Distribution of Polycyclic Aromatic Hydrocarbons and Pesticides in Danjiangkou Reservoir and Evaluation of Ecological Risk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Pretreatment
2.2. Instrumental Analysis
2.3. Quality Assurance/Quality Control
2.4. Ecological Risk Assessment
2.5. Human Health Risk Assessment
3. Results and Discussion
3.1. Occurrence and Spatial Distribution of Contaminants in Surface Water of Danjiangkou Reservoir
3.2. Occurrence and Spatial Distribution of Contaminants in Sediments of Danjiangkou Reservoir
3.3. Ecological Risk Assessment of Danjiangkou Reservoir
3.4. Human Health Risk Assessment of Danjiangkou Reservoir
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, S.; Shi, W.; You, M.; Zhang, R.; Kuang, Y.; Dang, C.; Sun, W.; Zhou, Y.; Wang, W.; Ni, J. Antibiotics in water and sediments of Danjiangkou Reservoir, China: Spatiotemporal distribution and indicator screening. Environ. Pollut. 2019, 246, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Zheng, T.; Dang, C.; Zhong, S.; Sun, W.; Chen, Q. Spatiotemporal distribution, risk assessment and source appointment of metal(loid)s in water and sediments of Danjiangkou Reservoir, China. Environ. Geochem. Health 2021, 43, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zheng, D.; Jin, S.; Wang, X.; Zhuo, H.; Gang, D.D. Analysis and Risk Assessment of Organic Pollutants in Surface Water from Xujiahe Basin, China. Bull. Environ. Contam. Toxicol. 2020, 105, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Zhao, J.; Zhao, G.; Liu, L.; Song, H.; Liao, S. Recognition, possible source, and risk assessment of organic pollutants in surface water from the Yongding River Basin by non-target and target screening. Environ. Pollut. 2023, 331, 121895. [Google Scholar] [CrossRef] [PubMed]
- Bi, S.; Wang, L.; Li, Y.R.; Zhang, Z.P.; Wang, Z.M.; Ding, X.L.; Zhou, J.Z. A Comprehensive Method for Water Environment Assessment considering Trends of Water Quality. Adv. Civ. Eng. 2021, 2021, 5548113. [Google Scholar] [CrossRef]
- He, X.; Li, A.; Wang, S.; Chen, H.; Yang, Z. Perfluorinated substance assessment in sediments of a large-scale reservoir in Danjiangkou, China. Environ. Monit. Assess. 2018, 190, 66. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Pan, X.; Zhang, S.; Li, D.; Zhai, W.; Wang, Z.; Tao, J.; Mi, C.; Li, Q.; Crittenden, J.C. Distribution and source of microplastics in China’s second largest reservoir-Danjiangkou Reservoir. J. Environ. Sci. 2021, 102, 74–84. [Google Scholar] [CrossRef]
- Sun, H.; Giesy, J.P.; Jin, X.; Wang, J. Tiered probabilistic assessment of organohalogen compounds in the Han River and Danjiangkou Reservoir, central China. Sci. Total Environ. 2017, 586, 163–173. [Google Scholar] [CrossRef]
- Luo, Y.; Shi, W.; You, M.; Zhang, R.; Li, S.; Xu, N.; Sun, W. Polybrominated diphenyl ethers (PBDEs) in the Danjiangkou Reservoir, China: Identification of priority PBDE congeners. Environ. Sci. Pollut. Res. 2021, 28, 12587–12596. [Google Scholar] [CrossRef]
- Jin, H.; Yu, C.; Lin, L.; Cheng, J.; Qin, H.; Tao, J.; Deng, S. Pollution levels and ecological risks of PPCPs in water and sediment samples of Danjiangkou Reservoir. Environ. Sci. Pollut. Res. 2024, 31, 30163–30173. [Google Scholar] [CrossRef]
- Chen, Z.-l.; Dong, F.-S.; Xu, J.; Liu, X.-G.; Zheng, Y.-Q. Management of pesticide residues in China. J. Integr. Agric. 2015, 14, 2319–2327. [Google Scholar] [CrossRef]
