Consequences of Volcanic Ash on Antioxidants, Nutrient Composition, Heavy Metal Accumulation, and Secondary Metabolites in Key Crops of Cotopaxi Province, Ecuador
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Extraction of Bioactive Compounds
2.3. Determination of Active Ingredients
2.4. Evaluation of Antioxidant Capacity
2.5. Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) Analysis
2.6. Determination of Bioactive Compounds by LC-MS
2.7. Statistical Analysis
3. Results
3.1. Active Ingredient Determination
3.2. Antioxidant Activity Determination
3.3. Inductively Coupled Plasma
3.4. LC-MS Determination
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mihai, R.A.; Espinoza-Caiza, I.A.; Melo-Heras, E.J.; Cubi-Insuaste, N.S.; Pinto-Valdiviezo, E.A.; Catana, R.D. Does the mineral composition of volcanic ashes have a beneficial or detrimental impact on the soils and cultivated crops of Ecuador? Toxics 2023, 11, 846. [Google Scholar] [CrossRef] [PubMed]
- León Cañar, D.J. Effect of entomopathogenic Metarhizium anisopliae fungus for the control of the cicada (Dalbulus maidis) in the cultivation of sweet corn (Zea mays) Milagro-Ecuador. Master’s Program Plant Health Cohort. Ph.D. Thesis, Universidad Agraria del Ecuador, Guayaquil, Ecuador, 2023. [Google Scholar]
- Carrera-Beltrán, L.; Gavilanes-Terán, I.; Idrovo-Novillo, J.; Valverde, V.H.; Rodríguez-Pinos, A.; Paredes, C.; Signes-Pastor, A.J.; Carbonell-Barrachina, Á.A. Environmental pollution by heavy metals within the area influenced by the Tungurahua volcano eruption–Ecuador. Ecotoxicol. Environ. Saf. 2024, 270, 115919. [Google Scholar] [CrossRef] [PubMed]
- Jubera, F.J.; Vega, E.J.; Orihuela, R.R.; Montesdeoca, R.D.; Hermandez Díaz, C.; Rodríguez-Díaz, J. Pozzolanic activity of volcanic ashes produced by the eruption of the Tajogaite Volcano in La Palma, Canary Islands. Constr. Build. Mat. 2024, 419, 135498. [Google Scholar] [CrossRef]
- Troncoso, L.; Bustillos, J.; Romero, J.E.; Guevara, A.; Carrillo, J.; Montalvo, E.; Izquierda, T. Hydrovolcanic ash emission between August 14 and 24, 2015 at Cotopaxi volcano (Ecuador): Characterization and eruption mechanisms. J. Volcanol. Geotherm. Res. 2017, 341, 228–241. [Google Scholar] [CrossRef]
- Saputra, D.; Ratna, S.; Hairiah, K.; Widianto, D.; Noordwijk, M. Recovery after volcanic ash deposition: Vegetation effects on soil organic carbon, soil structure, and infiltration rates. Plant Soil 2022, 474, 163–179. [Google Scholar] [CrossRef]
- Ligot, N.; Bogaert, P.; Biass, S.; Lobet, G.; Delmelle, P. Grain size modulates volcanic ash retention on crop foliage and potential yield loss. Nat. Hazard. Earth Syst. Sci. 2023, 23, 1355–1369. [Google Scholar] [CrossRef]
- Pilatasig, D. Mapeo de las Unidades Productivas de seis Cultivos en las Comunidades de Cotopaxi, Mediante un Sistema de Información Geográfica. Bachelor’s Thesis, Universidad Técnica de Cotopaxi, Latacunga, Ecuador, 2024. Available online: https://repositorio.utc.edu.ec/items/973a9e1f-46d7-48dd-8a54-5b44eab5c257 (accessed on 10 September 2024).
- Díaz, M. Evaluación Agrnómica de Fréjol (Phaseolus vulgaris L.) Mixturiado Bajo un Sistema Agroecológico en la Granja Experimental, La Pradera. Bachelor’s Thesis, Universidad Rpecnica del norte, Ibarra, Ecuador, 2021. Available online: https://repositorio.utn.edu.ec/handle/123456789/11526 (accessed on 10 September 2024).
