Lattice Structures in Additive Manufacturing for Biomedical Applications: A Systematic Review
Abstract
1. Introduction
Research Objective and Contribution
2. Materials and Methods
2.1. Inclusion and Exclusion Criteria Used in the Search
2.2. Definition of Search Criteria
2.3. Literature Selection
2.4. Synthesis and Analysis of the Documents Included in the Literature Review
3. Results
3.1. AM Technologies
3.1.1. DLP
3.1.2. FFF
3.1.3. BJ
3.1.4. SLM
3.1.5. EBM
3.1.6. SLS
3.1.7. LENS
3.1.8. DIW
3.1.9. 3DBP
3.1.10. 4DP
3.1.11. Comparative Summary
3.2. Fabrication Materials
3.2.1. Metals
3.2.2. Polymers
3.2.3. Ceramics
3.2.4. Composites
3.3. Lattice Structures
3.3.1. Lattice 2.5D Structures
3.3.2. Lattice 3D Strut-Based
3.3.3. Lattice 3D Wall-Based
3.3.4. Optimization of Lattice Structures
3.4. Characterization of Lattice Structures
3.4.1. Experimental Methods
Morphological Characterization Techniques
Mechanical Characterization Techniques
Physicochemical Characterization Techniques
Biological Characterization Techniques
3.4.2. Computational Methods
Mechanical Simulation
Functional and Biological Simulation
Multiscale Models and Artificial Intelligence Techniques
3.4.3. Characteristic Parameters of Lattice Structures
Relative Density and Porosity
Elastic Module and Compressive Strength
Pore Size, Connectivity, and Strut/Wall Thickness
Surface Properties
Bioactivity and Biodegradability
4. Applications
4.1. Orthopedic Implants and Bone Regeneration
4.2. Tissue Engineering
4.3. Implantable Devices
5. Conclusions
- Lattice structures, developed using AM technologies, have consolidated their role as an effective design strategy in the creation of multifunctional biomedical devices and systems. Their capacity to modulate mechanical, topological, and biological properties renders them a versatile instrument for diverse clinical applications, ranging from tissue regeneration to controlled drug delivery.
- One of the primary strengths identified pertains to the capacity of these structures to function across diverse functional scales, ranging from macro-scale prostheses with customized geometries to cellular microenvironments characterized by biochemical gradients and hierarchical architectures. This adaptability renders it capable of responding to heterogeneous clinical needs with solutions that simultaneously integrate mechanical support, cellular interaction, and degradation control.
- In the domain of orthopedics, lattice has facilitated the development of implants and prostheses with enhanced bone integration by reproducing the porosity, rigidity, and trabecular architecture of natural bone. Furthermore, it has enabled the conceptualization of provisional biodegradable systems that offer structural reinforcement during the regenerative process and are gradually reabsorbed in a regulated manner, obviating the necessity for surgical extraction.
- In the field of tissue engineering, lattice structures have undergone a remarkable evolution, evolving from simple scaffolds to functional microenvironments with the ability to regulate complex biological processes. Their role is particularly important in soft tissue regeneration, in matrices for three-dimensional cell culture, and in bio-printed platforms that allow cells, biomolecules, and factors to be positioned in a precise and controlled manner.
- The modeling of structures with high unit cell density and complex geometries remains a computationally expensive process. There is an urgent need for specific CAD tools and more efficient simulation software, especially for structures with functional gradients, such as those used in bone prostheses and drug delivery systems.
- The formation of internal defects and geometric deviations during manufacturing remains a critical obstacle to ensuring clinical reproducibility. The enhancement of inspection methodologies, the delineation of resilient process parameters, and the formulation of distinct quality standards for these structures are imperative steps toward regulation and clinical approval.
- Numerous studies have demonstrated encouraging results in computational models or in vitro tests; however, a paucity of biological validation under real physiological conditions is evident in the extant literature. A transition to systematic in vivo studies is imperative to evaluate tissue integration, biodegradability, immune response, and mechanical functionality over the medium and long term.
- The use of advanced architectures with unconventional properties, such as auxetic structures or optimized TPMS, has begun to attract interest due to their ability to integrate functional response, anatomical adaptation, and simultaneous mechanical control. The integration of these topologies with stimulus-sensitive materials and multiscale topological optimization algorithms is anticipated to facilitate the development of bioactive, personalized, and adaptive devices.
