Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Authors = Andy M. Booth ORCID = 0000-0002-4702-2210

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6388 KiB  
Article
Investigating the Physicochemical Property Changes of Plastic Packaging Exposed to UV Irradiation and Different Aqueous Environments
by Wihann Conradie, Christie Dorfling, Annie Chimphango, Andy M. Booth, Lisbet Sørensen and Guven Akdogan
Microplastics 2022, 1(3), 456-476; https://doi.org/10.3390/microplastics1030033 - 17 Aug 2022
Cited by 20 | Viewed by 4844
Abstract
A wide range of weathering processes contributes to the degradation of plastic litter items which leads to the formation of microplastics that may be detrimental to marine ecosystems and the organisms inhabiting them. In this study, the impact of UV exposure on the [...] Read more.
A wide range of weathering processes contributes to the degradation of plastic litter items which leads to the formation of microplastics that may be detrimental to marine ecosystems and the organisms inhabiting them. In this study, the impact of UV exposure on the degradation of clear polypropylene (CPP), black polypropylene (BPP), and polyethylene terephthalate (PET) packaging materials was investigated over a period of 6 weeks under dry air conditions representing the terrestrial environment. The exposure was conducted using differently sized and shaped samples at irradiation intensities of 65 W/m2 and 130 W/m2. Results indicated that UV irradiation led to changes in the properties of PET, BPP, and CPP that were proportional to the intensity delivered, leading to a higher level of mass loss, carbonyl indices, crystallinities, and microhardness in all polymer types at 130 W/m2 relative to 65 W/m2. However, material shape and size did not have a significant influence on any property for any of the test materials. Increased mass loss over time was accompanied by considerable increases in carbonyl index (CI) for both PPs. Clear PP (CPP) underwent the most severe degradation, resulting in the highest mass loss, increase in crystallinity, and CI. BPP was less degraded and modified by the UV irradiation than the CPP, indicating that the colorant, carbon black, provided some degree of protection to the bulk polymer material. PET was the least degraded of the three materials, suggesting this polymer type is more resistant to UV degradation. The differences in the degradation behaviours of the three test materials under dry environmental conditions indicate that the UV exposure history of plastic litter might play an important role in its potential for further degradation once it reaches the marine environment. Furthermore, analysis of samples exposed to UV in aqueous media reveals a more irregular set of trends for most material properties measured. Overall, the degree of degradation resulting from UV irradiation in dry environments was more pronounced than in aqueous environments, although the most significant property changes were observed for materials without previous UV exposure histories. Samples with previous UV histories showed higher resistance to further crystallinity changes, which appeared to be due to crosslinking in the pretreatment exposures inhibiting chain alignment into crystalline structures. The effect of solution medium was insignificant, although the presence of water allowed hydrolytic degradation to proceed simultaneously with UV degradation for PET. The reduction of CI in pretreated materials in the aqueous exposures, combined with the mass loss, suggest that the degraded surface layer erodes or products dissolve into surrounding solution medium, leaving a fresh surface of plastic exposed. Full article
(This article belongs to the Collection Current Opinion in Microplastics)
Show Figures

Figure 1

16 pages, 1951 KiB  
Article
Single-Use Plastic Bans: Exploring Stakeholder Perspectives on Best Practices for Reducing Plastic Pollution
by Emily Cowan, Andy M. Booth, Andreas Misund, Katja Klun, Ana Rotter and Rachel Tiller
Environments 2021, 8(8), 81; https://doi.org/10.3390/environments8080081 - 16 Aug 2021
Cited by 37 | Viewed by 21961
Abstract
In this study, we conducted and documented workshops and interviews in Norway and Slovenia to identify stakeholder and future generation opinions and mitigation strategies for solving one of the most prominent environmental issues: plastic pollution. As part of the EU H2020 project GoJelly [...] Read more.
In this study, we conducted and documented workshops and interviews in Norway and Slovenia to identify stakeholder and future generation opinions and mitigation strategies for solving one of the most prominent environmental issues: plastic pollution. As part of the EU H2020 project GoJelly, stakeholders were brought together to explore their perceptions on considering jellyfish mucus as a new resource to contribute to reducing plastic pollution from entering the marine environment. The study was conducted in the spring of 2019, in a context directly after the European Union (EU) announced its Directive to ban the most commonly used single-use plastic (SUP) items. The study applied the snowball method as a methodological choice to identify relevant stakeholders. Systems thinking was utilized as a participatory modelling approach, which allowed for the creation of conceptual mind maps from the various workshops and interviews, to understand consumers’ consciousness, and to map out ideas on plastic pollution reduction. Plastic pollution takes place on a global scale and stakeholders discussed their individual perceptions of national and international solutions that could be put in place to solve it, including the opportunities around utilizing jellyfish mucus to filter and capture micro- and nanoplastic. We found that industry stakeholders in both case areas were generally more accepting of policy and increased innovation moving forward, but placed weight on the scientific community to conduct more research on the pollution issue and propose solutions. Future generation stakeholders (youth aged 14–18), however, put emphasis on consumer behavior and buying patterns of single-use products fueling the plastic crisis. Full article
(This article belongs to the Special Issue Plastic Contamination: Challenges and Solutions)
Show Figures

Figure 1

10 pages, 1658 KiB  
Article
Computer Analysis of the Effect of Activation Temperature on the Microporous Structure Development of Activated Carbon Derived from Common Polypody
by Mirosław Kwiatkowski, Jarosław Serafin, Andy M. Booth and Beata Michalkiewicz
Materials 2021, 14(11), 2951; https://doi.org/10.3390/ma14112951 - 30 May 2021
Cited by 21 | Viewed by 3045
Abstract
This paper presents the results of a computer analysis of the effect of activation process temperature on the development of the microporous structure of activated carbon derived from the leaves of common polypody (Polypodium vulgare) via chemical activation with phosphoric acid [...] Read more.
This paper presents the results of a computer analysis of the effect of activation process temperature on the development of the microporous structure of activated carbon derived from the leaves of common polypody (Polypodium vulgare) via chemical activation with phosphoric acid (H3PO4) at activation temperatures of 700, 800, and 900 °C. An unconventional approach to porous structure analysis, using the new numerical clustering-based adsorption analysis (LBET) method together with the implemented unique gas state equation, was used in this study. The LBET method is based on unique mathematical models that take into account, in addition to surface heterogeneity, the possibility of molecule clusters branching and the geometric and energy limitations of adsorbate cluster formation. It enabled us to determine a set of parameters comprehensively and reliably describing the porous structure of carbon material on the basis of the determined adsorption isotherm. Porous structure analyses using the LBET method were based on nitrogen (N2), carbon dioxide (CO2), and methane (CH4) adsorption isotherms determined for individual activated carbon. The analyses carried out showed the highest CO2 adsorption capacity for activated carbon obtained was at an activation temperature of 900 °C, a value only slightly higher than that obtained for activated carbon prepared at 700 °C, but the values of geometrical parameters determined for these activated carbons showed significant differences. The results of the analyses obtained with the LBET method were also compared with the results of iodine number analysis and the results obtained with the Brunauer–Emmett–Teller (BET), Dubinin–Radushkevich (DR), and quenched solid density functional theory (QSDFT) methods, demonstrating their complementarity. Full article
(This article belongs to the Section Carbon Materials)
Show Figures

Figure 1

Back to TopTop