- Zheng, S.; Chen, B.; Qiu, X.; Chen, M.; Ma, Z.; Yu, X. Distribution and risk assessment of 82 pesticides in Jiulong River and estuary in South China. Chemosphere 2016, 144, 1177–1192. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhang, S.; Xiao, K.; Cai, M.; Liu, H. Occurrence, sources, and risk assessment of pyrethroid insecticides in surface water and tap water from Taihu Lake, China. J. Environ. Manag. 2023, 325, 116565. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wu, J.; Wang, B.; Duan, L.; Zhang, Y.; Zhao, W.; Wang, F.; Sui, Q.; Chen, Z.; Xu, D.; et al. Occurrence, source and ecotoxicological risk assessment of pesticides in surface water of Wujin District (northwest of Taihu Lake), China. Environ. Pollut. 2020, 265, 114953. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Liang, Y.; Zhao, B.; Wang, Y.; Xing, F.; Qin, L. Polycyclic aromatic hydrocarbon (PAHs) geographical distribution in China and their source, risk assessment analysis. Environ. Pollut. 2019, 251, 312–327. [Google Scholar] [CrossRef]
- Han, B.; Zheng, L.; Lin, F. Risk assessment and source apportionment of PAHs in surface sediments from Caofeidian Long Island, China. Mar. Pollut. Bull. 2019, 145, 42–46. [Google Scholar] [CrossRef]
- Chen, C.-F.; Ju, Y.-R.; Su, Y.-C.; Lim, Y.C.; Kao, C.-M.; Chen, C.-W.; Dong, C.-D. Distribution, sources, and behavior of PAHs in estuarine water systems exemplified by Salt River, Taiwan. Mar. Pollut. Bull. 2020, 154, 111029. [Google Scholar] [CrossRef]
- Han, B.; Li, Q.; Liu, A.; Gong, J.; Zheng, L. Polycyclic aromatic hydrocarbon (PAH) distribution in surface sediments from Yazhou Bay of Sanya, South China, and their source and risk assessment. Mar. Pollut. Bull. 2021, 162, 111800. [Google Scholar] [CrossRef]
- Han, B.; Liu, A.; He, S.; Li, Q.; Zheng, L. Composition, content, source, and risk assessment of PAHs in intertidal sediment in Shilaoren Bay, Qingdao, China. Mar. Pollut. Bull. 2020, 159, 111499. [Google Scholar] [CrossRef]
- Tong, Y.; Chen, L.; Liu, Y.; Wang, Y.; Tian, S. Distribution, sources and ecological risk assessment of PAHs in surface seawater from coastal Bohai Bay, China. Mar. Pollut. Bull. 2019, 142, 520–524. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, J.; Qi, Y.; Guan, X.; Zhao, C.; Wang, H.; Zhu, S.; Fu, G.; Zhu, J.; He, J. Distribution, sources, and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the tidal creek water of coastal tidal flats in the Yellow River Delta, China. Mar. Pollut. Bull. 2021, 173, 113110. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Zhang, Y.; Zhang, X.-X.; Cheng, S.-P. Health risk assessment of polycyclic aromatic hydrocarbons in the source water and drinking water of China: Quantitative analysis based on published monitoring data. Sci. Total Environ. 2011, 410–411, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Cao, F.; Li, Z.; He, Q.; Lu, S.; Qin, P.; Li, L. Occurrence, spatial distribution, source, and ecological risk assessment of organochlorine pesticides in Dongting Lake, China. Environ. Sci. Pollut. Res. 2021, 28, 30841–30857. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yu, K.; Hassan, M.; Xu, C.; Zhang, B.; Gin, K.Y.-H.; He, Y. Occurrence, distribution and risk assessment of pesticides in a river-reservoir system. Ecotoxicol. Environ. Saf. 2018, 166, 320–327. [Google Scholar] [CrossRef]
- Chen, C.; Zou, W.; Cui, G.; Tian, J.; Wang, Y.; Ma, L. Ecological risk assessment of current-use pesticides in an aquatic system of Shanghai, China. Chemosphere 2020, 257, 127222. [Google Scholar] [CrossRef]
- Black, G.P.; Woodward, E.E.; Sanders, C.J.; Gross, M.S.; Hladik, M.L. Multiresidue extraction of current-use pesticides from complex solid matrices using energized dispersive guided extraction with analysis by gas and liquid chromatography tandem mass spectroscopy. Chemosphere 2023, 327, 138550. [Google Scholar] [CrossRef]
