Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Authors = Brian J. Foster

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1192 KiB  
Case Report
Childhood Hypophosphatasia Associated with a Novel Biallelic ALPL Variant at the TNSALP Dimer Interface
by Luciane Martins, Luis Gustavo F. Lessa, Taccyanna M. Ali, Monize Lazar, Chong A. Kim, Kamila R. Kantovitz, Mauro P. Santamaria, Cássia F. Araújo, Carolina J. Ramos, Brian L. Foster, José Francisco S. Franco, Débora Bertola and Francisco H. Nociti
Int. J. Mol. Sci. 2023, 24(1), 282; https://doi.org/10.3390/ijms24010282 - 23 Dec 2022
Cited by 6 | Viewed by 2899
Abstract
The goal of this study was to perform a clinical and molecular investigation in an eight-year-old female child diagnosed with hypophosphatasia (HPP). The proband and her family were evaluated by medical and dental histories, biochemical analyses, radiographic imaging, and genetic analysis of the [...] Read more.
The goal of this study was to perform a clinical and molecular investigation in an eight-year-old female child diagnosed with hypophosphatasia (HPP). The proband and her family were evaluated by medical and dental histories, biochemical analyses, radiographic imaging, and genetic analysis of the tissue-nonspecific alkaline phosphatase (ALPL) gene. A bioinformatic analysis was performed to predict the structural and functional impact of the point mutations in the tissue-nonspecific alkaline phosphatase (TNSALP) molecule and to define their potential contribution to the phenotype. We identified a novel combination of heterozygous ALPL missense variants in the proband, p.Ala33Val and p.Asn47His, compatible with an autosomal recessive mode of inheritance and resulting in skeletal and dental phenotypes. Computational modeling showed that the affected Asn47 residue is located in the coil structure close to the N-terminal α-helix, whereas the affected Ala33 residue is localized in the N-terminal α-helix. Both affected residues are located close to the homodimer interface, suggesting they may impair TNSALP dimer formation and stability. Clinical and biochemical follow-up revealed improvements after six years of ERT. Reporting this novel combination of ALPL variants in childhood HPP provides new insights into genotype–phenotype associations for HPP and specific sites within the TNSALP molecule potentially related to a childhood-onset HPP and skeletal and dental manifestations. Beneficial effects of ERT are implicated in skeletal and dental tissues. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

12 pages, 974 KiB  
Review
Evidence-Based Mechanical Ventilatory Strategies in ARDS
by Adnan Liaqat, Matthew Mason, Brian J. Foster, Sagar Kulkarni, Aisha Barlas, Awais M. Farooq, Pooja Patak, Hamza Liaqat, Rafaela G. Basso, Mohammed S. Zaman and Dhaval Pau
J. Clin. Med. 2022, 11(2), 319; https://doi.org/10.3390/jcm11020319 - 10 Jan 2022
Cited by 26 | Viewed by 16049
Abstract
Acute respiratory distress syndrome (ARDS) remains one of the leading causes of morbidity and mortality in critically ill patients despite advancements in the field. Mechanical ventilatory strategies are a vital component of ARDS management to prevent secondary lung injury and improve patient outcomes. [...] Read more.
Acute respiratory distress syndrome (ARDS) remains one of the leading causes of morbidity and mortality in critically ill patients despite advancements in the field. Mechanical ventilatory strategies are a vital component of ARDS management to prevent secondary lung injury and improve patient outcomes. Multiple strategies including utilization of low tidal volumes, targeting low plateau pressures to minimize barotrauma, using low FiO2 (fraction of inspired oxygen) to prevent injury related to oxygen free radicals, optimization of positive end expiratory pressure (PEEP) to maintain or improve lung recruitment, and utilization of prone ventilation have been shown to decrease morbidity and mortality. The role of other mechanical ventilatory strategies like non-invasive ventilation, recruitment maneuvers, esophageal pressure monitoring, determination of optimal PEEP, and appropriate patient selection for extracorporeal support is not clear. In this article, we review evidence-based mechanical ventilatory strategies and ventilatory adjuncts for ARDS. Full article
Show Figures