- The potential for the development of customized devices, tailored to the individual patient’s radiological data (DICOM), signifies a paradigm shift towards direct integration between clinical diagnosis and in situ manufacturing. The establishment of hospital platforms equipped with certified printers, validated materials, and digital workflows would facilitate the production of customized prostheses, surgical guides, or regenerative scaffolds within clinically viable timeframes.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nazir, A.; Abate, K.M.; Kumar, A.; Jeng, J.Y. A state-of-the-art review on types, design, optimization, and additive manufacturing of cellular structures. Int. J. Adv. Manuf. Technol. 2019, 104, 3489–3510. [Google Scholar] [CrossRef]
- Borikar, G.P.; Patil, A.R.; Kolekar, S.B. Additively Manufactured Lattice Structures and Materials: Present Progress and Future Scope. Int. J. Precis. Eng. Manuf. 2023, 24, 2133–2180. [Google Scholar] [CrossRef]
- Kladovasilakis, N.; Tsongas, K.; Karalekas, D.; Tzetzis, D. Architected Materials for Additive Manufacturing: A Comprehensive Review. Materials 2022, 15, 5919. [Google Scholar] [CrossRef]
- Pan, C.; Han, Y.; Lu, J. Design and Optimization of Lattice Structures: A Review. Appl. Sci. 2020, 10, 6374. [Google Scholar] [CrossRef]
- Ahmad, A.; Belluomo, L.; Bici, M.; Campana, F. Bird’s Eye View on Lattice Structures: Design Issues and Applications for Best Practices in Mechanical Design. Metals 2023, 13, 1666. [Google Scholar] [CrossRef]
- Benedetti, M.; Plessis, D.A.; Ritchie, R.O.; Dallago, M.; Razavi, N.; Berto, F. Architected cellular materials: A review on their mechanical properties towards fatigue-tolerant design and fabrication. Mater. Sci. Eng. R Rep. 2021, 144, 100606. [Google Scholar] [CrossRef]
- Changdar, A.; Chakraborty, S.S.; Li, Y.; Wen, C. Laser additive manufacturing of aluminum-based stochastic and nonstochastic cellular materials. J. Mater. Sci. Technol. 2024, 183, 89–119. [Google Scholar] [CrossRef]
- Aghajani, S.; Wu, C.; Li, Q.; Fang, J. Additively manufactured composite lattices: A state-of-the-art review on fabrications, architectures, constituent materials, mechanical properties, and future directions. Thin-Walled Struct. 2024, 197, 111539. [Google Scholar] [CrossRef]
- Liu, B.; Wang, H.; Zhang, N.; Zhang, M.; Cheng, C.K. Femoral Stems With Porous Lattice Structures: A Review. Front. Bioeng. Biotechnol. 2021, 9, 772539. [Google Scholar] [CrossRef]
- Peto, M.; García-Ávila, J.; Rodriguez, C.A.; Siller, H.R.; da Silva, J.V.L.; Ramírez-Cedillo, E. Review on structural optimization techniques for additively manufactured implantable medical devices. Front. Mech. Eng. 2024, 10, 1353108. [Google Scholar] [CrossRef]
- Blanco, D.; Rubio, E.M.; Marín, M.M.; de Agustina, B. Propuesta metodológica para revisión sistemática en el ámbito de la ingeniería basada en PRISMA. In Proceedings of the XXIII Congreso Nacional de Ingeniería Mecánica, Jaén, Spain, 21–23 October 2020. [Google Scholar]
- Davoodi, E.; Montazerian, H.; Mirhakimi, A.S.; Zhianmanesh, M.; Ibhadode, O.; Shahriar Imani Shahabad, S.I.; Esmaeilizadeh, R.; Sarikhani, E.; Toorandaz, S.; Sarabi, S.A.; et al. Additively manufactured metallic biomaterials. Bioact. Mater. 2022, 15, 214–219. [Google Scholar] [CrossRef]
- Baniasadi, H.; Aidary, R.; Irifol, R.; Rojas, O.J.; Sepälä, J. Direct ink writing of aloe vera/cellulose nanofibrils bio-hydrogels. Carbohydr. Polym. 2021, 266, 118114. [Google Scholar] [CrossRef]