- USEPA. Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Ambient Air Using Gas Chromatography/Mass Spectrometry (GC/MS); EPA Office of Water: Washington, DC, USA, 1999. [Google Scholar]
- Kong, J.; Ma, T.; Cao, X.; Li, W.; Zhu, F.; He, H.; Sun, C.; Yang, S.; Li, S.; Xian, Q. Occurrence, partition behavior, source and ecological risk assessment of nitro-PAHs in the sediment and water of Taige Canal, China. J. Environ. Sci. 2023, 124, 782–793. [Google Scholar] [CrossRef]
- Gao, X.; Li, J.; Wang, X.; Zhou, J.; Fan, B.; Li, W.; Liu, Z. Exposure and ecological risk of phthalate esters in the Taihu Lake basin, China. Ecotoxicol. Environ. Saf. 2019, 171, 564–570. [Google Scholar] [CrossRef]
- Li, W.; Wang, L.; Wang, X.; Liu, R. Derivation of predicted no effect concentration and ecological risk assessment of polycyclic musks tonalide and galaxolide in sediment. Ecotoxicol. Environ. Saf. 2022, 229, 113093. [Google Scholar] [CrossRef]
- USEPA. Risk Assessment Guidance for Superfund Volume I: Human Health. Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment); Environmental Protection Agency: Washington, DC, USA, 2004. [Google Scholar]
- Shen, B.; Wu, J.; Zhan, S.; Jin, M. Residues of organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs) in waters of the Ili-Balkhash Basin, arid Central Asia: Concentrations and risk assessment. Chemosphere 2021, 273, 129705. [Google Scholar] [CrossRef]
- Ma, W.; Hu, J.; Li, J.; Li, J.; Wang, P.; Okoli, C.P. Distribution, source, and health risk assessment of polycyclic aromatic hydrocarbons in the soils from a typical petroleum refinery area in south China. Environ. Monit. Assess. 2022, 194, 678. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Guidance for Assessing Chemical Contaminant, Data for Use in Fish Advisories, 3rd ed.; EPA Office of Water: Washington, DC, USA, 2000; Volume 1. [Google Scholar]
- Wang, Y.; Zhang, S.; Cui, W.; Meng, X.; Tang, X. Polycyclic aromatic hydrocarbons and organochlorine pesticides in surface water from the Yongding River basin, China: Seasonal distribution, source apportionment, and potential risk assessment. Sci. Total Environ. 2018, 618, 419–429. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhu, L.; Zhou, R. Characterization and distribution of polycyclic aromatic hydrocarbon in surface water and sediment from Qiantang River, China. J. Hazard. Mater. 2007, 141, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.-H.; Wang, G.-L.; Chai, Y.; Zhang, G.; Li, J.; Feng, J. Distribution of polycyclic aromatic hydrocarbons (PAHs) in Henan Reach of the Yellow River, Middle China. Ecotoxicol. Environ. Saf. 2009, 72, 1614–1624. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Wang, L.; Lei, K.; Nan, B. Distribution and ecological risk assessment of polycyclic aromatic hydrocarbons in water, suspended particulate matter and sediment from Daliao River estuary and the adjacent area, China. Chemosphere 2016, 149, 91–100. [Google Scholar] [CrossRef]
- El-Maradny, A.; Radwan, I.M.; Amer, M.; Fahmy, M.A.; Mohamed, L.A.; Ibrahim, M.I.A. Spatial distribution, sources and risk assessment of polycyclic aromatic hydrocarbons in the surficial sediments of the Egyptian Mediterranean coast. Mar. Pollut. Bull. 2023, 188, 114658. [Google Scholar] [CrossRef]
- Kurwadkar, S.; Sethi, S.S.; Mishra, P.; Ambade, B. Unregulated discharge of wastewater in the Mahanadi River Basin: Risk evaluation due to occurrence of polycyclic aromatic hydrocarbon in surface water and sediments. Mar. Pollut. Bull. 2022, 179, 113686. [Google Scholar] [CrossRef]