- Contreras, A. Desarrollo Fenológico del Frejol Panamito (Phaseolus vulgaris) a Base de Abono Orgánico en Ecuador. Bachelor’s Thesis, Universidad Técnica de Babahoyo, Babahoyo, Ecuador, 2023. Available online: http://dspace.utb.edu.ec/bitstream/handle/49000/14820/E-UTBFACIAG0AGROP-000063.pdf?sequence=5&isAllowed=y (accessed on 10 September 2024).
- Guzzon, F.; Arandia Rios, L.W.; Caviedes Cepeda, G.M.; Céspedes Polo, M.; Chavez Cabrera, A.; Muriel Figueroa, J.; Pixley, K.V. Conservation and use of Latin American maize diversity: Pillar of nutrition security and cultural heritage of humanity. Agronomy 2021, 11, 172. [Google Scholar] [CrossRef]
- Gavilánez Luna, F.C.; Carabalí Vargas, A.A. Effect of three times of flooding in the flowering stage of three maize hybrids in Ecuador. Agric. Res. 2024, 26, 7–13. [Google Scholar] [CrossRef]
- Ermolin, M.S.; Ivaneev, A.I.; Fedyunina, N.N.; Fedotov, P.S. Nanospeciation of metals and metalloids in volcanic ash using single particle inductively coupled plasma mass spectrometry. Chemosphere 2021, 281, 130950. [Google Scholar] [CrossRef]
- Claros, P. Evaluacion de la Capacidad Antioxidante Total y Contenido de Polifenoles Totales del Phaseolus vulgaris “Frijol”. Bachelor’s Thesis, Universidad Nacional José Faustino Sánchez Carrión, Huacho, Peru, 2021. Available online: https://repositorio.unjfsc.edu.pe/handle/20.500.14067/5297 (accessed on 10 September 2024).
- López-Froilán, R.; Hernández-Ledesma, B.; Cámara, M.; Pérez-Rodríguez, M. Evaluation of the Antioxidant Potential of Mixed Fruit-Based Beverages: A New Insight on the Folin-Ciocalteu Method. Food Anal. Met. 2018, 11, 2897–2906. [Google Scholar] [CrossRef]
- Pekal, A.; Pyrzynska, K. Evaluation of aluminum complexation reaction for flavonoid content assay. Food Anal. Met. 2014, 7, 1776–1782. [Google Scholar] [CrossRef]
- Agudo, L. Técnicas para la determinación de compuestos antioxidante en alimentos. Rev. Educ. Ectremadura 2010, 8, 27–34. [Google Scholar]
- Ramírez, M. Determinación de la Capacidad Antioxidante Presente en las Semillas de Cordia Dentata por el Método ABTS y DPPH. Bachelor’s Thesis, Universidad El Bosque, Bogota, Columbia, 2023. Available online: https://repositorio.unbosque.edu.co/bitstream/handle/20.500.12495/10599/DeterminacicondeacapacidadantioxidantepresenteenlassemillasdeCordiadentataporelmtodoABTSyDPPH?sequenceisAllowed (accessed on 10 September 2024).
