Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Authors = Benjamin Teisserenc ORCID = 0000-0002-5360-3767

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 4400 KiB  
Article
Software Architecture and Non-Fungible Tokens for Digital Twin Decentralized Applications in the Built Environment
by Benjamin Teisserenc and Samad M. E. Sepasgozar
Buildings 2022, 12(9), 1447; https://doi.org/10.3390/buildings12091447 - 14 Sep 2022
Cited by 25 | Viewed by 5865
Abstract
Blockchain technology (BCT) can enable distributed collaboration, enhance data sharing, and automate back-end processes for digital twin (DT) decentralized applications (dApps) in the construction industry (CI) 4.0. The aim of this paper was to propose a software architecture and to develop a framework [...] Read more.
Blockchain technology (BCT) can enable distributed collaboration, enhance data sharing, and automate back-end processes for digital twin (DT) decentralized applications (dApps) in the construction industry (CI) 4.0. The aim of this paper was to propose a software architecture and to develop a framework of smart contracts for blockchain-based digital twin (BCDT) dApps throughout the lifecycle of projects in CI 4.0. This paper leveraged the existing literature and action research interviews to identify and validate the critical industry problems, functional requirements (FRs), and non-functional requirements (NFRs) to be addressed by BCDT dApps in CI 4.0. Basic use cases were developed to design a framework of smart contracts for BCDT dApps throughout the lifecycle of projects. The analysis of an online survey was used to identify the key requirements and enablers to propose a software architecture for BCDT applications and to validate the requirements for developing the framework of a smart contract for BCDTs. The findings were: (1) The identification of key problems in CI 4.0 for each BIM/BCDT dimension (3D, 4D, 5D, 6D, 7D, 8D, and contractual (cD)) and the related FRs and NFRs for BCDT applications. Additionally, key use cases were designed to address the problems identified. (2) The proposed BCDT architecture permitted us to narrow gaps in the literature on blockchain-based decentralized digital twins. Moreover, the proposed BCDT architecture and smart-contract framework addressed the main requirements in the literature on BCDTs. (3) The study leveraged the non-fungible token (NFT) standard to develop a framework for smart contracts that addressed the key use cases and the related industry problems and functional requirements that were identified. The study also considered the contractual dimension (cD) as an overarching dimension in relation to the other BCDT dimensions. (4) We also compared the costs of several public blockchains for executing the proposed smart-contract framework throughout the lifecycle of a medium-sized building project. The cost analysis permitted the development of criteria to evaluate the suitability of blockchain networks for BCDT applications in CI 4.0 depending on the principal blockchain networks’ properties (security, decentralization, scalability, and interoperability). Finally, this study resulted in a novel framework that included software architecture, smart-contract use cases, and selection criteria among blockchain networks for BCDT dApps in CI 4.0. Full article
Show Figures

Figure 1

28 pages, 1964 KiB  
Review
Adoption of Blockchain Technology through Digital Twins in the Construction Industry 4.0: A PESTELS Approach
by Benjamin Teisserenc and Samad Sepasgozar
Buildings 2021, 11(12), 670; https://doi.org/10.3390/buildings11120670 - 20 Dec 2021
Cited by 129 | Viewed by 13922
Abstract
The key challenges of the building, engineering, construction, operations, and mining (BECOM) industries are the lack of trust, inefficiencies, and the fragmentation of the information value chain into vulnerable data silos throughout the lifecycle of projects. This paper aims to develop a novel [...] Read more.
The key challenges of the building, engineering, construction, operations, and mining (BECOM) industries are the lack of trust, inefficiencies, and the fragmentation of the information value chain into vulnerable data silos throughout the lifecycle of projects. This paper aims to develop a novel conceptual model for the implementation of blockchain technology (BCT) for digital twin(s) (DT) in the BECOM industry 4.0 to improve trust, cyber security, efficiencies, information management, information sharing, and sustainability. A PESTELS approach is used to review the literature and identify the key challenges affecting BCT adoption for the BECOM industry 4.0. A review of the technical literature on BCT combined with the findings from PESTELS analysis permitted researchers to identify the key technological factors affecting BCT adoption in the industry. This allowed offering a technological framework—namely, the decentralized digital twin cycle (DDTC)—that leverages BCT to address the key technological factors and to ultimately enhance trust, security, decentralization, efficiency, traceability, and transparency of information throughout projects’ lifecycles. The study also identifies the gaps in the integration of BCT with key technologies of industry 4.0, including the internet of things (IoT), building information modeling (BIM), and DT. The framework offered addresses key technological factors and narrows key gaps around network governance, scalability, decentralization, interoperability, energy efficiency, computational requirements, and BCT integration with IoT, BIM, and DT throughout projects’ lifecycles. The model also considers the regulatory aspect and the environmental aspect, and the circular economy (CE). The theoretical framework provides key technological building blocks for industry practitioners to develop the DDTC concept further and implement it through experimental works. Finally, the paper provides an industry-specific analysis and technological approach facilitating BCT adoption through DT to address the key challenges and improve sustainability for the BECOM industry 4.0. Full article
(This article belongs to the Special Issue Construction 4.0)
Show Figures

