Optimization of Chromium Removal Conditions from Tanned Leather Waste for Collagen Valorization
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiment Design
2.2. Leather Sample Preparation and Characterization
2.2.1. Preparation and Characterization
2.2.2. Calculation Procedure
2.3. Box–Behnken Design Used for Experiment Development
2.4. Mathematical Modeling
3. Results and Discussion
3.1. Leather Sample Characterization
3.2. Design of Experiments for BBD-RSM: Optimization of Extraction Yield %
3.2.1. Analysis of Variance and Residuals
3.2.2. Graphical Representation of Response Surfaces
3.2.3. Optimization Using Desirability Function
3.2.4. Data Validation
3.3. Design of Experiments for BBD-RSM: Optimization of Hydrolysis Degree (%)
3.3.1. Analysis of Variance and Residuals
3.3.2. Graphical Representation of Response Surfaces
3.3.3. Optimization Using Desirability Function
3.4. Mechanism and Comparative Study for Removing Chrome from Tanned Leather Waste
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhavya, K.S.; Selvarani, J.; Samrot, A.; Thevarkattil, P.; Javad, M.; Appalaraju, V.V.S.S. Leather Processing, Its Effects on Environment and Alternatives of Chrome Tanning. IJARET 2019, 10, 69–79. [Google Scholar] [CrossRef]
- Cabrera-Codony, A.; Ruiz, B.; Gil, R.R.; Popartan, L.A.; Santos-Clotas, E.; Martin, M.; Fuente, E. From biocollagenic waste to efficient biogas purification: Applying circular economy in the leather industry. Environ. Technol. Innov. 2021, 21, 101229. [Google Scholar] [CrossRef]
- Hu, J.; Xiao, Z.; Zhou, R.; Deng, W.; Wang, M.; Ma, S. Ecological utilization of leather tannery waste with circular economy model. J. Clean. Prod. 2011, 19, 221–228. [Google Scholar] [CrossRef]
- Sathish, M.; Madhan, M.; Rao, J.R. Leather solid waste: An eco-benign raw material for leather chemical preparation—A circular economy example. J. Waste Manag. 2019, 87, 357–367. [Google Scholar] [CrossRef]
- Fela, K.; Wieczorek-Ciurowa, K.; Konopka, M.; Woźny, Z. Present and prospective leather industry waste disposal. Pol. J. Chem. Technol. 2011, 13, 53–55. [Google Scholar] [CrossRef]
- Kanagaraj, J.; Velappan, K.C.; Chandra Babu, N.K.; Sadulla, S. Solid Wastes Generation in the Leather Industry and Its Utilization for Cleaner Environment. JSIR 2006, 65, 541–548. [Google Scholar] [CrossRef]
- Chojnacka, K.; Skrzypczak, D.; Mikula, K.; Witek-Krowiak, A.; Izydorczyk, G.; Kuligowski, K.; Bandrów, P.; Kułażyński, M. Progress in sustainable technologies of leather wastes valorization as solutions for the circular economy. J. Clean. Prod. 2021, 313, 127902. [Google Scholar] [CrossRef]
- Kandasamy, R.; Venkatesan, S.K.; Uddin, M.I.; Ganesan, S. Chapter 1—Anaerobic biovalorization of leather industry solid waste and production of high value-added biomolecules and biofuels. In Biovalorisation of Wastes to Renewable Chemicals and Biofuels; Elsevier: Amsterdam, The Netherlands, 2020; pp. 3–25. [Google Scholar]
- Amdouni, S.; Trabelsi, A.B.H.; Elasmi, A.M.; Chagtmi, R.; Haddad, K.; Jamaaoui, F.; Khedhira, H.; Chérif, C. Tannery fleshing wastes conversion into high value-added biofuels and biochars using pyrolysis process. Fuel 2021, 294, 120423. [Google Scholar] [CrossRef]
- Selvaraj, S.; Jeevan, V.; Jonnalagadda, R.R.; Fathima, N.N. Conversion of tannery solid waste to sound absorbing nanofibrous materials: A road to sustainability. J. Clean. Prod. 2019, 213, 375–383. [Google Scholar] [CrossRef]
