Pesticide Contamination of Honey-Bee-Collected Pollen in the Context of the Landscape Composition in Latvia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Landscape Analysis
2.2. Pollen Sampling and Palynological Analysis
2.3. Chemical Analysis of Pollen Samples
2.4. PHQ Values as a Response Variable
3. Results and Discussion
3.1. Active Substances Detected and Quantified in the Pollen Samples
3.2. Pollen Contamination According to Seasonality and Landscape Composition
3.3. Potential Hazard to Honey Bees (PHQ Values)
3.4. The Impact of Landscape Composition on the PHQ
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aizen, M.A.; Garibaldi, L.A.; Cunningham, S.A.; Klein, A.M. Long-Term Global Trends in Crop Yield and Production Reveal No Current Pollination Shortage but Increasing Pollinator Dependency. Curr. Biol. 2008, 18, 1572–1575. [Google Scholar] [CrossRef] [PubMed]
- Ingram, M. Our Forgotten Pollinators: Protecting the Birds and Bees. Glob. Pestic. Campaign. 1996, 6, 1–12. [Google Scholar]
- Biesmeijer, J.C.; Roberts, S.P.M.; Reemer, M.; Ohlemüller, R.; Edwards, M.; Peeters, T.; Schaffers, A.P.; Potts, S.G.; Kleukers, R.; Thomas, C.D.; et al. Parallel Declines in Pollinators and Insect-Pollinated Plants in Britain and the Netherlands. Science 2006, 313, 351–354. [Google Scholar] [CrossRef]
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W.E. Global Pollinator Declines: Trends, Impacts and Drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef]
- Publications Office of the European Union. European Court of Auditors. Available online: https://op.europa.eu/en/publication-detail/-/publication/b556d0e5-8907-11e5-b8b7-01aa75ed71a1/language-en (accessed on 17 October 2024).
- Fairbrother, A.; Purdy, J.; Anderson, T.; Fell, R. Risks of Neonicotinoid Insecticides to Honeybees. Environ. Toxicol. Chem. 2014, 33, 719–731. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, R.C.; Queiroz, S.C.D.N.; da Luz, C.F.P.; Porto, R.S.; Rath, S. Bee Pollen as a Bioindicator of Environmental Pesticide Contamination. Chemosphere 2016, 163, 525–534. [Google Scholar] [CrossRef]
- European Commission, Eurostat. Publication Office of the European Union. Available online: https://ec.europa.eu/eurostat/databrowser/product/page/AEI_FM_SALPEST09 (accessed on 17 October 2024).
- Cappellari, A.; Malagnini, V.; Fontana, P.; Zanotelli, L.; Tonidandel, L.; Angeli, G.; Ioriatti, C.; Marini, L. Impact of Landscape Composition on Honey Bee Pollen Contamination by Pesticides: A Multi-Residue Analysis. Chemosphere 2024, 349, 10. [Google Scholar] [CrossRef]
- Nicholson, C.C.; Knapp, J.; Kiljanek, T.; Albrecht, M.; Chauzat, M.P.; Costa, C.; De la Rúa, P.; Klein, A.M.; Mänd, M.; Potts, S.G.; et al. Pesticide Use Negatively Affects Bumble Bees across European Landscapes. Nature 2024, 628, 355–358. [Google Scholar] [CrossRef]
- Lundin, O.; Rundlöf, M.; Smith, H.G.; Fries, I.; Bommarco, R. Neonicotinoid Insecticides and Their Impacts on Bees: A Systematic Review of Research Approaches and Identification of Knowledge Gaps. PLoS ONE 2015, 8, 20. [Google Scholar] [CrossRef]
- Friedle, C.; Wallner, K.; Rosenkranz, P.; Martens, D.; Vetter, W. Pesticide Residues in Daily Bee Pollen Samples (April–July) from an Intensive Agricultural Region in Southern Germany. Environ. Sci. Pollut. Res. 2021, 28, 22789–22803. [Google Scholar] [CrossRef]
- Brown, C.F.; Brumby, S.P.; Guzder-Williams, B.; Birch, T.; Hyde, S.B.; Mazzariello, J.; Czerwinski, W.; Pasquarella, V.J.; Haertel, R.; Ilyushchenko, S.; et al. Dynamic World, Near Real-Time Global 10 m Land Use Land Cover Mapping. Sci. Data 2022, 9, 17. [Google Scholar] [CrossRef]
- Jones, G.D.; Bryant, V.M. Are All Counts Created Equal. Am. Assoc. Stratigr. Palynol. Found. 1998, 33, 115–120. [Google Scholar]
- Halbritter, H.; Ulrich, S.; Grímsson, F.; Weber, M.; Zetter, R.; Hesse, M.; Buchner, R.; Svojtka, M.; Frosch-Radivo, A. (Eds.) Methods in Palynology. In Illustrated Pollen Terminology; Springer International Publishing: Cham, Switzerland, 2018; pp. 97–127. ISBN 978-3-319-71365-6. [Google Scholar]
- Anastassiades, M.; Wachtler, A.-K.; Kolberg, D.I.; Eichhorn, E.; Marks, H.; Benkenstein, A.; Zechmann, S.; Mack, D.; Wildgrube, C.; Barth, A. EU Reference Laboratory for Pesticides Requiring Single Residue Methods (EURL-SRM) Quick Method for the Analysis of Highly Polar Pesticides in Food Involving Extraction with Acidified Methanol and LC-or IC-MS/MS Measurement I. Food of Plant Origin (QuPPe-PO-Method); EURL-SRM: Fellbach, Germany, 2023; Volume 1, Available online: https://www.eurl-pesticides.eu/userfiles/file/EurlSRM/EurlSrm_meth_QuPPe_PO_V12.pdf (accessed on 4 November 2024).
