Evaluation of Saliva Collection and DNA Extraction Methods for Practical Application of Salivary Human Herpesvirus 6 and 7 Assays
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Main Experiment—Comparison of Saliva Collection and DNA Extraction Methods
2.2.1. Participants
2.2.2. Saliva Collection
2.2.3. DNA Extraction
2.2.4. HHV-6/7 Assays
2.2.5. Statistical Analysis
2.3. Sub-Experiment 1—Examination of Practical Saliva Collection
2.3.1. Participants
2.3.2. Saliva Collection
2.3.3. Questionnaire
2.3.4. Statistical Analysis
2.4. Sub-Experiment 2—Investigation of Diurnal Variation in Salivary HHV-6/7 Levels
2.4.1. Participants
2.4.2. Saliva Collection
- Rinse with the provided distilled water three times for 30 s each.
- Rest in a sitting position for 5 min.
- Place the paraffin gum in your mouth (do not touch with your hands directly) and have the sterile straw and 2 mL tube ready.
- After swallowing the saliva stored in the mouth, start the stopwatch, chew the gum once per second, and spit out the saliva into the 2 mL tube.
- After approximately 1.5 mL of saliva has been collected, stop the stopwatch and write down the “time of collection” and “time required for collection” in the provided paper.
- Store the 2 mL tube containing saliva at −20 °C (the freezer compartment of a typical household refrigerator).
2.4.3. DNA Extraction
2.4.4. HHV-6/7 Assays
2.4.5. Statistical Analysis
3. Results
3.1. Main Experiment—Comparison of Saliva Collection and DNA Extraction
3.1.1. Volume of Collected Saliva
3.1.2. Template DNA Concentrations and Purity
3.1.3. Salivary HHV-6/7 Assays
Detection Rates
CV Values
Concentrations
3.2. Sub-Experiment 1—Examination of Practical Saliva Collection
3.2.1. Saliva Secretion
3.2.2. Subjective Stress Level
3.3. Sub-Experiment 2—Investigation of Diurnal Variation in Salivary HHV-6/7 Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aoki, R.; Kobayashi, N.; Suzuki, G.; Kuratsune, H.; Shimada, K.; Oka, N.; Takahashi, M.; Yamadera, W.; Iwashita, M.; Tokuno, S.; et al. Human herpesvirus 6 and 7 are biomarkers for fatigue, which distinguish between physiological fatigue and pathological fatigue. Biochem. Biophys. Res. Commun. 2016, 478, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Agut, H.; Bonnafous, P.; Gautheret-Dejean, A. Update on infections with human herpesviruses 6A, 6B, and 7. Med. Mal. Infect. 2017, 47, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Harnett, G.B.; Farr, T.J.; Pietroboni, G.R.; Bucens, M.R. Frequent shedding of human herpesvirus 6 in saliva. J. Med. Virol. 1990, 30, 128–130. [Google Scholar] [CrossRef]
- Black, J.B.; Inoue, N.; Kite-Powell, K.; Zaki, S.; Pellett, P.E. Frequent isolation of human herpesvirus 7 from saliva. Virus Res. 1993, 29, 91–98. [Google Scholar] [CrossRef]
- Zerr, D.M.; Huang, M.L.; Corey, L.; Erickson, M.; Parker, H.L.; Frenkel, L.M. Sensitive method for detection of human herpesviruses 6 and 7 in saliva collected in field studies. J. Clin. Microbiol. 2000, 38, 1981–1983. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.Y.; Lee, J.; Sugden, B. The unfolded protein response and autophagy: Herpesviruses rule! J. Virol. 2009, 83, 1168–1172. [Google Scholar] [CrossRef]
- Marafon, B.B.; Pinto, A.P.; Ropelle, E.R.; de Moura, L.P.; Cintra, D.E.; Pauli, J.R.; da Silva, A.S.R. Muscle endoplasmic reticulum stress in exercise. Acta Physiol. 2022, 235, e13799. [Google Scholar] [CrossRef]
- Fukuda, H.; Ichinose, T.; Kusama, T.; Sakurai, R. Assessment of salivary human herpesvirus-6 and immunoglobulin A levels in nurses working shifts. Asian Nurs. Res. 2008, 2, 159–165. [Google Scholar] [CrossRef]
- Tamai, S.; Hiraoka, H.; Shimizu, K.; Miyake, K.; Hoshi, D.; Aoki, K.; Yanazawa, K.; Sugasawa, T.; Takekoshi, K.; Watanabe, K. Variabilities of salivary human herpesvirus 6/7 and cortisol levels during a three-day training camp in judo athletes. J. Phys. Fit. Sports Med. 2022, 11, 43–49. [Google Scholar] [CrossRef]