Figure 1

51 pages, 14716 KiB  
Article
Project Data Categorization, Adoption Factors, and Non-Functional Requirements for Blockchain Based Digital Twins in the Construction Industry 4.0
by Benjamin Teisserenc and Samad Sepasgozar
Buildings 2021, 11(12), 626; https://doi.org/10.3390/buildings11120626 - 8 Dec 2021
Cited by 69 | Viewed by 8796
Abstract
As key technologies of the fourth industrial revolution, blockchain and digital twins have great potential to enhance collaboration, data sharing, efficiency, and sustainability in the construction industry. Blockchain can improve data integrity and enhance trust in the data value chain throughout the entire [...] Read more.
As key technologies of the fourth industrial revolution, blockchain and digital twins have great potential to enhance collaboration, data sharing, efficiency, and sustainability in the construction industry. Blockchain can improve data integrity and enhance trust in the data value chain throughout the entire lifecycle of projects. This paper aims to develop a novel theoretical framework for the adoption of environmentally sustainable blockchain-based digital twins (BCDT) for Construction Industry (CI) 4.0. The paper identifies which key data from construction projects lifecycle should be anchored in BCDTs to benefit CI 4.0 and the environment. The paper also identifies key factors and non-functional requirements necessary for the adoption of BCDTs in a decentralized and sustainable CI 4.0. At first, a content analysis of the literature allowed the identification of which data from projects lifecycle would benefit from blockchain technology (BCT) adoption and what the key factors and non-functional requirements necessary for the adoption of BCDT in the CI4.0 are. Furthermore, the analysis of structured interviews and online survey permitted to firstly validate the hypotheses raised from the literature and to offer a novel framework for BCDT of CI 4.0 in the context of the circular economy (CE). The findings are that (1) the key project lifecycle data relevant for BCDTs relate to the BIM dimensions (3D, 4D, 5D, 6D, 7D, and 8D) and a new dimension called the contractual dimension (cD) is also proposed. (2) Ecosystems of BCDTs should embrace a novel form of collaboration that is decentralized and presented as Level 4 maturity for BCDTs. This new level of maturity leverages distributed blockchain networks to enhance collaboration, processes automation with smart contracts, and data sharing within a decentralized data value chain. Finally (3), the main non-functional requirements for BCDTs are security, privacy, interoperability, data ownership, data integrity, and the decentralization and scalability of data storage. With the proposed framework including the BCDT dimensions, the Maturity Level 4, and the key non-functional requirements, this paper provides the building blocks for industry practitioners to adopt BCDTs. This is promising for CI 4.0 to embrace a paradigm shift towards decentralized ecosystems of united BCDTs where trust, collaboration, data sharing, information security, efficiency, and sustainability are improved throughout the lifecycle of projects and within a decentralized CE (DCE). Full article
Show Figures

Figure 1

Back to TopTop