- Shimadzu. LC/MS/MS Method Package for Residual Pesticides; Shimadzu: Tokyo, Japan, 2021. [Google Scholar]
- Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed. EU Reference Laboratories for Residues of Pesticides. Available online: https://www.eurl-pesticides.eu/docs/public/tmplt_article.asp?CntID=727 (accessed on 16 October 2024).
- Stoner, K.A.; Eitzer, B.D. Using a Hazard Quotient to Evaluate Pesticide Residues Detected in Pollen Trapped from Honey Bees (Apis mellifera) in Connecticut. PLoS ONE 2013, 8, 10. [Google Scholar] [CrossRef] [PubMed]
- Böhme, F.; Bischoff, G.; Zebitz, C.P.W.; Rosenkranz, P.; Wallner, K. Pesticide Residue Survey of Pollen Loads Collected by Honeybees (Apis mellifera) in Daily Intervals at Three Agricultural Sites in South Germany. PLoS ONE 2018, 13, 21. [Google Scholar] [CrossRef] [PubMed]
- Official Statistics Portal of Latvia. Available online: https://stat.gov.lv/en/statistics-themes/business-sectors/agriculture/press-releases/2177-use-pesticides-agricultural (accessed on 4 September 2024).
- LV Portals. Available online: https://lvportals.lv/dienaskartiba/355875-graudaugiem-izmantoto-pesticidu-daudzums-palielinajies-rapsim-samazinajies-2023 (accessed on 4 September 2024).
- Abrol, D.P. Honeybees and Rapeseed: A Pollinator–Plant Interaction. In Rapeseed Breeding; Academic Press: Cambridge, MA, USA, 2007; Volume 45, pp. 337–367. ISBN 0065-2296. [Google Scholar]
- Ramírez, F.; Davenport, T.L. Apple Pollination: A Review. Sci. Hortic. 2013, 162, 188–203. [Google Scholar] [CrossRef]
- Lundin, O. Partitioning Pollination Services to Faba Bean (Vicia faba L.) between Managed Honeybees and Wild Bees. Basic Appl. Ecol. 2023, 71, 9–17. [Google Scholar] [CrossRef]
- Schaad, E.; Fracheboud, M.; Droz, B.; Kast, C. Quantitation of Pesticides in Bee Bread Collected from Honey Bee Colonies in an Agricultural Environment in Switzerland. Environ. Sci. Pollut. Res. 2023, 30, 56353–56367. [Google Scholar] [CrossRef]
- Capela, N.; Xu, M.; Simões, S.; Azevedo-Pereira, H.M.S.V.; Peters, J.; Sousa, J.P. Exposure and Risk Assessment of Acetamiprid in Honey Bee Colonies under a Real Exposure Scenario in Eucalyptus Sp. Landscapes. Sci. Total Environ. 2022, 840, 1–8. [Google Scholar] [CrossRef]
- Tong, Z.; Wu, Y.C.; Liu, Q.Q.; Shi, Y.H.; Zhou, L.J.; Liu, Z.Y.; Yu, L.S.; Cao, H.Q. Multi-Residue Analysis of Pesticide Residues in Crude Pollens by UPLC-MS/MS. Molecules 2016, 21, 1652. [Google Scholar] [CrossRef]
- Végh, R.; Sörös, C.; Majercsik, N.; Sipos, L. Determination of Pesticides in Bee Pollen: Validation of a Multiresidue High-Performance Liquid Chromatography-Mass Spectrometry/Mass Spectrometry Method and Testing Pollen Samples of Selected Botanical Origin. J. Agric. Food Chem. 2022, 70, 1507–1515. [Google Scholar] [CrossRef]
- Beyer, M.; Lenouvel, A.; Guignard, C.; Eickermann, M.; Clermont, A.; Kraus, F.; Hoffmann, L. Pesticide Residue Profiles in Bee Bread and Pollen Samples and the Survival of Honeybee Colonies—A Case Study from Luxembourg. Environ. Sci. Pollut. Res. 2018, 25, 32163–32177. [Google Scholar] [CrossRef] [PubMed]