- Ogueri, K.S.; Laurencin, C.T. Nanofiber Technology for Regenerative Engineering. ACS Nano 2020, 14, 9347–9363. [Google Scholar] [CrossRef]
- Jin, Y.; Xie, C.; Gao, Q.; Zhou, X.; Li, G.; Du, J.; He, Y. Fabrication of multi-scale and tunable auxetic scaffolds for tissue engineering. Mater. Des. 2021, 197, 109277. [Google Scholar] [CrossRef]
- Amin Yavari, S.; Croes, M.; Akhavan, B.; Jahanmard, F.; Eigenhuis, C.C.; Dadbakhsh, S.; Vogely, H.C.; Bilek, M.M.; Fluit, A.C.; Boel, C.H.E.; et al. Layer by layer coating for bio-functionalization of additively manufactured meta-biomaterials. Addit. Manuf. 2020, 32, 100991. [Google Scholar] [CrossRef]
- Dziaduszewska, M.; Zieliński, A. Structural and Material Determinants Influencing the Behavior of Porous Ti and Its Alloys Made by Additive Manufacturing Techniques for Biomedical Applications. Materials 2021, 14, 712. [Google Scholar] [CrossRef]
- Dong, Z.; Cui, H.; Zhang, H.; Wang, F.; Zhan, X.; Mayer, F.; Nestler, B.; Wegener, M.; Levkin, P.A. 3D printing of inherently nanoporous polymers via polymerization-induced phase separation. Nat. Commun. 2021, 12, 247. [Google Scholar] [CrossRef]
- Li, K.; Zhao, J.; Zhussupbekova, A.; Shuck, C.E.; Hughes, L.; Dong, Y.; Barwich, S.; Vaese, S.; Shvets, I.V.; Möbius, M.; et al. 4D printing of MXene hydrogels for high-efficiency pseudocapacitive energy storage. Nat. Commun. 2022, 13, 6884. [Google Scholar] [CrossRef]
- Simińska-Stanny, J.; Nizioł, M.; Szymczyk-Ziółkowska, P.; Brożyna, M.; Junka, A.; Shavandi, A.; Podstawczyk, D. 4D printing of patterned multimaterial magnetic hydrogel actuators. Addit. Manuf. 2022, 49, 102506. [Google Scholar] [CrossRef]
- Arif, Z.U.; Khalid, M.Y.; Noroozi, R.; Sadeghianmaryan, A.; Jalalvand, M.; Hossain, M. Recent advances in 3D-printed polylactide and polycaprolactone-based biomaterials for tissue engineering applications. Int. J. Biol. Macromol. 2022, 218, 930–968. [Google Scholar] [CrossRef]
- Mirzaali, M.J.; Moosabeiki, V.; Rajaai, S.M.; Zhou, J.; Zadpoor, A.A. Additive Manufacturing of Biomaterials—Design Principles and Their Implementation. Materials 2022, 15, 5457. [Google Scholar] [CrossRef]
- Yang, Y.; He, C.; Dianyu, E.; Yang, W.; Qi, F.; Xie, D.; Shen, L.; Peng, S.; Shuai, C. Mg bone implant: Features, developments and perspectives. Mater. Des. 2020, 185, 108259. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Mitra, I.; Avila, J.D.; Upadhyayula, M.; Bose, S. Porous metal implants: Processing, properties, and challenges. Int. J. Extrem. Manuf. 2023, 5, 032014. [Google Scholar] [CrossRef]
- Buj-Corral, I.; Tejo-Otero, A.; Fenollosa-Artés, F. Development of AM Technologies for Metals in the Sector of Medical Implants. Metals 2020, 10, 686. [Google Scholar] [CrossRef]
- Lv, Y.; Wang, B.; Liu, G.; Tang, Y.; Lu, E.; Xie, K.; Lan, C.; Liu, J.; Qin, Z.; Wang, L. Metal Material, Properties and Design Methods of Porous Biomedical Scaffolds for Additive Manufacturing: A Review. Front. Bioeng. Biotechnol. 2021, 9, 641130. [Google Scholar] [CrossRef]
- Mu, X.; Fitzpatrick, V.; Kaplan, D.L. From Silk Spinning to 3D Printing: Polymer Manufacturing using Directed Hierarchical Molecular Assembly. Adv. Healthc. Mater. 2020, 9, 1901552. [Google Scholar] [CrossRef]
- Li, Y.; Jahr, H.; Zhou, J.; Zadpoor, A.A. Additively manufactured biodegradable porous metals. Acta Biomater. 2020, 115, 29–50. [Google Scholar] [CrossRef]