- Ocak, B. Properties and characterization of thyme essential oil incorporated collagen hydrolysate films extracted from hide fleshing wastes for active packaging. Environ. Sci. Pollut. Res. Int. 2020, 27, 29019–29030. [Google Scholar] [CrossRef] [PubMed]
- Meiyazhagan, A.K.; Aliyan, A.; Ayyappan, A.; Moreno-Gonzalez, I.; Susarla, S.; Yazdi, S.; Cuanalo-Contreras, K.; Khabashesku, V.; Vajtai, R.; Martí, A. Soft-Lithographic Patterning of Luminescent Carbon Nanodots Derived from Collagen Waste. ACS Appl. Mater. Interfaces 2018, 10, 36275–36283. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Song, J.; Li, H.; Wang, K.; Li, Y.; Li, Y.; Lu, F.; Liu, B. Improving characteristics of biochar produced from collagen-containing solid wastes based on protease application in leather production. Waste Manag. 2020, 105, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Karunanidhi, A.; David, P.S.; Fathima, N. Electrospun Keratin-Polysulfone Blend Membranes for Treatment of Tannery Effluents. Water Air Soil Pollut. 2020, 231, 1–11. [Google Scholar] [CrossRef]
- Aluigi, A.; Tonetti, C.; Vineis, C.; Varesano, A.; Tonin, C.; Casasola, R. Study on the adsorption of chromium (VI) by hydrolyzed keratin/polyamide 6 blend nanofibers. J. Nanosci. Nanotechnol. 2012, 12, 7250–7259. [Google Scholar] [CrossRef]
- Pati, A.; Chaudhary, R.; Subramani, S. A review on management of chrome-tanned leather shavings: A holistic paradigm to combat the environmental issues. Environ. Sci. Pollut. 2014, 21, 11266–11282. [Google Scholar] [CrossRef]
- Salimi, P.; Tieuli, S.; Taghavi, S.; Venezia, E.; Fugattini, S.; Lauciello, S.; Prato, M.; Marras, S.; Li, T.; Signoretto, M.; et al. Sustainable lithium-ion batteries based on metal-free tannery waste biochar. Green Chem. 2022, 10, 4119–4129. [Google Scholar] [CrossRef]
- Velusamy, M.; Chakali, B.; Ganesan, S.; Tinwala, F.; Venkatachalam, S.S. Investigation on pyrolysis and incineration of chrome-tanned solid waste from tanneries for effective treatment and disposal: An experimental study. ESPR 2020, 27, 29778–29790. [Google Scholar] [CrossRef]
- Han, W.; Wang, H.; Xia, H.; Chen, S.; Yan, P.; Deng, T.; Zhu, W. Superior nitrogen-doped activated carbon materials for water cleaning and energy storing prepared from renewable leather wastes. Environ. Int. 2020, 142, 105846. [Google Scholar] [CrossRef]
- Sivaram, N.M.; Barik, D. Chapter 5—Toxic Waste from Leather Industries. In Energy from Toxic Organic Waste for Heat and Power Generation; Woodhead Publishing Series in Energy; Elsevier: Amsterdam, The Netherlands, 2019; pp. 55–67. [Google Scholar]
- Prokein, M.; Renner, M.; Weidner, E.; Heinen, T. Low-chromium- and low-sulphate emission leather tanning intensified by compressed carbon dioxide. Clean. Technol. Environ. Policy 2017, 19, 2455–2465. [Google Scholar] [CrossRef]
- Luo, F.; Liu, H.; Zhao, Q.; Wang, S.; He, L.; Wu, Y.; Chen, Z. An innovative ionic liquid-aqueous biphasic system for simultaneously highly efficient dechroming and collagen recovery from chrome-tanned leather shavings at room temperature. Sep. Purif. Technol. 2024, 349, 127861. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.; Jian, Y.; Chen, M.; Luo, J.; Zhu, X.; Zhang, Y. Study on the removal of chromium(III) from leather waste by a two-step method. J. Ind. Eng. Chem. 2019, 79, 172–180. [Google Scholar] [CrossRef]