- Tamai, S.; Sone, R.; Kitahara, A.; Aoki, K.; Sugasawa, T.; Takekoshi, K.; Watanabe, K. Variabilities of Salivary HHV-6/7, SIgA Levels, and POMS 2 Scores Over Two Weeks Following Long-term Restriction from Practice in Athletes. Ann. Appl. Sport. Sci. 2022, 10, e1068. [Google Scholar] [CrossRef]
- Kobayashi, N.; Oka, N.; Takahashi, M.; Shimada, K.; Ishii, A.; Tatebayashi, Y.; Shigeta, M.; Yanagisawa, H.; Kondo, K. Human Herpesvirus 6B Greatly Increases Risk of Depression by Activating Hypothalamic-Pituitary-Adrenal Axis during Latent Phase of Infection. iScience 2020, 23, 101187. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Lacerda, E.M.; Nacul, L.; Kingdon, C.C.; Norris, J.; O’Boyle, S.; Roberts, C.H.; Palla, L.; Riley, E.M.; Cliff, J.M. Salivary DNA Loads for Human Herpesviruses 6 and 7 Are Correlated With Disease Phenotype in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front. Med. 2021, 8, 656692. [Google Scholar] [CrossRef]
- Bellagambi, F.G.; Lomonaco, T.; Salvo, P.; Vivaldi, F.; Hangouët, M.; Ghimenti, S.; Biagini, D.; Francesco, F.D.; Fuoco, R.; Errachid, A. Saliva sampling: Methods and devices. An overview. TrAC Trends Anal. Chem. 2020, 124, 115781. [Google Scholar] [CrossRef]
- Shirtcliff, E.A.; Granger, D.A.; Schwartz, E.; Curran, M.J. Use of salivary biomarkers in biobehavioral research: Cotton-based sample collection methods can interfere with salivary immunoassay results. Psychoneuroendocrinology 2001, 26, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Shanthan, G.; Bouzga, M.M.; Thi Dinh, H.M.; Haas, C.; Fonneløp, A.E. Evaluating the performance of five up-to-date DNA/RNA co-extraction methods for forensic application. Forensic Sci. Int. 2021, 328, 110996. [Google Scholar] [CrossRef] [PubMed]
- Durdiaková, J.; Kamodyová, N.; Ostatníková, D.; Vlková, B.; Celec, P. Comparison of different collection procedures and two methods for DNA isolation from saliva. Clin. Chem. Lab. Med. 2012, 50, 643–647. [Google Scholar] [CrossRef]
- Hongjaisee, S.; Jabjainai, Y.; Sakset, S.; Preechasuth, K.; Ngo-Giang-Huong, N.; Khamduang, W. Comparison of Simple RNA Extraction Methods for Molecular Diagnosis of Hepatitis C Virus in Plasma. Diagnostics 2022, 12, 1599. [Google Scholar] [CrossRef]
- Hayes, L.D.; Grace, F.M.; Kilgore, J.L.; Young, J.D.; Baker, J.S. Diurnal variation of cortisol, testosterone, and their ratio in apparently healthy males. Sport Sci. Pract. Asp. 2012, 9, 5–13. [Google Scholar]
- Davis, C.P.; King, J.L.; Budowle, B.; Eisenberg, A.J.; Turnbough, M.A. Extraction platform evaluations: A comparison of AutoMate Express™, EZ1® Advanced XL, and Maxwell® 16 Bench-top DNA extraction systems. Leg. Med. 2012, 14, 36–39. [Google Scholar] [CrossRef]
- Golatowski, C.; Salazar, M.G.; Dhople, V.M.; Hammer, E.; Kocher, T.; Jehmlich, N.; Völker, U. Comparative evaluation of saliva collection methods for proteome analysis. Clin. Chim. Acta 2013, 419, 42–46. [Google Scholar] [CrossRef]
- Rabe, A.; Gesell Salazar, M.; Fuchs, S.; Kocher, T.; Völker, U. Comparative analysis of Salivette® and paraffin gum preparations for establishment of a metaproteomics analysis pipeline for stimulated human saliva. J. Oral. Microbiol. 2018, 10, 1428006. [Google Scholar] [CrossRef]
- Lim, Y.; Totsika, M.; Morrison, M.; Punyadeera, C. The saliva microbiome profiles are minimally affected by collection method or DNA extraction protocols. Sci. Rep. 2017, 7, 8523. [Google Scholar] [CrossRef]
- Dauphin, L.A.; Hutchins, R.J.; Bost, L.A.; Bowen, M.D. Evaluation of automated and manual commercial DNA extraction methods for recovery of Brucella DNA from suspensions and spiked swabs. J. Clin. Microbiol. 2009, 47, 3920–3926. [Google Scholar] [CrossRef] [PubMed]