- Marzio, D.M.; Eglin, D.; Serra, T.; Moroni, L. Bio-Fabrication: Convergence of 3D Bioprinting and Nano-Biomaterials in Tissue Engineering and Regenerative Medicine. Front. Bioeng. Biotechnol. 2020, 8, 326. [Google Scholar] [CrossRef]
- Sezer, N.; Evis, Z.; Koç, M. Additive manufacturing of biodegradable magnesium implants and scaffolds: Review of the recent advances and research trends. J. Magnes. Alloys 2021, 9, 392–415. [Google Scholar] [CrossRef]
- Mitra, I.; Bose, S.; Dernell, W.S.; Dasgupta, N.; Eckstrand, C.; Herrick, J.; Yaszemski, M.J.; Goodman, S.B.; Bandyopadhyay, A. 3D Printing in alloy design to improve biocompatibility in metallic implants. Mater. Today 2021, 45, 20–34. [Google Scholar] [CrossRef]
- Heid, S.; Boccaccini, A.R. Advancing bioinks for 3D bioprinting using reactive fillers: A review. Acta Biomater. 2020, 113, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Azadani, M.N.; Zahedi, A.; Bowoto, O.K.; Oladapo, B.I. A review of current challenges and prospects of magnesium and its alloy for bone implant applications. Prog. Biomater. 2022, 11, 1–26. [Google Scholar] [CrossRef]
- Miao, Y.; Chen, Y.; Luo, J.; Liu, X.; Yang, Q.; Shi, X.; Wang, Y. Black phosphorus nanosheets-enabled DNA hydrogel integrating 3D-printed scaffold for promoting vascularized bone regeneration. Bioact. Mater. 2023, 21, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Pugliese, R.; Graziosi, S. Biomimetic scaffolds using triply periodic minimal surface-based porous structures for biomedical applications. SLAS Technol. 2023, 28, 165–182. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Han, Q.; Wang, C.; Liu, Y.; Chen, B.; Wang, J. Porous Scaffold Design for Additive Manufacturing in Orthopedics: A Review. Front. Bioeng. Biotechnol. 2020, 8, 609. [Google Scholar] [CrossRef]
- Xie, K.; Wang, N.; Guo, Y.; Zhao, S.; Tan, J.; Wang, L.; Li, G.; Wu, J.; Yang, Y.; Xu, W.; et al. Additively manufactured biodegradable porous magnesium implants for elimination of implant-related infections: An in vitro and in vivo study. Bioact. Mater. 2022, 8, 140–152. [Google Scholar] [CrossRef]
- Wei, S.; Zhang, J.; Zhang, L.; Zhang, Y.; Song, B.; Wang, X.; Fan, J.; Liu, Q.; Shi, Y. Laser powder bed fusion additive manufacturing of NiTi shape memory alloys: A review. Int. J. Extrem. 2023, 5, 032001. [Google Scholar] [CrossRef]
- Jian, Z.; Zhuang, T.; Qinyu, T.; Liqing, P.; Kun, L.; Xujiang, S.; Diaodiao, W.; Zhen, Y.; Shuangpeng, J.; Xiang, S.; et al. 3D bioprinting of a biomimetic meniscal scaffold for application in tissue engineering. Bioact. Mater. 2021, 6, 1711–1726. [Google Scholar] [CrossRef]
- Wei, X.; Zhou, W.; Tang, Z.; Wu, H.; Liu, Y.; Dong, H.; Wang, N.; Huang, H.; Bao, S.; Shi, L.; et al. Magnesium surface-activated 3D printed porous PEEK scaffolds for in vivo osseointegration by promoting angiogenesis and osteogenesis. Bioact. Mater. 2023, 20, 16–28. [Google Scholar] [CrossRef]
- Jiao, C.; Xie, D.; He, Z.; Liang, H.; Shen, L.; Yang, Y.; Tian, Z.; Wu, G.; Wang, C. Additive manufacturing of Bio-inspired ceramic bone Scaffolds: Structural Design, mechanical properties and biocompatibility. Mater. Des. 2022, 217, 110610. [Google Scholar] [CrossRef]
- Huang, D.; Cheng, Y.; Chen, G.; Zhao, Y. 3D-Printed Janus Piezoelectric Patches for Sonodynamic Bacteria Elimination and Wound Healing. Research 2023, 6, 0022. [Google Scholar] [CrossRef]