- Rosu, L.; Varganici, C.D.; Crudu, A.M.; Rusu, D.; Bele, A. Ecofriendly wet–white leather vs. conventional tanned wet–blue leather. A photochemical approach. J. Clean. Prod. 2018, 177, 708–720. [Google Scholar] [CrossRef]
- Dhal, B.; Thatoi, H.N.; Das, N.N.; Pandey, B.D. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: A review. J. Hazard. Mater. 2013, 250–251, 272–291. [Google Scholar] [CrossRef]
- Moretto, A. Hexavalent and trivalent chromium in leather: What should be done? Regul. Toxicol. Pharmacol. 2015, 73, 681–686. [Google Scholar] [CrossRef]
- Salmi, O.; Molinelli, A.; Gelosa, S.; Sacchetti, A.; Rossi, F.; Masi, M. Use of Antioxidants to Reduce Chromium (VI) Formation during the Leather Tanning Process. Sustain. Chem. 2024, 5, 244–257. [Google Scholar] [CrossRef]
- Kokkinos, E.; Zouboulis, A.I. The Chromium Recovery and Reuse from Tanneries: A Case Study According to the Principles of Circular Economy. In Leather and Footwear Sustainability. Textile Science and Clothing Technology; Muthu, S., Ed.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 123–157. [Google Scholar]
- Codreanu (Manea), A.M.N.; Stefan, D.S.; Kim, L.; Stefan, M. The Most Used Methods of Chrome Extraction from Leather Polymer Wastes. Polym. 2024, 16, 1546. [Google Scholar] [CrossRef]
- Wionczyk, B.; Apostoluk, W.; Charewicz, W.; Adamski, Z. Recovery of chromium(III) from wastes of uncolored chromium leathers. Part I. Kinetic studies on alkaline hydrolytic decomposition of the wastes. Sep. Purif. Technol. 2011, 81, 223–236. [Google Scholar] [CrossRef]
- Pahlawan, I.F.; Sutyasmi, S.; Griyanitasari, G. Hydrolysis of leather shavings waste for protein binder. In Proceedings of the International Conference on Green Agro-industry and Bioeconomy, East Java, Indonesia, 26–27 August 2019; Volume 230, p. 012083. [Google Scholar]
- Hinojosa, J.A.B.; Marrufo, L. Optimization of Alkaline Hydrolysis of Chrome Shavings to Recover Collagen Hydrolysate and Chromium Hydroxide. Leather Footwear J. 2020, 20, 15–28. [Google Scholar] [CrossRef]
- Ferreira, M.; Pinho, S.; Gomes, J.R.; Rodrigues, J.; Almeida, M. Alkaline Hydrolysis of Chromium Tanned Leather Scrap Fibers and Anaerobic Biodegradation of the Products. Waste Biomass Valorization 2013, 5, 551–562. [Google Scholar] [CrossRef]
- Ding, W.; Xuepin, L.; Zhang, W.; Shi, B. Dechroming of Chromium-containing Leather Waste with Low Hydrolysis Degree of Collagen. SLTC 2015, 99, 129–133. [Google Scholar]
- Pecha, J.; Barinova, M.; Kolomaznik, K.; Nguyen, T.N.; Dao, A.T.; Van, T.L. Technological-economic optimization of enzymatic hydrolysis used for the processing of chrome-tanned leather waste. Process. Saf. Environ. Prot. 2021, 152, 220–229. [Google Scholar] [CrossRef]
- Dettmer, A.; dos Santos, R.M.O.; dos Anjos, P.S.; Gutterres, M. Protein extraction from chromium tanned leather waste by Bacillus subtilis enzymes. J. AQEIC 2014, 65, 93–100. [Google Scholar]
- Qiang, X.; Feng, H. Collagen extracted from chrome shavings using alkali and Enzyme. In Proceedings of the International Conference on Remote Sensing, Environment and Transportation Engineering, Nanjing, China, 24–26 June 2011; pp. 5810–5813. [Google Scholar]