- Huang, Y.; Li, K.; Liu, H.; Yuan, X.; Li, M.; Xiong, B.; Du, R.; Johnson, D.M.; Xi, Y. Distribution, sources and risk assessment of PAHs in soil from the water level fluctuation zone of Xiangxi Bay, Three Gorges Reservoir. Environ. Geochem. Health 2022, 44, 2615–2628. [Google Scholar] [CrossRef]
- Zheng, B.; Ma, Y.; Qin, Y.; Zhang, L.; Zhao, Y.; Cao, W.; Yang, C.; Han, C. Distribution, sources, and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in surface water in industrial affected areas of the Three Gorges Reservoir, China. Environ. Sci. Pollut. Res. 2016, 23, 23485–23495. [Google Scholar] [CrossRef]
- Lin, L.; Dong, L.; Meng, X.; Li, Q.; Huang, Z.; Li, C.; Li, R.; Yang, W.; Crittenden, J. Distribution and sources of polycyclic aromatic hydrocarbons and phthalic acid esters in water and surface sediment from the Three Gorges Reservoir. J. Environ. Sci. 2018, 69, 271–280. [Google Scholar] [CrossRef]
- Ambade, B.; Sethi, S.S.; Giri, B.; Biswas, J.K.; Bauddh, K. Characterization, Behavior, and Risk Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in the Estuary Sediments. Bull. Environ. Contam. Toxicol. 2022, 108, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Xing, W.; Liang, M.; Wang, Z.; Zhang, B.; Sun, S.; Fan, D.; Wang, L. Occurrence, distribution, and risk assessment of pesticides in surface water and sediment in Jiangsu Province, China. Environ. Sci. Pollut. Res. 2023, 30, 118418–118429. [Google Scholar] [CrossRef] [PubMed]
- Montuori, P.; Aurino, S.; Garzonio, F.; Sarnacchiaro, P.; Polichetti, S.; Nardone, A.; Triassi, M. Estimates of Tiber River organophosphate pesticide loads to the Tyrrhenian Sea and ecological risk. Sci. Total Environ. 2016, 559, 218–231. [Google Scholar] [CrossRef] [PubMed]
- Pérez, D.J.; Iturburu, F.G.; Calderon, G.; Oyesqui, L.A.E.; De Gerónimo, E.; Aparicio, V.C. Ecological risk assessment of current-use pesticides and biocides in soils, sediments and surface water of a mixed land-use basin of the Pampas region, Argentina. Chemosphere 2021, 263, 128061. [Google Scholar] [CrossRef]
- He, Y.; Guo, C.; Lv, J.; Deng, Y.; Xu, J. Occurrence, sources, and ecological risks of three classes of insecticides in sediments of the Liaohe River basin, China. Environ. Sci. Pollut. Res. 2021, 28, 62726–62735. [Google Scholar] [CrossRef]
- Tang, S.-Z.; Chen, Z.-X.; Hao, Q.-R.; Hu, Y.-P.; Wang, J.-L.; Qin, D.-L.; Wang, P.; Wang, H.-T. Detection of PCBs and OCPs in the Irtysh River Water (GC-MS/MS) and ecological risk assessment. MethodsX 2024, 13, 102944. [Google Scholar] [CrossRef]
- Chen, Y.-P.; Zhao, Y.; Zhao, M.M.; Wu, J.-H.; Wang, K.-B. Potential health risk assessment of HFRs, PCBs, and OCPs in the Yellow River basin. Environ. Pollut. 2021, 275, 116648. [Google Scholar] [CrossRef]
- Guo, J.; Chen, W.; Wu, M.; Qu, C.; Sun, H.; Guo, J. Distribution, Sources, and Risk Assessment of Organochlorine Pesticides in Water from Beiluo River, Loess Plateau, China. Toxics 2023, 11, 496. [Google Scholar] [CrossRef]
- Ndunda, E.N.; Madadi, V.O.; Wandiga, S.O. Organochlorine pesticide residues in sediment and water from Nairobi River, Kenya: Levels, distribution, and ecological risk assessment. Environ. Sci. Pollut. Res. 2018, 25, 34510–34518. [Google Scholar] [CrossRef]
- Iyer, R.; Iken, B. Protein engineering of representative hydrolytic enzymes for remediation of organophosphates. Biochem. Eng. J. 2015, 94, 134–144. [Google Scholar] [CrossRef]
