Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Authors = Andrea Dali ORCID = 0000-0002-1151-140X

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
7 pages, 1438 KiB  
Viewpoint
Molecular Testing of Environmental Samples as a Potential Source to Estimate Parasite Infection
by Rojelio Mejia, Barton Slatko, Cristina Almazan, Ruben Cimino, Alejandro Krolewiecki, Natalia Montellano Duran, Jacob Edwin Valera Aspetty, Paola Andrea Vargas, Chiara Cássia Oliveira Amorim, Stefan Michael Geiger, Ricardo Toshio Fujiwara, Juan David Ramirez, Luz Marina Llangarí-Arizo, Irene Guadalupe, Liliana E. Villanueva-Lizama, Julio Vladimir Cruz-Chan, María Leticia Ojeda, Eva Mereles Aranda, Sandra Ocampos Benedetti, Maritza Dalí Camones Rivera, Eddyson Montalvo Sabino, Carlos Pineda, Eric J. Wetzel and Philip J. Cooperadd Show full author list remove Hide full author list
Trop. Med. Infect. Dis. 2024, 9(10), 226; https://doi.org/10.3390/tropicalmed9100226 - 26 Sep 2024
Cited by 2 | Viewed by 2046
Abstract
We discuss the potential usefulness of molecular testing of soil, dust, and water samples to detect medically important parasites, and where such testing could be used to supplement stool sampling in humans. A wide variety of parasites including protozoa and helminths, many of [...] Read more.
We discuss the potential usefulness of molecular testing of soil, dust, and water samples to detect medically important parasites, and where such testing could be used to supplement stool sampling in humans. A wide variety of parasites including protozoa and helminths, many of which are zoonotic, have an important infection reservoir in the environment. In some cases, this environmental period is essential for further parasite development. We describe the progress in implementing methods for the molecular detection of these parasites in soil across eight collaborating centers in Latin America and represent a variety of potential applications in improving our understanding of parasite epidemiology and mapping, surveillance, and control of these parasites. This methodology offers new opportunities for improving our understanding of a wide variety of parasites of public health importance and novel tools for their control. Full article
(This article belongs to the Special Issue Molecular Diagnosis and Risk Assessment of Helminth Infections)
Show Figures

Figure 1

16 pages, 3321 KiB  
Article
The Role of the Hydrogen Bond Network in Maintaining Heme Pocket Stability and Protein Function Specificity of C. diphtheriae Coproheme Decarboxylase
by Federico Sebastiani, Chiara Baroni, Gaurav Patil, Andrea Dali, Maurizio Becucci, Stefan Hofbauer and Giulietta Smulevich
Biomolecules 2023, 13(2), 235; https://doi.org/10.3390/biom13020235 - 25 Jan 2023
Cited by 9 | Viewed by 5129
Abstract
Monoderm bacteria accumulate heme b via the coproporphyrin-dependent biosynthesis pathway. In the final step, in the presence of two molecules of H2O2, the propionate groups of coproheme at positions 2 and 4 are decarboxylated to form vinyl groups by [...] Read more.
Monoderm bacteria accumulate heme b via the coproporphyrin-dependent biosynthesis pathway. In the final step, in the presence of two molecules of H2O2, the propionate groups of coproheme at positions 2 and 4 are decarboxylated to form vinyl groups by coproheme decarboxylase (ChdC), in a stepwise process. Decarboxylation of propionate 2 produces an intermediate that rotates by 90° inside the protein pocket, bringing propionate 4 near the catalytic tyrosine, to allow the second decarboxylation step. The active site of ChdCs is stabilized by an extensive H-bond network involving water molecules, specific amino acid residues, and the propionate groups of the porphyrin. To evaluate the role of these H-bonds in the pocket stability and enzyme functionality, we characterized, via resonance Raman and electronic absorption spectroscopies, single and double mutants of the actinobacterial pathogen Corynebacterium diphtheriae ChdC complexed with coproheme and heme b. The selective elimination of the H-bond interactions between propionates 2, 4, 6, and 7 and the polar residues of the pocket allowed us to establish the role of each H-bond in the catalytic reaction and to follow the changes in the interactions from the substrate to the product. Full article
Show Figures

Figure 1

Back to TopTop