- Roszko, M.Ł.; Kamińska, M.; Szymczyk, K.; Jȩdrzejczak, R. Levels of Selected Persistent Organic Pollutants (PCB, PBDE) and Pesticides in Honey Bee Pollen Sampled in Poland. PLoS ONE 2016, 11, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Kato, A.Y.; Freitas, T.A.L.; Gomes, C.R.A.; Alves, T.R.R.; Ferraz, Y.M.M.; Trivellato, M.F.; De Jong, D.; Biller, J.D.; Nicodemo, D. Bixafen, Prothioconazole, and Trifloxystrobin Alone or in Combination Have a Greater Effect on Health Related Gene Expression in Honey Bees from Nutritionally Deprived than from Protein Supplemented Colonies. Insects 2024, 15, 523. [Google Scholar] [CrossRef]
- Dong, G.; Zhang, R.; Hu, Q.; Martin, E.M.; Qin, Y.; Lu, C.; Xia, Y.; Wang, X.; Du, G. Prothioconazole Induces Cell Cycle Arrest by Up-Regulation of EIF4EBP1 in Extravillous Trophoblast Cells. Arch. Toxicol. 2022, 96, 559–570. [Google Scholar] [CrossRef]
- Lewis, K.A.; Tzilivakis, J.; Warner, D.J.; Green, A. An International Database for Pesticide Risk Assessments and Management. Hum. Ecol. Risk Assess. Int. J. 2016, 22, 1050–1064. [Google Scholar] [CrossRef]
- Bänsch, S.; Tscharntke, T.; Ratnieks, F.L.W.; Härtel, S.; Westphal, C. Foraging of Honey Bees in Agricultural Landscapes with Changing Patterns of Flower Resources. Agric. Ecosyst. Environ. 2020, 291, 106792. [Google Scholar] [CrossRef]
- Pesticide Properties Database. University of Hertfordshire. Available online: https://sitem.herts.ac.uk/aeru/ppdb/en/search.htm (accessed on 17 October 2024).
- Van der Sluijs, J.P.; Simon-Delso, N.; Goulson, D.; Maxim, L.; Bonmatin, J.M.; Belzunces, L.P. Neonicotinoids, Bee Disorders and the Sustainability of Pollinator Services. Curr. Opin. Environ. Sustain. 2013, 5, 293–305. [Google Scholar] [CrossRef]
- Mackei, M.; Huber, F.; Sebők, C.; Vöröházi, J.; Tráj, P.; Márton, R.A.; Horváth, E.; Neogrády, Z.; Mátis, G. Unraveling the Acute Sublethal Effects of Acetamiprid on Honey Bee Neurological Redox Equilibrium. Sci. Rep. 2024, 14, 27514. [Google Scholar] [CrossRef]
- Kárpáti, Z.; Szelényi, M.O.; Tóth, Z. Exposure to an Insecticide Formulation Alters Chemosensory Orientation, but Not Floral Scent Detection, in Buff-Tailed Bumblebees (Bombus terrestris). Sci. Rep. 2024, 14, 1–10. [Google Scholar] [CrossRef]
- Catania, R.; Bonforte, M.; Negrini Ferreira, L.M.; Martins, G.F.; Pereira Lima, M.A.; Ricupero, M.; Zappalà, L.; Mazzeo, G. Insecticides Used for Controlling Cotton Mealybug Pose a Threat to Non-Target Bumble Bees. Chemosphere 2024, 368, 1–9. [Google Scholar] [CrossRef]
- Sandrock, C.; Tanadini, L.G.; Pettis, J.S.; Biesmeijer, J.C.; Potts, S.G.; Neumann, P. Sublethal Neonicotinoid Insecticide Exposure Reduces Solitary Bee Reproductive Success. Agric. For. Entomol. 2014, 16, 119–128. [Google Scholar] [CrossRef]
- Albacete, S.; Azpiazu, C.; Sancho, G.; Barnadas, M.; Alins, G.; Sgolastra, F.; Rodrigo, A.; Bosch, J. Sublethal Fungicide-Insecticide Co-Exposure Affects Nest Recognition and Parental Investment in a Solitary Bee. Environ. Pollut. 2024, 363, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Sponsler, D.B.; Matcham, E.G.; Lin, C.H.; Lanterman, J.L.; Johnson, R.M. Spatial and Taxonomic Patterns of Honey Bee Foraging: A Choice Test between Urban and Agricultural Landscapes. J. Urban Ecol. 2017, 3, 1–7. [Google Scholar] [CrossRef]