- Li, Q.; Xu, S.; Feng, Q.; Dai, Q.; Yao, L.; Zhang, Y.; Gao, H.; Dong, H.; Chen, D.; Cao, X. 3D printed silk-gelatin hydrogel scaffold with different porous structure and cell seeding strategy for cartilage regeneration. Bioact. Mater. 2021, 6, 3396–3410. [Google Scholar] [CrossRef]
- Echeta, I.; Feng, X.; Dutton, B.; Leach, R.; Piano, S. Review of defects in lattice structures manufactured by powder bed fusion. Int. J. Adv. Manuf. Technol. 2020, 106, 2649–2668. [Google Scholar] [CrossRef]
- Wei, J.; Pan, F.; Ping, H.; Yang, K.; Wang, Y.; Wang, Q.; Fu, Z. Bioinspired Additive Manufacturing of Hierarchical Materials: From Biostructures to Functions. Research 2023, 6, 0164. [Google Scholar] [CrossRef]
- Liu, F.; Ran, Q.; Zhao, M.; Zhang, T.; Zhang, D.Z.; Su, Z. Additively Manufactured Continuous Cell-Size Gradient Porous Scaffolds: Pore Characteristics, Mechanical Properties and Biological Responses In Vitro. Materials 2020, 13, 2589. [Google Scholar] [CrossRef] [PubMed]
- Flégeau, K.; Puiggali-Jou, A.; Zenobi-Wong, M. Cartilage tissue engineering by extrusion bioprinting utilizing porous hyaluronic acid microgel bioinks. Biofabrication 2022, 14, 034105. [Google Scholar] [CrossRef]
- Karami, K.; Blok, A.; Weber, L.; Ahmadi, S.M.; Petrov, R.; Nikolic, K.; Borisov, E.V.; Leeflang, S.; Atay, C.; Zadpoor, A.A.; et al. Continuous and pulsed selective laser melting of Ti6Al4V lattice structures: Effect of post-processing on microstructural anisotropy and fatigue behaviour. Addit. Manuf. 2020, 36, 101433. [Google Scholar] [CrossRef]
- Tran, H.A.; Hoang, T.T.; Maraldo, A.; Do, T.N.; Kaplan, D.L.; Lim, K.S.; Rnjak-Kovacina, J. Emerging silk fibroin materials and their applications: New functionality arising from innovations in silk crosslinking. Mater. Today 2023, 65, 244–259. [Google Scholar] [CrossRef]
- Vijayavenkataraman, S.; Kuan, L.Y.; Lu, W.F. 3D-printed ceramic triply periodic minimal surface structures for design of functionally graded bone implants. Mater. Des. 2020, 191, 108602. [Google Scholar] [CrossRef]
- Yang, J.; Liu, H.; Cai, G.; Jin, H. Additive Manufacturing and Influencing Factors of Lattice Structures: A Review. Materials 2025, 18, 1397. [Google Scholar] [CrossRef]















| Inclusion/Exclusion Criteria | Feature |
|---|---|
| Publication period | From 1 January 2020 to 1 June 2025 |
| Search date | 1 June 2025 |
| Type of study | Articles: journals, reviews, and conference proceedings |
| Keywords and synonyms | See Figure 2 |
| Information sources | WoS, Scopus |
| Databases in WoS | Option ‘All databases’ |
| Language of publication | English |
| Publication mode | Exclusively open access |
| Quality criteria required for each publication | Peer-reviewed articles included in WoS. Journal articles limited to Q1–Q2 |
| Quality criteria reviewed for each publication | Reviewed by journal impact factor and journal citations reports |
| Documents | Number of References | Publication Type | State of the Art | Process Optimization | Experiments Design | Country | Publication Year |
|---|---|---|---|---|---|---|---|
| [6] | 519 | Q1 | X | Italy | 2021 | ||
| [12] | 166 | Q1 | X | United States | 2022 | ||
| [13] | 86 | Q1 | X | Finlandia | 2021 | ||
| [14] | 93 | Q1 | X | United States | 2020 | ||
| [15] | 97 | Q1 | X | China | 2021 | ||
| [16] | 86 | Q1 | X | Netherlands | 2020 | ||
| [17] | 61 | Q2 | X | X | Poland | 2021 | |
| [18] | 166 | Q1 | X | X | Germany | 2021 | |
| [19] | 145 | Q1 | X | Ireland | 2022 | ||
| [20] | 121 | Q1 | X | Belgium | 2022 | ||
| [21] | 251 | Q1 | X | Pakistan | 2022 | ||