- Zhang, S.W.; Wang, R.; Wang, F.; Cai, M. Assessment of currently used and restricted organophosphorus pesticides and their degradation products in urban drinking water: An investigation of eight cities in Yangtze River Delta urban agglomeration, East China. J. Hazard. Mater. Adv. 2023, 9, 100211. [Google Scholar] [CrossRef]
- Wang, W.; Bai, J.; Zhang, G.; Wang, X.; Jia, J.; Cui, B.; Liu, X. Depth-distribution, possible sources, and toxic risk assessment of organochlorine pesticides (OCPs) in different river sediment cores affected by urbanization and reclamation in a Chinese delta. Environ. Pollut. 2017, 230, 1062–1072. [Google Scholar] [CrossRef] [PubMed]
- Brovini, E.M.; Quadra, G.R.; Paranaíba, J.R.; Carvalho, L.; de Oliveira Pereira, R.; de Aquino, S.F. Occurrence and environmental risk assessment of 22 pesticides in Brazilian freshwaters. Aquat. Toxicol. 2023, 260, 106566. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Liu, Y.; Qiao, X.; Guo, R.; Liu, C.; Wang, X.; Zhao, X. Risk assessment of organochlorine pesticides in drinking water source of the Yangtze River. Ecotoxicol. Environ. Saf. 2019, 182, 109390. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Xia, X.; Shen, Z.; Zhou, Z. Distribution and sources of polycyclic aromatic hydrocarbons in Wuhan section of the Yangtze River, China. Environ. Monit. Assess. 2007, 133, 447–458. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, W.-L.; Chen, S.-J.; Shi, D.-L.; Zhao, H.; Ding, Y.; Huang, Y.-R.; Li, N.; Ren, Y.; Mai, B.-X. Occurrence, sources, and ecological risks of PBDEs, PCBs, OCPs, and PAHs in surface sediments of the Yangtze River Delta city cluster, China. Environ. Monit. Assess. 2014, 186, 5285–5295. [Google Scholar] [CrossRef]
- Sun, W.; Niu, X.; Yin, X.; Duan, Z.; Xing, L.; Liu, A.; Ma, Y.; Gao, P. Historical evolution of polycyclic aromatic hydrocarbon pollution in Chaihe Reservoir from 1863 to 2018. J. Environ. Manag. 2023, 328, 116944. [Google Scholar] [CrossRef]
- Li, W.-H.; Tian, Y.-Z.; Shi, G.-L.; Guo, C.-S.; Li, X.; Feng, Y.-C. Concentrations and sources of PAHs in surface sediments of the Fenhe reservoir and watershed, China. Ecotoxicol. Environ. Saf. 2012, 75, 198–206. [Google Scholar] [CrossRef]
- Ambade, B.; Sethi, S.S.; Kurwadkar, S.; Mishra, P.; Tripathee, L. Accumulation of polycyclic aromatic hydrocarbons (PAHs) in surface sediment residues of Mahanadi River Estuary: Abundance, source, and risk assessment. Mar. Pollut. Bull. 2022, 183, 114073. [Google Scholar] [CrossRef]
- Hale, S.E.; Lehmann, J.; Rutherford, D.; Zimmerman, A.R.; Bachmann, R.T.; Shitumbanuma, V.; O’Toole, A.; Sundqvist, K.L.; Arp, H.P.H.; Cornelissen, G. Quantifying the Total and Bioavailable Polycyclic Aromatic Hydrocarbons and Dioxins in Biochars. Environ. Sci. Technol. 2012, 46, 2830–2838. [Google Scholar] [CrossRef]
- Tavakoly Sany, S.B.; Hashim, R.; Salleh, A.; Rezayi, M.; Mehdinia, A.; Safari, O. Polycyclic Aromatic Hydrocarbons in Coastal Sediment of Klang Strait, Malaysia: Distribution Pattern, Risk Assessment and Sources. PLoS ONE 2014, 9, e94907. [Google Scholar] [CrossRef] [PubMed]
- Khuman, S.N.; Chakraborty, P.; Cincinelli, A.; Snow, D.; Kumar, B. Polycyclic aromatic hydrocarbons in surface waters and riverine sediments of the Hooghly and Brahmaputra Rivers in the Eastern and Northeastern India. Sci. Total Environ. 2018, 636, 751–760. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-G.; Huang, D.-Y.; Chen, D.; Wang, C.; Wei, G.-L. Temporal–spatial distribution of synthetic pyrethroids in overlying water and surface sediments in Guangzhou waterways: Potential input mechanisms and ecological risk to aquatic systems. Environ. Sci. Pollut. Res. 2019, 26, 17261–17276. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Chen, L.; Guo, W.; Lu, S. Temporal trends, sources, and ecological risk of residual organochlorine pesticides (OCPs) in sediment core from the Dongping Lake, North China. Environ. Sci. Pollut. Res. 2023, 30, 103033–103043. [Google Scholar] [CrossRef]