- Mendoza, M. Inducción de metabolitos de interés nutracéutico en germinados de frijol (Phaseolus vulgaris L.) y el efecto de su consumo en un modelo de dislipidemia. Bachelor’s Thesis, Universidad Autónoma de Querétaro facultad de química, Santiago de Querétaro, Mexico, 2018. [Google Scholar]
- Simonič, M.; Erjavec, A.; Volmajer ValhM, J. Application of ICP-OES for determination of mercury species in environmental samples. Holist. Approach Environ. 2024, 14, 101–108. [Google Scholar] [CrossRef]
- Garcia, E.; Esteban, M. Validation of an ICP-OES Method for the Quantitative Determination of Trace Elements in Food Samples. J. Anal. Atomic Spectr 2016, 31, 550–558. [Google Scholar]
- Tohma, H.; Köksal, E.; Kılıç, Ö.; Alan, Y.; Yılmaz, M.A.; Gülçin, İ.; Bursal, E.; Alwasel, S.H. RP-HPLC/MS/MS analysis of the phenolic compounds, antioxidant and antimicrobial activities of Salvia L. species. Antioxidants 2016, 5, 5040038. [Google Scholar] [CrossRef] [PubMed]
- Irakli, M.; Skendi, A.; Bouloumpasi, E.; Chatzopoulou, P.; Biliaderis, C.G. LC-MS identification and quantification of phenolic compounds in solid residues from the essential oil industry. Antioxidants 2021, 10, 2016. [Google Scholar] [CrossRef]
- Luskal, T.; Castillo, S.; Villar-Briones, A.; Orešič, M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 2010, 11, 395. [Google Scholar]
- Cellier, G.; Moreau, A.; Chabirand, A.; Hostachy, B.; Ailloud, F.; Prior, P. A Duplex PCR Assay for the Detection of Ralstonia solanacearum Phylotype II Strains in Musa spp. PLoS ONE 2015, 10, e0122182. [Google Scholar] [CrossRef]
- Sánchez, E.; Vizcaino, G.; Mejía, F.; Cipriani, I. Análisis mineralógico y multielemental de la ceniza volcánica, producto de la erupción del Cotopaxi en 2015, por difracción de rayos X (XRD) y espectrometría de masas con plasma acoplado inductivamente (ICP-MS) y sus posibles aplicaciones e impactos. infoANALÍTICA 2018, 6, 9–23. [Google Scholar] [CrossRef]
- Shoji, S.; Takahashi, T. Environmental and agricultural significance of volcanic ash soils. Glob. Environ. Res. 2002, 6, 113–135. [Google Scholar]
- Cadena, E. Tendencias Estacionales del Sedimento de Ceniza Proveniente de Erupciones Vulcanianas del Volcán Tungurahua, Periodo 2015–2019. Bachelor’s Thesis, Universidad San Francisco de Quito, Quito, Ecuador, 2019. Available online: https://repositorio.usfq.edu.ec/handle/23000/8988 (accessed on 10 May 2024).
- Panico, A.M.; Garufi, F.; Nitto, S.; Di Mauro, R.; Longhitano, R.C.; Magrì, G.; De Guidi, G. Antioxidant activity and phenolic content of strawberry genotypes from Fragaria x ananassa. Pharm. Biol. 2009, 47, 203–208. [Google Scholar] [CrossRef]
- Davis, M.M. Volcanic ash: A review of its effects on plant growth and agricultural productivity. Agric. Ecosyst. Environ. 2016, 222, 164–175. [Google Scholar]
- Kokubun, T. Enhancement of phenolic compounds in plants exposed to stress. J. Agric. Food Chem. 2008, 56, 6003–6008. [Google Scholar]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Huang, H.; Ullah, F.; Zhou, D.-X.; Yi, M.; Zhao, Y. Mechanisms of ROS Regulation of Plant Development and Stress Responses. Front. Plant Sci. 2019, 10, 800. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, S.; Pandey, M.M.; Rawat, A.K.S. Ethnopharmacological uses, phytochemistry and pharmacology of genus Adiantum: A comprehensive review. J. Ethnopharmacol. 2018, 215, 101–119. [Google Scholar] [CrossRef]
