Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Authors = Abdalrahman Elshora

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 10290 KiB  
Article
Modular Multi-Input DC/DC Converter for EV Fast Charging
by Hossam A. Gabbar and Abdalrahman Elshora
Technologies 2022, 10(6), 113; https://doi.org/10.3390/technologies10060113 - 7 Nov 2022
Cited by 3 | Viewed by 3445
Abstract
In this paper, a modular multi-input, single output DC/DC converter is proposed to enhance the energy management of a fast-charging station for electric vehicles (EVs). The proposed bidirectional converter can work in different modes of operation with fewer components and a modular design [...] Read more.
In this paper, a modular multi-input, single output DC/DC converter is proposed to enhance the energy management of a fast-charging station for electric vehicles (EVs). The proposed bidirectional converter can work in different modes of operation with fewer components and a modular design to extend the input power sources and increase the charging power rate. The converter has several merits compared to the conventional converters, such as centralizing the control, reducing power devices, and reducing power conversion stages. By using MATLAB/Simulink, the converter was tested in many operation modes and was used to charge a Nissan Leaf EV’s battery (350 V, 60 Ah) from hybrid sources simultaneously and individually in power up to (17 kW). In addition, it was tested on a hardware scale at a low power rate (100 W) for the validation of the simulation work and the topology concept. In addition, its different losses and efficiency were calculated during the different operation modes. Full article
Show Figures

Figure 1

23 pages, 4284 KiB  
Article
Demonstration of Resilient Microgrid with Real-Time Co-Simulation and Programmable Loads
by Hossam A. Gabbar, Yasser Elsayed, Manir Isham, Abdalrahman Elshora, Abu Bakar Siddique and Otavio Lopes Alves Esteves
Technologies 2022, 10(4), 83; https://doi.org/10.3390/technologies10040083 - 12 Jul 2022
Cited by 3 | Viewed by 4065
Abstract
In recent years, the foment for sustainable and reliable micro energy grid (MEG) systems has increased significantly, aiming mainly to reduce the dependency on fossil fuels, provide low-cost clean energy, lighten the burden, and increase the stability and reliability of the regional electrical [...] Read more.
In recent years, the foment for sustainable and reliable micro energy grid (MEG) systems has increased significantly, aiming mainly to reduce the dependency on fossil fuels, provide low-cost clean energy, lighten the burden, and increase the stability and reliability of the regional electrical grid by having interconnected and centralized clean energy sources, and ensure energy resilience for the population. A resilient energy system typically consists of a system able to control the energy flow effectively by backing up the intermittent output of renewable sources, reducing the effects of the peak demand on the grid side, considering the impact on dispatch and reliability, and providing resilient features to ensure minimum operation interruptions. This paper aims to demonstrate a real-time simulation of a microgrid capable of predicting and ensuring energy lines run correctly to prevent or shorten outages on the grid when it is subject to different disturbances by using energy management with a fail-safe operation and redundant control. In addition, it presents optimized energy solutions to enhance the situational awareness of energy grid operators based on a graphical and interactive user interface. To expand the MEG’s capability, the setup integrates real implemented hardware components with the emulated components based on real-time simulation using OPAL-RT OP4510. Most hardware components are implemented in the lab to be modular, expandable, and flexible for various test scenarios, including fault imitation. They include but are not limited to the power converter, inverter, battery charger controller, relay drivers, programmable AC and DC loads, PLC, and microcontroller-based controller. In addition, the real-time simulation offers a great variety of power sources and energy storage such as wind turbine emulators and flywheels in addition to the physical sources such as solar panels, supercapacitors, and battery packs. Full article
(This article belongs to the Special Issue 10th Anniversary of Technologies—Recent Advances and Perspectives)
Show Figures

Figure 1

14 pages, 1329 KiB  
Article
Design of Fast Charging Station with Energy Management for eBuses
by Hossam A. Gabbar, Yasser Elsayed, Abu Bakar Siddique, Abdalrahman Elshora and Ajibola Adeleke
Vehicles 2021, 3(4), 807-820; https://doi.org/10.3390/vehicles3040048 - 23 Nov 2021
Cited by 6 | Viewed by 4065
Abstract
The popularity of the eBus has been increasing rapidly in recent years due to its low greenhouse gases (GHG) emissions and its low dependence on fossil fuels. This incremental use of the eBus increases the burden to the power grid for its charging. [...] Read more.
The popularity of the eBus has been increasing rapidly in recent years due to its low greenhouse gases (GHG) emissions and its low dependence on fossil fuels. This incremental use of the eBus increases the burden to the power grid for its charging. Charging eBus requires a high amount of power for a feasible amount of time. Therefore, developing a fast-charging station (FCS) integrated with Micro Energy Grid (MEG) and hybrid energy storage is crucial for charging eBuses. This paper presents a design of FCS for eBus that integrates MEG with hybrid energy storage with the energy management system. To reduce the dependency on the main utility grid, a hybrid micro energy grid based on a renewable source (i.e., PV) have been included. In addition, hybrid energy storage of batteries and flywheels has also been developed to mitigate the power demand of the fast-charging station during peak time. Furthermore, a multiple-input DC-DC converter has been developed for managing the DC power transfer between the common DC bus and the multiple energy sources. Finally, an energy management system and the controller has been designed to achieve an extensive performance from the fast charging station. MATLAB Simulink has been used for the simulation work of the overall design. Different test case scenarios are tested for evaluating the performance parameters of the proposed FCS and also for evaluating its performance. Full article
Show Figures

Figure 1

Back to TopTop