- Siddique, S.; Chaudhry, M.N.; Ahmad, S.R.; Nazir, R.; Javed, R.; Hafeez, M.R.; Alraey, Y.; Sivasamugham, L.A.; Mahmood, A. Risk surveillance with spatial distribution of Organochlorine Pesticides (OCPs) from sedimentary samples of Chenab River. Sci. Total Environ. 2024, 912, 169256. [Google Scholar] [CrossRef]
- Li, J.; He, J.; Li, Y.; Liu, Y.; Li, W.; Wu, N.; Zhang, L.; Zhang, Y.; Niu, Z. Assessing the threats of organophosphate esters (flame retardants and plasticizers) to drinking water safety based on USEPA oral reference dose (RfD) and oral cancer slope factor (SFO). Water Res. 2019, 154, 84–93. [Google Scholar] [CrossRef]
- Yang, Y.; Yun, X.; Liu, M.; Jiang, Y.; Li, Q.X.; Wang, J. Concentrations, distributions, sources, and risk assessment of organochlorine pesticides in surface water of the East Lake, China. Environ. Sci. Pollut. Res. 2014, 21, 3041–3050. [Google Scholar] [CrossRef]
Targets | Analyte | Abbreviation | Water (n = 29) ng/L | |||
---|---|---|---|---|---|---|
DF (%) | Min | Max | Mean | |||
PAHs | Naphthalene | Nap | 100.0 | 10.43 | 116.97 | 41.06 |
Acenaphthylene | Acy | - | ND | ND | - | |
Acenaphthene | Ace | 4.4 | ND | 0.22 | 0.11 | |
Fluorene | Flu | 100.0 | 22.74 | 87.61 | 42.45 | |
Phenanthrene | Phe | 100.0 | 26.54 | 162.86 | 71.43 | |
Fluoranthene | Fla | 8.7 | ND | 7.56 | 5.64 | |
Pyrene | Pyr | 4.4 | ND | 12.04 | 12.04 | |
Benz[a]anthracene | BaA | 4.4 | ND | 13.12 | 13.12 | |
Benzo[a]pyrene | BaP | 13.0 | ND | 66.40 | 28.61 | |
Indeno[1,2,3-cd]pyrene | InP | 17.4 | ND | 750.42 | 331.85 | |
OPPs | O,O,O-triethyl-Phosphorothioate | O,O,O-Tept | - | ND | ND | - |
Dichlorvos | DDVP | 78.3 | ND | 3.15 | 2.57 | |
E-Mevinphos | TRANS | 60.9 | ND | 9.56 | 9.23 | |
Tetraethyl pyrophosphate | TEPP | 4.4 | ND | 38.74 | 38.74 | |
Naled | BRP | 4.4 | ND | 40.00 | 40.00 | |
Phorate | Phr | 4.4 | ND | 2.39 | 2.39 | |
Simazine | DCT | - | ND | ND | - | |
Atrazine | ATZ | 91.3 | ND | 29.03 | 12.29 | |
OCPs | α-HCH | α-HCH | 95.7 | ND | 40.96 | 0.61 |
β-HCH | β-HCH | 43.5 | ND | 97.73 | 1.09 | |
γ-HCH | γ-HCH | 65.2 | ND | 0.72 | 1.11 |
Targets | Analyte | Abbreviation | Sediment (n = 23) ng/g | |||
---|---|---|---|---|---|---|
DF (%) | Min | Max | Mean | |||
PAHs | Benz[a]anthracene | BaA | 100.0 | 0.00313 | 0.01 | 0.01 |
Benzo[k]fluoranthene | BkF | 60.9 | ND | 2.87 | 0.77 | |
Indeno[1,2,3-cd]pyrene | InP | 69.6 | ND | 0.75 | 0.31 | |
Pys | Cyhalothrin (Lambda) | Cya | 56.5 | ND | 1.73 | 0.65 |
Cypermethrin I | Cye | 26.1 | ND | 0.72 | 0.47 | |
Fenvalerate I | Fev | 21.7 | ND | 1.78 | 0.82 | |
OPPs | Dichlorvos | DDVP | 17.4 | ND | 0.85 | 0.31 |
E-Mevinphos | TRANS | 65.2 | ND | 0.72 | 0.54 | |
Simazine | DCT | 8.7 | ND | 2.23 | 1.38 | |
Malathion | Maa | 43.5 | ND | 9.16 | 2.61 | |
Prothiofos | Prt | 43.5 | ND | 1.46 | 0.66 | |
Sulprofos | Sup | - | ND | ND | - | |
Famphur | Fap | 13.0 | ND | 1.53 | 1.18 | |
Azinphos-methyl | Azn | 30.4 | ND | 21.38 | 15.87 | |
OCPs | β-HCH | β-HCH | 87.0 | ND | 0.87 | 0.26 |
Pentachloronitrobenzene | Pet | 52.2 | ND | 0.13 | 0.10 | |
δ-HCH | δ-HCH | 30.4 | ND | 0.21 | 0.17 | |
Chlordane-trans | Cht | 13.0 | ND | 0.16 | 0.10 | |
Dieldrin | Dil | 4.4 | ND | 0.98 | 0.98 |
Site | Non-Carcinogenic Risks of Surface Water | Carcinogenic Risks of Surface Water | |||||||