No. | Sampling Location (Apiary) | Semi-Natural, % | Agriculture, % | Urban, % |
---|---|---|---|---|
1 | Lube parish, Kurzeme | 40 | 58 | 2 |
2 | Ledurga parish, Vidzeme | 72 | 27 | 1 |
3 | Jelgava town, Zemgale | 49 | 7 | 44 |
4 | Platone parish, Zemgale | 17 | 80 | 2 |
5 | Vecauce parish, Zemgale | 37 | 52 | 11 |
6 | Ambeli parish, Latgale | 70 | 29 | 0 |
Active Substance Name | Pesticide Class * | Max Concentration, μg kg−1 | Min Concentration, μg kg−1 | LOD, μg kg−1 | LOQ, μg kg−1 | Frequency (Number of Samples) (>LOD) |
---|---|---|---|---|---|---|
Acetamiprid | I | 37 | 1 | 0.22 | 0.68 | 28 |
Azoxystrobin | F | 27 | 1 | 0.07 | 0.23 | 7 |
Bentazone | H | 10 | 10 | 0.16 | 0.48 | 1 |
Bixafen | F | 0.1 | 0.10 | 0.24 | 0.72 | 1 |
Boscalid | F | 15 | 1 | 0.21 | 0.64 | 10 |
Cyprodinil | F | 0.3 | 0.3 | 0.08 | 0.26 | 1 |
Difenoconazole | F | 3 | 2 | 0.26 | 0.78 | 2 |
Dimoxystrobin | F | 44 | 1 | 0.07 | 0.22 | 5 |
Epoxiconazole | F | 0.04 | 0.04 | 0.14 | 0.43 | 1 |
Florasulam | H | 1 | 1 | − | − | 1 |
Fluopyram | F | 15 | 0.4 | 0.04 | 0.13 | 8 |
Metazachlor | H | 1 | 1 | 0.05 | 0.17 | 1 |
Metconazole | F/R | 1 | 1 | 0.06 | 0.18 | 2 |
Pendimethalin | H | 0.3 | 0.3 | 0.08 | 0.26 | 2 |
Picloram | H | 1 | 1 | 0.08 | 0.26 | 1 |
Propiconazole | F | 2 | 2 | 0.14 | 0.43 | 1 |
Prothioconazole | F | 25 | 1 | 0.09 | 0.29 | 8 |
Pyraclostrobin | F | 3 | 1 | 0.17 | 0.52 | 4 |
Spiroxamine | F | 1 | 1 | 0.16 | 0.48 | 2 |
Tebuconazole | F | 2 | 0.5 | 0.09 | 0.29 | 7 |
Thiacloprid | I | 2 | 2 | 0.22 | 0.68 | 2 |
Ledurga Par. | Ambeli Par. | Lube Par. | Platone Par. | Jelgava Town | Vecauce Par. | |
---|---|---|---|---|---|---|
Winter oilseed rape within a 3 km radius, ha | 2 | 12 | 189 | 305 | 0 | 227 |
Brassicaceae pollen content (%) in the pollen samples (1st/2nd period *) | 59/60 | 43/57 | 66/73 | 16/60 | 20/40 | 40/79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozols, N.; Brusbārdis, V.; Filipovičs, M.; Gailis, J.; Radenkovs, V.; Rubene, B.; Zagorska, V. Pesticide Contamination of Honey-Bee-Collected Pollen in the Context of the Landscape Composition in Latvia. Toxics 2024, 12, 862. https://doi.org/10.3390/toxics12120862
Ozols N, Brusbārdis V, Filipovičs M, Gailis J, Radenkovs V, Rubene B, Zagorska V. Pesticide Contamination of Honey-Bee-Collected Pollen in the Context of the Landscape Composition in Latvia. Toxics. 2024; 12(12):862. https://doi.org/10.3390/toxics12120862
Chicago/Turabian StyleOzols, Niks, Valters Brusbārdis, Maksims Filipovičs, Jānis Gailis, Vitalijs Radenkovs, Betija Rubene, and Viktorija Zagorska. 2024. "Pesticide Contamination of Honey-Bee-Collected Pollen in the Context of the Landscape Composition in Latvia" Toxics 12, no. 12: 862. https://doi.org/10.3390/toxics12120862
APA StyleOzols, N., Brusbārdis, V., Filipovičs, M., Gailis, J., Radenkovs, V., Rubene, B., & Zagorska, V. (2024). Pesticide Contamination of Honey-Bee-Collected Pollen in the Context of the Landscape Composition in Latvia. Toxics, 12(12), 862. https://doi.org/10.3390/toxics12120862