- Sorber, L.; Zwaenepoel, K.; Deschoolmeester, V.; Roeyen, G.; Lardon, F.; Rolfo, C.; Pauwels, P. A Comparison of Cell-Free DNA Isolation Kits: Isolation and Quantification of Cell-Free DNA in Plasma. J. Mol. Diagn. 2017, 19, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Kemp, B.M.; Winters, M.; Monroe, C.; Barta, J.L. How much DNA is lost? Measuring DNA loss of short-tandem-repeat length fragments targeted by the PowerPlex 16® system using the Qiagen MinElute Purification Kit. Hum. Biol. 2014, 86, 313–329. [Google Scholar] [CrossRef]
- Hadinoto, V.; Shapiro, M.; Sun, C.C.; Thorley-Lawson, D.A. The dynamics of EBV shedding implicate a central role for epithelial cells in amplifying viral output. PLoS Pathog. 2009, 5, e1000496. [Google Scholar] [CrossRef] [PubMed]
- Tan, N.K.; Carrington, D.; Pope, C.F. Detecting human cytomegalovirus in urine, vagina and saliva: Impact of biological fluids and storage durations and temperatures on CMV DNA recovery. J. Med. Virol. 2023, 95, e29081. [Google Scholar] [CrossRef]
- Atieh, M.A.; Guirguis, M.; Alsabeeha, N.H.M.; Cannon, R.D. The diagnostic accuracy of saliva testing for SARS-CoV-2: A systematic review and meta-analysis. Oral. Dis. 2022, 28 (Suppl. S2), 2347–2361. [Google Scholar] [CrossRef]
- Melo Costa, M.; Benoit, N.; Dormoi, J.; Amalvict, R.; Gomez, N.; Tissot-Dupont, H.; Million, M.; Pradines, B.; Granjeaud, S.; Almeras, L. Salivette, a relevant saliva sampling device for SARS-CoV-2 detection. J. Oral. Microbiol. 2021, 13, 1920226. [Google Scholar] [CrossRef]
- Galar, A.; Catalán, P.; Vesperinas, L.; Miguens, I.; Muñoz, I.; García-Espona, A.; Sevillano, J.A.; Andueza, J.A.; Bouza, E.; Muñoz, P. Use of Saliva Swab for Detection of Influenza Virus in Patients Admitted to an Emergency Department. Microbiol. Spectr. 2021, 9, e0033621. [Google Scholar] [CrossRef]
Items | |
---|---|
Male–Female (n) | 15:15 |
Age (years) | 25.7 ± 2.6 |
Height (cm) | 167.0 ± 11.4 |
Weight (kg) | 64.2 ± 12.1 |
Average time of static labor 1 per day (h) | 6.7 ± 3.1 |
Average time of dynamic labor 2 per day (h) | 1.4 ± 1.8 |
Average time of sleeping per day (h) | 7.2 ± 1.0 |
Items | |
---|---|
Male–Female (n) | 5:5 |
Age (years) | 27.5 ± 1.5 |
Height (cm) | 166.5 ± 12.2 |
Weight (kg) | 63.7 ± 9.4 |
Average time of static labor 1 per day (h) | 9.4 ± 2.3 |
Average time of dynamic labor 2 per day (h) | 0.1 ± 0.2 |
Average time of sleeping per day (h) | 7.0 ± 0.9 |
Non | Cot | Syn | ||||
---|---|---|---|---|---|---|
MB | SC | MB | SC | MB | SC | |
HHV-6 | 100% (30/30) | 96.7% (29/30) | 100% (30/30) | 90.0% (27/30) | 86.6% (26/30) | 96.7% (29/30) |
HHV-7 | 100% (30/30) | 100% (30/30) | 96.7% (29/30) | 96.7% (29/30) | 100% (30/30) | 100% (30/30) |
Stress Level | Unsti-Spt | Sti-Spt | Sti-Swb |
---|---|---|---|
High | 22 (5.7) | 0 (−4.7) | 8 (−0.9) |
Middle | 6 (−1.9) | 15 (2.4) | 9 (−0.5) |
Low | 2 (−3.8) | 15 (2.4) | 13 (1.4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamai, S.; Sone, R.; Watanabe, K.; Shimizu, K. Evaluation of Saliva Collection and DNA Extraction Methods for Practical Application of Salivary Human Herpesvirus 6 and 7 Assays. Viruses 2025, 17, 411. https://doi.org/10.3390/v17030411
Tamai S, Sone R, Watanabe K, Shimizu K. Evaluation of Saliva Collection and DNA Extraction Methods for Practical Application of Salivary Human Herpesvirus 6 and 7 Assays. Viruses. 2025; 17(3):411. https://doi.org/10.3390/v17030411
Chicago/Turabian StyleTamai, Shinsuke, Ryota Sone, Koichi Watanabe, and Kazuhiro Shimizu. 2025. "Evaluation of Saliva Collection and DNA Extraction Methods for Practical Application of Salivary Human Herpesvirus 6 and 7 Assays" Viruses 17, no. 3: 411. https://doi.org/10.3390/v17030411
APA StyleTamai, S., Sone, R., Watanabe, K., & Shimizu, K. (2025). Evaluation of Saliva Collection and DNA Extraction Methods for Practical Application of Salivary Human Herpesvirus 6 and 7 Assays. Viruses, 17(3), 411. https://doi.org/10.3390/v17030411