---|---|---|---|---|---|---|---|---|---|
Naphthalene | Fluorene | Phenanthrene | Dichlorvos | Atrazine | α-HCH | Naphthalene | Dichlorvos | α-HCH | |
R1 | 3.02 × 10−5 | 1.79 × 10−5 | 2.82 × 10−5 | 1.37 × 10−4 | 1.44 × 10−5 | 2.41 × 10−6 | 7.25 × 10−8 | 1.98 × 10−8 | 1.22 × 10−7 |
R2 | 1.67 × 10−4 | 5.74 × 10−5 | 1.55 × 10−4 | 0 | 2.12 × 10−5 | 1.99 × 10−6 | 4.01 × 10−7 | 0 | 1.00 × 10−7 |
R3 | 2.66 × 10−5 | 3.39 × 10−5 | 4.92 × 10−5 | 1.44 × 10−4 | 3.06 × 10−6 | 0 | 6.38 × 10−8 | 2.09 × 10−8 | 0 |
R4 | 3.27 × 10−5 | 1.86 × 10−5 | 2.67 × 10−5 | 1.56 × 10−4 | 1.88 × 10−6 | 0 | 7.84 × 10−8 | 2.26 × 10−8 | 0 |
R5 | 2.66 × 10−5 | 1.62 × 10−5 | 2.53 × 10−5 | 1.50 × 10−4 | 0 | 0 | 6.39 × 10−8 | 2.17 × 10−8 | 0 |
H1 | 9.64 × 10−5 | 4.18 × 10−5 | 1.28 × 10−4 | 1.21 × 10−4 | 1.34 × 10−5 | 2.03 × 10−6 | 2.31 × 10−7 | 1.76 × 10−8 | 1.02 × 10−7 |
H2 | 4.40 × 10−5 | 2.01 × 10−5 | 6.04 × 10−5 | 1.40 × 10−4 | 1.31 × 10−5 | 2.50 × 10−6 | 1.06 × 10−7 | 2.03 × 10−8 | 1.26 × 10−7 |
H3 | 1.25 × 10−4 | 4.57 × 10−5 | 9.47 × 10−5 | 0 | 1.47 × 10−5 | 2.47 × 10−6 | 3.00 × 10−7 | 0 | 1.25 × 10−7 |
H4 | 4.40 × 10−5 | 2.01 × 10−5 | 7.30 × 10−5 | 1.43 × 10−4 | 1.30 × 10−5 | 2.25 × 10−6 | 1.06 × 10−7 | 2.07 × 10−8 | 1.13 × 10−7 |
H5 | 3.13 × 10−5 | 1.89 × 10−5 | 5.31 × 10−5 | 1.25 × 10−4 | 5.71 × 10−6 | 2.38 × 10−6 | 7.51 × 10−8 | 1.81 × 10−8 | 1.20 × 10−7 |
H6 | 4.72 × 10−5 | 2.51 × 10−5 | 6.31 × 10−5 | 1.58 × 10−4 | 9.61 × 10−6 | 2.56 × 10−6 | 1.13 × 10−7 | 2.29 × 10−8 | 1.29 × 10−7 |
H7 | 4.99 × 10−5 | 2.47 × 10−5 | 3.97 × 10−5 | 1.34 × 10−4 | 1.41 × 10−5 | 2.04 × 10−6 | 1.20 × 10−7 | 1.95 × 10−8 | 1.03 × 10−7 |
D1 | 3.20 × 10−5 | 3.05 × 10−5 | 5.49 × 10−5 | 1.80 × 10−4 | 0 | 0 | 7.69 × 10−8 | 2.61 × 10−8 | 0 |
D2 | 5.24 × 10−5 | 3.60 × 10−5 | 8.13 × 10−5 | 0 | 1.02 × 10−5 | 2.06 × 10−6 | 1.26 × 10−7 | 0 | 1.04 × 10−7 |
D3 | 2.82 × 10−5 | 3.76 × 10−5 | 6.92 × 10−5 | 1.54 × 10−4 | 2.24 × 10−6 | 2.23 × 10−6 | 6.76 × 10−8 | 2.23 × 10−8 | 1.12 × 10−7 |
D4 | 4.01 × 10−5 | 2.75 × 10−5 | 3.77 × 10−5 | 1.47 × 10−4 | 2.87 × 10−6 | 1.90 × 10−6 | 9.63 × 10−8 | 2.14 × 10−8 | 9.56 × 10−8 |
D5 | 4.25 × 10−5 | 2.80 × 10−5 | 5.00 × 10−5 | 0 | 1.07 × 10−5 | 0 | 1.02 × 10−7 | 0 | 0 |
D6 | 1.49 × 10−4 | 4.72 × 10−5 | 1.26 × 10−4 | 0 | 1.50 × 10−5 | 2.00 × 10−6 | 3.59 × 10−7 | 0 | 1.01 × 10−7 |
D7 | 1.51 × 10−4 | 6.26 × 10−5 | 1.45 × 10−4 | 0 | 2.37 × 10−5 | 2.20 × 10−6 | 3.61 × 10−7 | 0 | 1.11 × 10−7 |
D8 | 1.49 × 10−5 | 1.92 × 10−5 | 2.61 × 10−5 | 1.39 × 10−4 | 3.61 × 10−6 | 1.80 × 10−6 | 3.58 × 10−8 | 2.02 × 10−8 | 9.06 × 10−8 |
D9 | 2.88 × 10−5 | 2.31 × 10−5 | 7.58 × 10−5 | 1.41 × 10−4 | 3.66 × 10−6 | 0 | 6.92 × 10−8 | 2.05 × 10−8 | 0 |
D10 | 2.41 × 10−5 | 2.23 × 10−5 | 5.97 × 10−5 | 1.54 × 10−4 | 1.02 × 10−5 | 0 | 5.79 × 10−8 | 2.24 × 10−8 | 0 |
D11 | 6.48 × 10−5 | 2.29 × 10−5 | 4.26 × 10−5 | 1.68 × 10−4 | 4.48 × 10−6 | 0 | 1.56 × 10−7 | 2.43 × 10−8 | 0 |
Site | Non-Carcinogenic Risks of Sediment | Carcinogenic Risks of Sediment | |||||||
---|---|---|---|---|---|---|---|---|---|
Cyhalothrin (Lambda) | Fenvalerate I | Dichlorvos | Azinphos-Methyl | Dieldrin | Benz[a]Anth-Racene | Benzo[k]flu-Oranthene | Indeno[1,2,3-cd]Pyrene | β-HCH | |
R1 | 3.02 × 10−5 | 1.79 × 10−5 | 2.82 × 10−5 | 1.37 × 10−4 | 1.44 × 10−5 | 1.38 × 10−11 | 1.70 × 10−12 | 3.65 × 10−10 | 1.36 × 10−9 |
R2 | 1.67 × 10−4 | 5.74 × 10−5 | 1.55 × 10−4 | 0 | 2.12 × 10−5 | 1.37 × 10−11 | 2.27 × 10−11 | 0 | 0 |
R3 | 2.66 × 10−5 | 3.39 × 10−5 | 4.92 × 10−5 | 1.44 × 10−4 | 3.06 × 10−6 | 1.79 × 10−11 | 1.36 × 10−12 | 3.72 × 10−10 | 1.24 × 10−9 |