- Akhmadiyeva, N.; Abdulvaliyev, R.; Gladyshev, S.; Sukurov, B.; Abikak, Y.; Manapova, A.; Bakhytuly, N. Optimizing Technological Parameters for Chromium Extraction from Chromite Ore Beneficiation Tailings. Minerals 2025, 15, 555. [Google Scholar] [CrossRef]
- Świerczek, L.; Hercel, P.; Konkol, I.; Kuligowski, K.; Cenian, A. Chromium Substitution Extraction Method for Its Recovery from Chromium-Tanned Leather Waste. Materials 2024, 18, 118. [Google Scholar] [CrossRef] [PubMed]
- Bizzi, C.; Zanatta, R.; Santos, D.; Giacobe, K.; Dallago, R.; Mello, P.; Flores, E. Ultrasound-assisted extraction of chromium from residual tanned leather: An innovative strategy for the reuse of waste in tanning industry. Ultrason. Sonochem. 2018, 3, 16074–16080. [Google Scholar] [CrossRef]
- Parisi, M.; Nanni, A.; Colonna, M. Recycling of chrome-tanned leather and its utilization as polymeric materials and in polymer-based composites: A review. Polymers 2021, 13, 429. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yue, Q.; Liu, X.; Hou, M.; Zheng, M. A novel bio-inspired multi-functional collagen aggregate based flexible sensor with multi-layer and internal 3D network structure. J. Chem. Eng. 2020, 392, 123672. [Google Scholar] [CrossRef]
- Popiolski, A.; Dallago, R.; Steffens, J.; Mignoni, M.; Venquiaruto, L.; Santos, D.; Duarte, F. Ultrasound-Assisted Extraction of Cr from Residual Tannery Leather: Feasibility of Ethylenediaminetetraacetic Acid as the Extraction Solution. ACS Omega 2018, 3, 16074–16080. [Google Scholar] [CrossRef]
- Pedrotti, M.; Santos, D.; Cauduro, V.; Bizzi, C.; Flores, E. Ultrasound-assisted extraction of chromium from tanned leather shavings: A promising continuous flow technology for the treatment of solid waste. Ultrason. Sonochem. 2022, 89, 106124. [Google Scholar] [CrossRef]
- Malek, A.; Hachemi, M.; Didier, V. New approach of depollution of solid chromium leather waste by the use of organic chelates: Economical and environmental impacts. J. Hazard. Mater. 2009, 170, 156–162. [Google Scholar] [CrossRef]
- Chen, Q.; Pei, Y.; Tang, K.; Albu-Kaya, M.G. Structure, extraction, processing, and applications of collagen as an ideal component for biomaterials-a review. Collagen Leather 2023, 5, 20. [Google Scholar] [CrossRef]
- Codreanu (Manea), A.M.N.; Stefan, D.S.; Kim, L.; Cernica, G. Preliminary studies regarding chromium extraction from chromium-tanned leather waste. UPB Sci. Bull. 2025, 87, 151–164. [Google Scholar]
- Kalavathy, H.; Regupathi, I.; Pillai, M.G.; Miranda, L.R. Modelling analysis and optimization of adsorption parameters for H3PO4 activated rubber wood sawdust using response surface methodology (RSM). Colloids Surf. B Biointerfaces 2009, 70, 35–45. [Google Scholar] [CrossRef]
- Diharjo, K.; Gapsari, F.; Andoko, A.; Septiari, R.; Rangappa, S.M.; Siengchin, S. Optimization of nano cellulose extraction from timoho fiber using response surface methodology (RSM). Biomass Convers. Biorefinery 2024, 14, 25557–25567. [Google Scholar] [CrossRef]
- El-Habacha, M.; Lagdal, S.; Dabagh, A.; Mahmoudy, G.; Assouani, A.; Benjellou, M. High efficiency of treated-phengite clay by sodium hydroxide for the Congo red dye adsorption: Optimization. cost estimation. and mechanism study. Environ. Res. 2024, 259, 119542. [Google Scholar] [CrossRef]
- Stefan, D.S.; Bosomoiu, M.; Dancila, M.; Stefan, M. Review of Soil Quality Improvement Using Biopolymers from Leather Waste. Polymers 2022, 14, 1928. [Google Scholar] [CrossRef] [PubMed]