| [22] | 70 | Q2 | X | X | Netherlands | 2022 | |
| [23] | 404 | Q1 | X | China | 2020 | ||
| [24] | 70 | Q1 | X | United States | 2023 | ||
| [25] | 64 | Q2 | X | Spain | 2020 | ||
| [26] | 109 | Q1 | X | China | 2021 | ||
| [27] | 67 | Q1 | X | X | China | 2020 | |
| [28] | 146 | Q1 | X | X | China | 2020 | |
| [29] | 78 | Q1 | X | Switzerland | 2020 | ||
| [30] | 139 | Q1 | X | Qatar | 2021 | ||
| [31] | 120 | Q1 | X | X | United States | 2021 | |
| [32] | 168 | Q1 | X | Germany | 2020 | ||
| [33] | 107 | Q2 | X | England | 2022 | ||
| [34] | 89 | Q1 | X | China | 2023 | ||
| [35] | 76 | Q2 | X | Italia | 2023 | ||
| [36] | 170 | Q1 | X | X | China | 2020 | |
| [37] | 102 | Q1 | X | China | 2022 | ||
| [38] | 98 | Q1 | X | China | 2023 | ||
| [39] | 87 | Q1 | X | China | 2021 | ||
| [40] | 149 | Q1 | X | X | China | 2023 | |
| [41] | 93 | Q1 | X | China | 2022 | ||
| [42] | 76 | Q2 | X | China | 2023 | ||
| [43] | 197 | Q1 | X | China | 2021 | ||
| [44] | 169 | Q2 | X | England | 2020 | ||
| [45] | 74 | Q1 | X | China | 2023 | ||
| [46] | 60 | Q2 | X | China | 2020 | ||
| [47] | 71 | Q1 | X | Switzerland | 2022 | ||
| [48] | 92 | Q1 | X | Netherlands | 2020 | ||
| [49] | 69 | Q1 | X | Australia | 2023 | ||
| [50] | 155 | Q1 | X | X | United Arab Emirates | 2020 |
| Category | Technologies | Principle | Characteristics | |
|---|---|---|---|---|
![]() | Photopolymerization in tank |
| A liquid photopolymer solidifies layer by layer through controlled exposure to a light source. |
|
![]() | Material jetting |
| Microdroplets of photopolymer material are selectively deposited and cured using UV light. |
|
![]() | Material extrusion |
| A thermoplastic filament is melted and extruded through a nozzle that moves according to the design. |
|
![]() | Bonding agent jet |
| A liquid binding agent is selectively deposited on a bed of powder to bind the particles together. |
|
![]() | Powder bed fusion |
| A laser or electron beam selectively melts layers of powder in a bed to consolidate them. |
|
![]() | Direct energy deposition |
| Powder or filament material is deposited with the application of energy for melting and consolidation. |
|
![]() | Sheet lamination |
| Thin sheets of material are cut and stacked layer by layer by adhesion or welding. |
|
| Technologies | Strengths | Limitations | Resolution | Cost |
|---|---|---|---|---|
| DLP |
|
| 25–50 µm | $$ |
| FFF |
|
| 250–370 µm | $ |
| BJ |
|
| 50–200 µm | $ |
| SLM |
|
| 80–250 µm | $$$ |
| EBM |
|
| 50–100 µm | $$$$ |
| SLS |
|
| 76–100 µm | $$$ |
| LENS |
|
| 250 µm | $$$ |
| DIW |
|
| <250 µm | $ |
| 3DBP |
|
| <250 µm | $$$$ |
| Category | AM Technology Associated | Strengths | Limitations | |
|---|---|---|---|---|
| Metals |
|
|
|
|
| Polymers |
|
|
|
|
| Ceramics |
|
|
| |
| Composites |
|
|
|
|
| Anatomical Structure | Porosity (%) | Density (g/cm3) | Yield Strength (MPa) | Compressive Strength (MPa) | Young’s Modulus (GPa) |
|---|---|---|---|---|---|
| Cortical bone | 3–12 | 1.85 ± 0.06 | 50–150 | 130–193 | 3–30 |
| Trabecular bone | 50–90 | 0.3 ± 1 | 10–20 | 4–12 | 0.02–0.5 |
| Articular cartilage | 70–85 | 1.1 ± 0.05 | 0.3–0.6 | 0.5–1 | 0.0003–0.001 |
| Dental enamel | <1 | 2.9 ± 0.1 | - | 300 | 70–100 |
| Dentin | 15–20 | 2.1 ± 0.1 | 80–100 | 250 | 12–20 |
| Ligament | 55–70 | 1.15 ± 0.05 | 50–100 | - | 0.15–0.6 |
| Tendon | 60–70 | 1.2 ± 0.05 | 70–120 | - | 1–2 |
| Metal | Density (g/cm3) | Yield Strength (MPa) | Compressive Strength (MPa) | Young’s Modulus (GPa) | Biocompatibility | Corrosion Resistance |