- Ciriminna, R.; Scurria, A.; Tizza, G.; Pagliaro, M. Volcanic ash as multi-nutrient mineral fertilizer: Science and early applications. JSFA Rep. 2022, 2, 528–534. [Google Scholar] [CrossRef]
- Hu, L.; Wu, Z.; Robert, C.A.M.; Ouyang, X.; Züst, T.; Mestrot, A.; Xu, J.; Erb, M. Soil chemistry determines whether defensive plant secondary metabolites promote or suppress herbivore growth. Proc. Natl. Acad. Sci. USA 2021, 118, e2109602118. [Google Scholar] [CrossRef]
- Liu, W.; Feng, Y.; Yu, S.; Fan, Z.; Li, X.; Li, J.; Yin, H. The Flavonoid Biosynthesis Network in Plants. Int. J. Mol. Sci. 2021, 22, 12824. [Google Scholar] [CrossRef]
- Marschner, P. Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Fang, Y.; Zhao, Y.; Yang, J. Effects of volcanic ash on the mineral content of crops: A review. J. Soil. Sci. Plant Nutr. 2018, 18, 142–157. [Google Scholar]
- Ravenscroft, P.; Brammer, H.; Richards, K. Ground Water and Global Change: Trends, Impacts and Challenges; Wiley-Blackwell: Toronto, ON, Canada, 2009. [Google Scholar]
- Alloway, B.J. Contaminated Land and Its Management: The Role of Soil Science; Cambridge University Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Zhou, M.; Wang, H.; Zhang, Q. The Role of Heatmaps in Visualizing High-Dimensional Data. Nat. Rev. Methods Primers 2020, 1, 1–4. [Google Scholar]
- González, M.T.; Aguirre, A.; Contreras, E. Micronutrient accumulation in leguminous plants grown in volcanic soils. Plant Soil 2017, 412, 303–312. [Google Scholar]
- Ramirez, M.; Peñafiel, C.; León, A. Nutritional implications of volcanic soils in crop production. Agron. J. 2019, 111, 1747–1761. [Google Scholar]
- Kumari, P.C.; Kim, S.; Kim, S. Antiplatelet effects of daphnetin mediated by TxA2 generation inhibition. Int. J. Mol. Sci. 2023, 24, 5779. [Google Scholar] [CrossRef]
- Di Stasi, L.C. Natural Coumarin Derivatives Activating Nrf2 Signaling Pathway as Lead Compounds for the Design and Synthesis of Intestinal Anti-Inflammatory Drugs. Pharmaceuticals 2023, 16, 511. [Google Scholar] [CrossRef] [PubMed]
- Counter, S.A.; Buchanan, L.H.; Ortega, F.; Amarasiriwardena, C.; Hu, H. Environmental Lead Contamination and Pediatric Lead Intoxication an Andean Ecuadorian Village. Int. J. Occup. Environ. Health 2000, 6, 169–176. [Google Scholar] [CrossRef]
- Benavides, Á.; Romero, B.; Pérez-Almeida, I.; Pernía, B. Evaluation of the concentration of heavy metals in vegetables from Ecuador. Revis. Bionatura 2022, 7, 58. [Google Scholar] [CrossRef]
P. vulgaris | Z. mays | |||
---|---|---|---|---|
TPC (mg GAE/g FW) | TFC (mg QE/g DW) | TPC (mg GAE/g FW) | TFC (mg QE/g DW) | |
Ash presence, Stage 1 | 0.68 ± 0.02 b | 0.45 ± 0.03 a | 1.89468 ± 0.0477 a | 0.26956 ± 0.0127 b |
Ash presence, Stage 2 | 0.97 ± 0.04 a | 0.59 ± 0.06 a | 1.95246 ± 0.0289 a | 0.41915 ± 0.0216 a |
Ash absence | 0.59 ± 0.01 b | 0.32 ± 0.02 a | 1.80375 ± 0.0623 a | 0.07193 ± 0.0162 b |
P. vulgaris | Z. mays | |||||
---|---|---|---|---|---|---|
FRAP (μmol Fe2+/g FW) | DPPH (μmol TRX/g FW) | ABTS (μmol TRX/g FW) | FRAP (μmol Fe2+/g FW) | DPPH (μmol TRX/g FW) | ABTS (μmol TRX/g FW) | |
Ash presence, Stage 1 | 2.91 ± 0.25 b | 7.63 ± 0.10 a | 6.57 ± 0.12 b | 5.61 ± 0.37 a | 6.30 ± 0.09 a | 6.51 ± 0.28 a |
