M. Gregorio, Francesco Iacoangeli, Herman Pessoa Lima Júnior, Amaro da Silva Lopes Júnior, Giovanni Maccarrone, Rui Daniel Passos Mano, Michela Marafini, Giovanni Mazzitelli, Alasdair G. McLean, Andrea Messina, Cristina Maria Bernardes Monteiro, Rafael Antunes Nobrega, Igor Fonseca Pains, Emiliano Paoletti, Luciano Passamonti, Sandro Pelosi, Fabrizio Petrucci, Stefano Piacentini, Davide Piccolo, Daniele Pierluigi, Davide Pinci, Atul Prajapati, Francesco Renga, Rita Joana da Cruz Roque, Filippo Rosatelli, Andrea Russo, Joaquim Marques Ferreira dos Santos, Giovanna Saviano, Neil Spooner, Roberto Tesauro, Sandro Tomassini and Samuele Torelliadd Show full author list remove Hide full author list
Particles 2021, 4(3), 343-353; https://doi.org/10.3390/particles4030029 - 6 Jul 2021
Cited by 4 | Viewed by 4835
Abstract
The CYGNO project aims at developing a high resolution Time Projection Chamber with optical readout for directional dark matter searches and solar neutrino spectroscopy. Peculiar CYGNO’s features are the 3D tracking capability provided by the combination of photomultipliers and scientific CMOS camera signals, [...] Read more.
The CYGNO project aims at developing a high resolution Time Projection Chamber with optical readout for directional dark matter searches and solar neutrino spectroscopy. Peculiar CYGNO’s features are the 3D tracking capability provided by the combination of photomultipliers and scientific CMOS camera signals, combined with a helium-fluorine-based gas mixture at atmospheric pressure amplified by gas electron multipliers structures. In this paper, the performances achieved with CYGNO prototypes and the prospects for the upcoming underground installation at Laboratori Nazionali del Gran Sasso of a 50-L detector in fall 2021 will be discussed, together with the plans for a 1-m3 experiment. The synergy with the ERC consolidator, grant project INITIUM, aimed at realising negative ion drift operation within the CYGNO 3D optical approach, will be further illustrated. Full article
(This article belongs to the Special Issue Selected Papers from "New Horizons in Time Projection Chambers")
Show Figures

Figure 1

Back to TopTop