|---|---|---|---|---|---|---|
| Ti | 4.5 ± 0.1 | 275–480 | 230–1241 | 90–120 | **** | *** |
| Ti alloys | 4.35 ± 0.15 | 800–1000 | 750–1110 | 110–120 | **** | *** |
| Co alloys | 8.3 ± 0.45 | 450–600 | 600–1000 | 210–230 | *** | *** |
| 316L Steel | 7.9 ± 0.05 | 500–600 | 190 | 193 | *** | *** |
| Ta | 16.6 ± 0.05 | 230 | 200–300 | 186–191 | *** | **** |
| Ni alloys | 6.45 ± 0.15 | 195–690 | 400–800 | 75 | *** | *** |
| Mg | 1.74 ± 0.08 | 20–50 | 100–200 | 40–45 | *** | * |
| Mg alloys | 1.90 ± 0.1 | 130–180 | 100–200 | 35–50 | **** | ** |
| Fe | 7.87 ± 0.1 | 200 | 200–300 | 210 | *** | *** |
| Zn | 7.14 ± 0.1 | 10–30 | 20–30 | 70–100 | *** | *** |
| Zn alloys | 6.85 ± 0.15 | 100–160 | 150–230 | 80–105 | *** | *** |
| Polymer | Density (g/cm3) | Yield Strength (MPa) | Compressive Strength (MPa) | Young’s Modulus (GPa) | Biocompatibility | Corrosion Resistance |
|---|---|---|---|---|---|---|
| PEEK | 1.3 ± 0.1 | 87–95 | 118–130 | 3–4 | **** | *** |
| PA12 | 1.01 ± 0.08 | 45–55 | 65 | 1.4–1.85 | ** | ** |
| PLA | 1.24 ± 0.1 | 50–70 | 60–70 | 3.5–3.8 | *** | * |
| PCL | 1.1 ± 0.1 | 23 | 39 | 0.3–0.4 | *** | * |
| PLGA | 1.34 ± 0.07 | 45 | 41–55 | 1.4–2.8 | *** | ** |
| GelMA | 1.05 ± 0.08 | - | - | - | **** | * |
| Alginate | 1.0 ± 0.05 | - | - | - | **** | * |
| Collagen | 1.0 ± 0.05 | - | - | - | **** | * |
| Chitosan | 0.9 ± 0.1 | - | - | - | *** | ** |
| Polymer | Density (g/cm3) | Yield Strength (MPa) | Compressive Strength (MPa) | Young’s Modulus (GPa) | Biocompatibility | Corrosion Resistance |
|---|---|---|---|---|---|---|
| HAp | 3.16 ± 0.06 | 80 | 120–150 | 80 | **** | *** |
| β-TCP | 3.07 ± 0.04 | 50 | 90–100 | 45 | *** | ** |
| Al2O3 | 3.9 ± 0.1 | 370–380 | 2000–4000 | 370 | *** | **** |
| Y-TZP | 6.05 ± 0.1 | 900–1200 | 1500–2000 | 210 | *** | **** |
| Bioglass 45S5 | 2.7 ± 0.15 | 40–60 | 500 | 30–35 | **** | ** |
| Composite | Density (g/cm3) | Yield Strength (MPa) | Compressive Strength (MPa) | Young’s Modulus (GPa) | Biocompatibility | Corrosion Resistance |
|---|---|---|---|---|---|---|
| PLA/HA | 1.63 ± 0.4 | 20–40 | 5–40 | 2.3–4 | *** | ** |
| PCL/β-TCP | 1.3 ± 0.1 | 15–30 | 3–20 | 0.3–1 | **** | *** |
| PLA/fibra de carbono | 1.3 ± 0.2 | 50–60 | 10–20 | 5–10 | ** | *** |
| PU/fibras | 1.2 ± 0.1 | 35–50 | 30–80 | 0.1–1 | *** | *** |
| 2.5D Structure | Yield Strength | Compressive Strength | Young’s Modulus | Fatigue Resistant | Energy Absorption | Anatomical Adaptability | Specific Surface | Permeability | Ease of Manufacturing |
|---|---|---|---|---|---|---|---|---|---|
| Honeycomb | ** | *** | *** | * | ** | * | * | * | **** |
| Auxetic | ** | ** | ** | *** | **** | **** | ** | * | *** |
| TPMS Structure | Mathematical Expression | ||
|---|---|---|---|
| Schwarz | (3) | ![]() | |
| Diamond | (4) | ![]() | |
| Gyroid | (5) | ![]() | |
| I-WP | (6) | ![]() | |
| Strut-Based Structure | Yield Strength | Compressive Strength | Young’s Modulus | Fatigue Resistant | Energy Absorption | Anatomical Adaptability | Specific Surface | Permeability | Ease of Manufacturing |
|---|---|---|---|---|---|---|---|---|---|
| Cubic | * | * | * | * | ** | * | * | *** | **** |
| BCC | ** | ** | ** | ** | ** | ** | ** | *** | **** |
| FCC | *** | *** | *** | *** | ** | ** | ** | ** | *** |
| Octet-truss | **** | **** | **** | *** | ** | ** | ** | *** | ** |
| Diamond | **** | **** | **** | *** | ** | *** | *** | ** | ** |
| Auxetic | ** | ** | ** | *** | **** | **** | ** | *** | ** |