Ash presence, Stage 2 | 3.74 ± 0.34 a | 9.10 ± 0.08 a | 8.28 ± 0.26 a | 5.63 ± 0.49 a | 6.46 ± 0.62 a | 6.52 ± 0.81 a |
Ash absence | 2.34 ± 0.11 b | 5.92 ± 0.24 b | 4.84 ± 0.10 b | 5.54 ± 0.45 a | 6.25 ± 0.06 a | 6.49 ± 0.31 a |
HPLC—MS POSITIVE IONS | ||||
---|---|---|---|---|
ID | Proposed Compound Identity | Molecular Formula | Retention Time | Molecular Ion |
19 | Daphnetin | C9H6O4 | 4.424 | M + H |
49 | Argininosuccinate | C10H18N4O6 | 4.898 | M+ |
59 | Arginine | C6H14N4O2 | 4.98 | M + H |
175 | Pumiloside | C21H24O11 | 5.447 | M + H |
218 | Glycerophosphorylcholine | C8H20NO6P | 5.861 | M+ |
284 | Biotin | C10H16N2O3S | 7.111 | M + H |
290 | L-Tyrosine | C9H11NO3 | 7.644 | M + H |
362 | 5′-Methylthioadenosine | C11H15N5O3S | 15.649 | M + H |
407 | gamma-Glutamylleucine | C11H20N2O4 | 16.912 | M+ |
416 | (2e)-3-(3,4-Dihydroxyphenyl)-N-[2-(4-Hydroxyphenyl)ethyl]acrylamide | C17H17NO4 | 19.959 | M+ |
548 | Glucose_6-phosphate | C6H13O9P | 23.502 | [M + Na]+ |
564 | Sinigrin hydrate | C10H16KNO9S2 | 23.68 | M + H |
580 | Isoshaftoside | C26H28O14 | 24.811 | [M + H]+ |
605 | Vicenin | C27H30O15 | 29.299 | [M + Na]+ |
693 | Abscisic acid | C15H20O4 | 31.05 | M + H |
859 | Ferulate | C10H10O4 | 38.501 | M + H |
886 | Pelargonidin-3-O-glucoside | C21H21O10 | 19.959 | M − H |
HPLC—MS NEGATIVE IONS | ||||
ID | Proposed Compound Identity | Molecular Formula | Retention Time | Molecular Ion |
62 | Glucose 1-phosphate | C6H13O9P | 5.175 | M − H |
70 | Sorbitol | C6H14O6 | 5.192 | M − H |
120 | Sucrose | C12H22O11 | 5.33 | M − H |
144 | Glucose, fructose, mannose | C6H12O6 | 5.3 | M − H |
459 | alpha, alpha-Trehalose | C12H22O11 | 19.878 | M − H |
503 | Caffeic acid | C9H8O4 | 21.053 | M + H |
563 | Trihydroxyflavone-C-hexoside-C-pentoside | C20H20O11 | 23.245 | M − H |
629 | Orientin | C21H20O11 | 24.594 | M − H |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihai, R.A.; Rodríguez Valencia, K.E.; Sivizaca Flores, N.G.; Ramiro Fernando, V.G.; Nelson Santiago, C.I.; Catana, R.D. Consequences of Volcanic Ash on Antioxidants, Nutrient Composition, Heavy Metal Accumulation, and Secondary Metabolites in Key Crops of Cotopaxi Province, Ecuador. Toxics 2025, 13, 75. https://doi.org/10.3390/toxics13020075
Mihai RA, Rodríguez Valencia KE, Sivizaca Flores NG, Ramiro Fernando VG, Nelson Santiago CI, Catana RD. Consequences of Volcanic Ash on Antioxidants, Nutrient Composition, Heavy Metal Accumulation, and Secondary Metabolites in Key Crops of Cotopaxi Province, Ecuador. Toxics. 2025; 13(2):75. https://doi.org/10.3390/toxics13020075
Chicago/Turabian StyleMihai, Raluca A., Katherine Elizabeth Rodríguez Valencia, Nina G. Sivizaca Flores, Vivanco Gonzaga Ramiro Fernando, Cubi Isuaste Nelson Santiago, and Rodica D. Catana. 2025. "Consequences of Volcanic Ash on Antioxidants, Nutrient Composition, Heavy Metal Accumulation, and Secondary Metabolites in Key Crops of Cotopaxi Province, Ecuador" Toxics 13, no. 2: 75. https://doi.org/10.3390/toxics13020075
APA StyleMihai, R. A., Rodríguez Valencia, K. E., Sivizaca Flores, N. G., Ramiro Fernando, V. G., Nelson Santiago, C. I., & Catana, R. D. (2025). Consequences of Volcanic Ash on Antioxidants, Nutrient Composition, Heavy Metal Accumulation, and Secondary Metabolites in Key Crops of Cotopaxi Province, Ecuador. Toxics, 13(2), 75. https://doi.org/10.3390/toxics13020075