R4 | 3.27 × 10−5 | 1.86 × 10−5 | 2.67 × 10−5 | 1.56 × 10−4 | 1.88 × 10−6 | 1.07 × 10−11 | 0 | 3.79 × 10−10 | 1.17 × 10−9 |
R5 | 2.66 × 10−5 | 1.62 × 10−5 | 2.53 × 10−5 | 1.50 × 10−4 | 0 | 1.33 × 10−11 | 3.49 × 10−12 | 0 | 0 |
H1 | 9.64 × 10−5 | 4.18 × 10−5 | 1.28 × 10−4 | 1.21 × 10−4 | 1.34 × 10−5 | 1.01 × 10−11 | 0 | 3.63 × 10−10 | 8.16 × 10−10 |
H2 | 4.40 × 10−5 | 2.01 × 10−5 | 6.04 × 10−5 | 1.40 × 10−4 | 1.31 × 10−5 | 1.17 × 10−11 | 0 | 0 | 1.39 × 10−9 |
H3 | 1.25 × 10−4 | 4.57 × 10−5 | 9.47 × 10−5 | 0 | 1.47 × 10−5 | 1.48 × 10−11 | 2.57 × 10−11 | 1.18 × 10−9 | 4.73 × 10−10 |
H4 | 4.40 × 10−5 | 2.01 × 10−5 | 7.30 × 10−5 | 1.43 × 10−4 | 1.30 × 10−5 | 1.54 × 10−11 | 5.78 × 10−12 | 3.55 × 10−10 | 4.66 × 10−10 |
H5 | 3.13 × 10−5 | 1.89 × 10−5 | 5.31 × 10−5 | 1.25 × 10−4 | 5.71 × 10−6 | 1.03 × 10−11 | 0 | 3.72 × 10−10 | 1.44 × 10−9 |
H6 | 4.72 × 10−5 | 2.51 × 10−5 | 6.31 × 10−5 | 1.58 × 10−4 | 9.61 × 10−6 | 1.33 × 10−11 | 4.81 × 10−13 | 3.48 × 10−10 | 7.40 × 10−10 |
H7 | 4.99 × 10−5 | 2.47 × 10−5 | 3.97 × 10−5 | 1.34 × 10−4 | 1.41 × 10−5 | 1.80 × 10−11 | 4.55 × 10−11 | 6.19 × 10−10 | 0 |
D1 | 3.20 × 10−5 | 3.05 × 10−5 | 5.49 × 10−5 | 1.80 × 10−4 | 0 | 1.19 × 10−11 | 4.32 × 10−12 | 4.26 × 10−10 | 5.45 × 10−10 |
D2 | 5.24 × 10−5 | 3.60 × 10−5 | 8.13 × 10−5 | 0 | 1.02 × 10−5 | 1.61 × 10−11 | 0 | 0 | 3.41 × 10−9 |
D3 | 2.82 × 10−5 | 3.76 × 10−5 | 6.92 × 10−5 | 1.54 × 10−4 | 2.24 × 10−6 | 1.47 × 10−11 | 0 | 3.53 × 10−10 | 4.94 × 10−10 |
D4 | 4.01 × 10−5 | 2.75 × 10−5 | 3.77 × 10−5 | 1.47 × 10−4 | 2.87 × 10−6 | 4.96 × 10−12 | 4.85 × 10−13 | 0 | 5.53 × 10−10 |
D5 | 4.25 × 10−5 | 2.80 × 10−5 | 5.00 × 10−5 | 0 | 1.07 × 10−5 | 9.47 × 10−12 | 4.02 × 10−11 | 6.08 × 10−10 | 3.53 × 10−10 |
D6 | 1.49 × 10−4 | 4.72 × 10−5 | 1.26 × 10−4 | 0 | 1.50 × 10−5 | 1.06 × 10−11 | 0 | 0 | 3.69 × 10−10 |
D7 | 1.51 × 10−4 | 6.26 × 10−5 | 1.45 × 10−4 | 0 | 2.37 × 10−5 | 1.11 × 10−11 | 3.45 × 10−12 | 4.11 × 10−10 | 8.96 × 10−10 |
D8 | 1.49 × 10−5 | 1.92 × 10−5 | 2.61 × 10−5 | 1.39 × 10−4 | 3.61 × 10−6 | 1.35 × 10−11 | 5.41 × 10−12 | 4.43 × 10−10 | 1.83 × 10−9 |
D9 | 2.88 × 10−5 | 2.31 × 10−5 | 7.58 × 10−5 | 1.41 × 10−4 | 3.66 × 10−6 | 1.33 × 10−11 | 0 | 3.97 × 10−10 | 1.57 × 10−9 |
D10 | 2.41 × 10−5 | 2.23 × 10−5 | 5.97 × 10−5 | 1.54 × 10−4 | 1.02 × 10−5 | 1.38 × 10−11 | 1.10 × 10−11 | 7.80 × 10−10 | 4.45 × 10−10 |
D11 | 6.48 × 10−5 | 2.29 × 10−5 | 4.26 × 10−5 | 1.68 × 10−4 | 4.48 × 10−6 | 8.09 × 10−12 | 0 | 0 | 9.46 × 10−10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Pang, H.; Guo, Y.; Zhou, X.; Fu, K.; Zhang, T.; Han, J.; Yang, L.; Zhou, B.; Zhou, S. Distribution of Polycyclic Aromatic Hydrocarbons and Pesticides in Danjiangkou Reservoir and Evaluation of Ecological Risk. Toxics 2024, 12, 859. https://doi.org/10.3390/toxics12120859
Li R, Pang H, Guo Y, Zhou X, Fu K, Zhang T, Han J, Yang L, Zhou B, Zhou S. Distribution of Polycyclic Aromatic Hydrocarbons and Pesticides in Danjiangkou Reservoir and Evaluation of Ecological Risk. Toxics. 2024; 12(12):859. https://doi.org/10.3390/toxics12120859
Chicago/Turabian StyleLi, Ruiwen, Hao Pang, Yemin Guo, Xuan Zhou, Kaiyu Fu, Taotao Zhang, Jian Han, Lihua Yang, Bingsheng Zhou, and Si Zhou. 2024. "Distribution of Polycyclic Aromatic Hydrocarbons and Pesticides in Danjiangkou Reservoir and Evaluation of Ecological Risk" Toxics 12, no. 12: 859. https://doi.org/10.3390/toxics12120859
APA StyleLi, R., Pang, H., Guo, Y., Zhou, X., Fu, K., Zhang, T., Han, J., Yang, L., Zhou, B., & Zhou, S. (2024). Distribution of Polycyclic Aromatic Hydrocarbons and Pesticides in Danjiangkou Reservoir and Evaluation of Ecological Risk. Toxics, 12(12), 859. https://doi.org/10.3390/toxics12120859