- Stefan, D.S.; Bosomoiu, M.; Constantinescu, R.R.; Ignat, M. Composite Polymers from Leather Waste to Produce Smart Fertilizers. Polymers 2021, 13, 4351. [Google Scholar] [CrossRef]
- Rethinam, S.; Kavukcu, S.B.; Çakır, S.; Türkmen, H. Utilization of various solid leather wastes for the production of blended bricks. Clean Technol. Environ. Policy 2022, 24, 1–13. [Google Scholar] [CrossRef]
- Zăinescu, G.; Deselnicu, V.; Constantinescu, R.R.; Georgescu, D. Biocomposites from tanned leather fibres with applications in constructions. Leather Footwear J. 2018, 18, 203–206. [Google Scholar] [CrossRef]
- Chinh, N.T.; Vu, M.Q.; Trung, V.Q.; Lam, T.D.; Huynh, M.D.; Tung, M.Q.; Trinh, N.D.; Hoang, T. Characterization of Collagen Derived from Tropical Freshwater Carp Fish Scale Wastes and Its Amino Acid Sequence. Nat. Prod. Commun. 2019, 14, 1. [Google Scholar] [CrossRef]
- Alsawalha, M. An approach utilizing the Response Surface Methodology (RSM) to optimize Adsorption-Desorption of Natural Saudi Arabian Diatomite- with the Box- Behnken Design Technique. Arab. J. Chem. 2023, 16, 104413. [Google Scholar] [CrossRef]
- Shojaeimehr, T.; Rahimpour, F.; Khadivi, M.A.; Sadeghi, M. A modeling study by response surface methodology (RSM) and artificial neural network (ANN) on Cu2+ adsorption optimization using light expended clay aggregate (LECA). J. Ind. Eng. Chem. 2014, 20, 870–880. [Google Scholar] [CrossRef]
- Onu, C.E.; Nwabanne, J.T.; Ohale, P.E.; Asadu, C.O. Comparative analysis of RSM, ANN and ANFIS and the mechanistic modeling in eriochrome black-T dye adsorption using modified clay. S. Afr. J. Chem. Eng. 2021, 36, 24–42. [Google Scholar] [CrossRef]
- Sadhukhan, B.; Mondal, N.K.; Chattoraj, S. Optimisation using central composite design (CCD) and the desirability function for sorption of methylene blue from aqueous solution onto Lemna major. KIJOMS 2016, 2, 145–155. [Google Scholar] [CrossRef]
- Benazouz, K.; Bouchelkia, N.; Imessaoudene, A.; Amrane, A.; Assadi, A.A.; Mouni, L. Efficent of low cost water remediation of chitosan derived from shrimp waste, an ecofrendly material: Kinetics modeling, response surface methodology optimization and mechanism. Water 2023, 15, 3728. [Google Scholar] [CrossRef]
- Anyebe, O.; Sadiq, F.K.; Sadiq, A.A.; Almaary, K.S.; Saleem Akhtar, H.M. Evaluating citric and oxalic acids as sustainable chelating agents for heavy metal remediation and phytoextraction efficiency in contaminated soils using maize (Zea mays). Clean. Technol. Environ. 2025, 27, 1–13. [Google Scholar] [CrossRef]
- Tian, Z.; Wang, Y.; Wang, H.; Zhang, K. Regeneration of Native Collagen from Hazardous Waste: Chrome-Tanned Leather Shavings by Acid Method. Environ. Sci. Pollut. Res. 2020, 27, 31300–31310. [Google Scholar] [CrossRef]
- Hangri, S.; Derbal, K.; Benalia, A.; Policastro, G.; Panico, A.; Pizzi, A. Enhancing Biomethane Yield from Microalgal Biomass via Enzymatic Hydrolysis: Optimization and Predictive Modeling Using RSM Approach. Processes 2025, 13, 2086. [Google Scholar] [CrossRef]
Variable | Name | Levels | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
A | Oxalic acid concentration (%) | 2 | 5 | 8 |
B | Contact time (min) | 50 | 150 | 250 |
C | Temperature (°C) | 30 | 60 | 90 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 9730.85 | 9 | 1081.21 | 86.45 | <0.0001 | Significant |