Figure 1

20 pages, 8131 KiB  
Article
Maternal Particulate Matter Exposure Impairs Lung Health and Is Associated with Mitochondrial Damage
by Baoming Wang, Yik-Lung Chan, Gerard Li, Kin Fai Ho, Ayad G. Anwer, Bradford J. Smith, Hai Guo, Bin Jalaludin, Cristan Herbert, Paul S. Thomas, Jiayan Liao, David G. Chapman, Paul S. Foster, Sonia Saad, Hui Chen and Brian G. Oliver
Antioxidants 2021, 10(7), 1029; https://doi.org/10.3390/antiox10071029 - 25 Jun 2021
Cited by 26 | Viewed by 5439
Abstract
Relatively little is known about the transgenerational effects of chronic maternal exposure to low-level traffic-related air pollution (TRAP) on the offspring lung health, nor are the effects of removing such exposure before pregnancy. Female BALB/c mice were exposed to PM2.5 (PM2.5, [...] Read more.
Relatively little is known about the transgenerational effects of chronic maternal exposure to low-level traffic-related air pollution (TRAP) on the offspring lung health, nor are the effects of removing such exposure before pregnancy. Female BALB/c mice were exposed to PM2.5 (PM2.5, 5 µg/day) for 6 weeks before mating and during gestation and lactation; in a subgroup, PM was removed when mating started to model mothers moving to cleaner areas during pregnancy to protect their unborn child (Pre-exposure). Lung pathology was characterised in both dams and offspring. A subcohort of female offspring was also exposed to ovalbumin to model allergic airways disease. PM2.5 and Pre-exposure dams exhibited airways hyper-responsiveness (AHR) with mucus hypersecretion, increased mitochondrial reactive oxygen species (ROS) and mitochondrial dysfunction in the lungs. Female offspring from PM2.5 and Pre-exposure dams displayed AHR with increased lung inflammation and mitochondrial ROS production, while males only displayed increased lung inflammation. After the ovalbumin challenge, AHR was increased in female offspring from PM2.5 dams compared with those from control dams. Using an in vitro model, the mitochondria-targeted antioxidant MitoQ reversed mitochondrial dysfunction by PM stimulation, suggesting that the lung pathology in offspring is driven by dysfunctional mitochondria. In conclusion, chronic exposure to low doses of PM2.5 exerted transgenerational impairment on lung health. Full article
Show Figures

Graphical abstract

18 pages, 10382 KiB  
Article
Nootkatone Is an Effective Repellent against Aedes aegypti and Aedes albopictus
by Taylor C. Clarkson, Ashley J. Janich, Irma Sanchez-Vargas, Erin D. Markle, Megan Gray, John R. Foster, William C. Black IV, Brian D. Foy and Ken E. Olson
Insects 2021, 12(5), 386; https://doi.org/10.3390/insects12050386 - 27 Apr 2021
Cited by 22 | Viewed by 5078
Abstract
We tested a nootkatone product for insecticide activity against the most prominent vectors of Zika virus (ZIKV), Aedes aegypti, and Aedes albopictus. We tested the permethrin-resistant (PERM-R) Vergel strain of A. aegypti and the permethrin-susceptible (PERM-S) New Orleans strain of A. aegypti [...] Read more.
We tested a nootkatone product for insecticide activity against the most prominent vectors of Zika virus (ZIKV), Aedes aegypti, and Aedes albopictus. We tested the permethrin-resistant (PERM-R) Vergel strain of A. aegypti and the permethrin-susceptible (PERM-S) New Orleans strain of A. aegypti to determine if insecticide resistance affected their susceptibility to nootkatone. Bottle bioassays showed that the PERM-S strain (New Orleans) was more susceptible to nootkatone than the confirmed A. aegypti permethrin-resistant (PERM-R) strain, Vergel. The A. albopictus strain ATM-NJ95 was a known PERM-S strain and Coatzacoalcos permethrin susceptibility was unknown but proved to be similar to the ATM-NJ95 PERM-S phenotype. The A. albopictus strains (ATM-NJ95 and Coatzacoalcos) were as susceptible to nootkatone as the New Orleans strain. Bottle bioassays conducted with ZIKV-infected mosquitoes showed that the New Orleans (PERM-S) strain was as susceptible to nootkatone as the mock-infected controls, but the PERM-R strain was less susceptible to nootkatone than the mock-infected controls. Repellency/irritancy and biting inhibition bioassays (RIBB) of A. aegypti determined whether the nootkatone-treated arms of three human subjects prevented uninfected A. aegypti mosquitoes from being attracted to the test subjects and blood-feeding on them. The RIBB analyses data calculated the spatial activity index (SAI) and biting inhibition factor (BI) of A. aegypti at different nootkatone concentrations and then compared the SAI and BI of existing repellency products. We concluded that nootkatone repelled mosquitoes at a rate comparable to 7% DEET or 5% picaridin and has the potential to be an efficacious repellent against adult A. aegypti mosquitoes. Full article
Show Figures

Figure 1

Back to TopTop