A—Oxalic acid concentration | 5507.78 | 1 | 5507.78 | 440.40 | <0.0001 | Significant |
B—Contact time | 827.23 | 1 | 827.23 | 66.15 | <0.0001 | Significant |
C—Temperature | 1835.57 | 1 | 1835.57 | 146.77 | <0.0001 | Significant |
AB | 1.27 | 1 | 1.27 | 0.1012 | 0.7597 | |
AC | 11.09 | 1 | 11.09 | 0.8867 | 0.3777 | |
BC | 1.88 | 1 | 1.88 | 0.1501 | 0.7100 | |
A2 | 81.75 | 1 | 81.75 | 6.54 | 0.0377 | Significant |
B2 | 715.00 | 1 | 715.00 | 57.17 | 0.0001 | Significant |
C2 | 614.81 | 1 | 614.81 | 49.16 | 0.0002 | Significant |
Residual | 87.54 | 7 | 12.51 | |||
Lack of Fit | 87.54 | 3 | 29.18 | |||
Pure Error | 0.0000 | 4 | 0.0000 | |||
Cor Total | 9818.39 | 16 | ||||
Std. Dev. | 3.54 | R2 | 0.9911 | |||
Mean | 52.66 | Adj. R2 | 0.9796 | |||
CV (%) | 6.72 | Pred. R2 | 0.8573 | |||
Adeq precision | 30.5174 |
Name | Goal | Lower Limit | Upper Limit | Solution | Desirability |
---|---|---|---|---|---|
A: Oxalic acid concentration | is in range | 2 | 8 | 7.36061 | 1 |
B. Contact time | is in range | 50 | 250 | 122.48 | 1 |
C: Temperature | is in range | 30 | 90 | 49.2335 | 1 |
Extraction yield (%) | maximize | 10.12 | 89.23 | 73.1673 | 1 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 14,596.98 | 9 | 1621.89 | 37.01 | <0.0001 | significant |
A—Oxalic acid concentration | 203.01 | 1 | 203.01 | 4.63 | 0.0684 | |
B—Contact time | 90.86 | 1 | 90.86 | 2.07 | 0.1931 | |
C—Temperature | 9167.93 | 1 | 9167.93 | 209.22 | <0.0001 | significant |
AB | 0.0090 | 1 | 0.0090 | 0.0002 | 0.9890 | |
AC | 170.43 | 1 | 170.43 | 3.89 | 0.0892 | |
BC | 121.99 | 1 | 121.99 | 2.78 | 0.1391 | |
A2 | 32.10 | 1 | 32.10 | 0.7326 | 0.4204 | |
B2 | 107.11 | 1 | 107.11 | 2.44 | 0.1619 | |
C2 | 4646.25 | 1 | 4646.25 | 106.03 | <0.0001 | significant |
Residual | 306.74 | 7 | 43.82 | |||
Lack of Fit | 306.74 | 3 | 102.25 | |||
Pure Error | 0.0000 | 4 | 0.0000 | |||
Cor Total | 14,903.72 | 16 | ||||
Std. Dev. | 6.62 | R2 | 0.9794 | |||
Mean | 17.83 | Adj. R2 | 0.9530 | |||
CV (%) | 37.13 | Pred. R2 | 0.6707 | |||
Adeq precision | 17.1528 |
Name | Goal | Lower Limit | Upper Limit | Solution | Desirability |
---|---|---|---|---|---|
A: Oxalic acid concentration | is target | 2 | 8 | 7.36061% | 1 |
B: Contact time | is target | 50 | 250 | 122.48 min | 1 |
C: Temperature | is in range | 30 | 90 | 57.9198 °C | 1 |
Hydrolysis degree (%) | is in range | 0.38 | 89.23 | 0.38004% | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Codreanu, A.-M.N.; Stefan, D.S.; Kim, L.; Cristea, I.; Aziam, R. Optimization of Chromium Removal Conditions from Tanned Leather Waste for Collagen Valorization. Polymers 2025, 17, 2319. https://doi.org/10.3390/polym17172319
Codreanu A-MN, Stefan DS, Kim L, Cristea I, Aziam R. Optimization of Chromium Removal Conditions from Tanned Leather Waste for Collagen Valorization. Polymers. 2025; 17(17):2319. https://doi.org/10.3390/polym17172319
Chicago/Turabian StyleCodreanu (Manea), Ana-Maria Nicoleta, Daniela Simina Stefan, Lidia Kim, Ionut Cristea, and Rachid Aziam. 2025. "Optimization of Chromium Removal Conditions from Tanned Leather Waste for Collagen Valorization" Polymers 17, no. 17: 2319. https://doi.org/10.3390/polym17172319
APA StyleCodreanu, A.-M. N., Stefan, D. S., Kim, L., Cristea, I., & Aziam, R. (2025). Optimization of Chromium Removal Conditions from Tanned Leather Waste for Collagen Valorization. Polymers, 17(17), 2319. https://doi.org/10.3390/polym17172319