| TPMS Schwarz | *** | **** | *** | ** | ** | *** | **** | *** | ** |
| TPMS diamond | **** | **** | **** | *** | ** | *** | **** | ** | ** |
| TPMS gyroid | *** | *** | *** | *** | *** | *** | **** | *** | * |
| TPMS I-WP | *** | *** | *** | *** | ** | *** | **** | ** | * |
| Voronoi | *** | *** | *** | *** | *** | **** | *** | *** | * |
| Wall-Based Structure | Yield Strength | Compressive Strength | Young’s Modulus | Fatigue Resistant | Energy Absorption | Anatomical Adaptability | Specific Surface | Permeability | Ease of Manufacturing |
|---|---|---|---|---|---|---|---|---|---|
| Cubic | ** | ** | ** | ** | ** | ** | ** | * | **** |
| BCC | ** | ** | ** | ** | *** | ** | ** | * | **** |
| FCC | *** | *** | *** | *** | *** | ** | ** | ** | *** |
| Octet-truss | **** | **** | **** | **** | *** | ** | ** | ** | *** |
| Diamond | **** | **** | *** | *** | *** | *** | *** | ** | *** |
| TPMS Schwarz | **** | *** | **** | **** | *** | **** | **** | * | ** |
| TPMS diamond | **** | **** | **** | **** | **** | **** | **** | *** | ** |
| TPMS gyroid | *** | *** | **** | *** | *** | *** | **** | ** | ** |
| TPMS I-WP | *** | ** | *** | *** | *** | **** | **** | ** | ** |
| Voronoi | *** | *** | ** | *** | *** | **** | **** | ** | ** |
| Biomedical Application | AM Technologies Most Used | Fabrication Materials Most Used | Lattice Structures Most Used | Most Sought-After Properties | References | |
|---|---|---|---|---|---|---|
| Orthopedic implants and bone regeneration | Hip prostheses | SLM, EBM, SLS, LENS | Ta Ti, Co alloys | Strut-based cubic, diamond, tetrahedron, auxetic, TPMS gyroid and Voronoi | High mechanical properties, biocompatibility, fatigue resistance, osseointegration and anatomical adaptability | [12,22,24,25,31,33,48] |
| Joint prostheses | SLM, EBM | Ti, Co alloys | Strut-based cubic, diamond, octet-truss, octahedron and truncated octahedron | Biocompatibility, fatigue resistance, osseointegration and anatomical adaptability | [12,24,25,31,35] | |
| Mandibular prostheses | SLM, EBM | Ti alloys | Strut-based diamond and octet-truss | High mechanical properties, biocompatibility, lightweight, osseointegration, anatomical adaptability and optimized functionality | [12,17,25,45] | |
| Cranio-maxillofacial implants | SLM, EBM | Ti, Ta, 316L steel Ni, Ti alloys 316L steel | Strut-based diamond, TPMS gyroid and Voronoi Wall-based Voronoi | High mechanical properties, biocompatibility, lightweight, osseointegration, permeability and anatomical adaptability | [12,17,22,24,25,33,38] | |
| Dental implants | SLM, EBM | Ti alloys | Strut-based BBC and diamond | High mechanical properties, biocompatibility, fatigue resistance, load cushioning, anatomical adaptability | [12,17,24,25,31] | |
| Vertebral structures | SLM, EBM, SLS, LENS | Ti alloys PEEK | Strut-based cubic, BBC, FCC, diamond, octet-truss, TPMS gyroid | Biocompatibility, high axial load capacity, osseointegration, anatomical adaptability | [6,12,25,33] | |
| Orthopedic implants and bone regeneration | Correction of bone defects | DLP, SLA, SLM, BJ, FFF, DIW | Ti, Ta, 316L steel Ti alloys Fe, Mg, Zn alloys PLA, PCL, PLGA, PEEK HAp, ZrO2, β-TCP, Bioglass | 2.5D Honeycomb Strut-based BCC, FCC, diamond, octet-truss, TPMS gyroid, schwarz, Voronoi Wall-based TPMS gyroid, diamond | Biocompatibility, biodegradability, high interconnected porosity, osteointegration, anatomical adaptability | [18,23,30,31,32,34,36,37,41,42,45,47,51] |
| Bone regeneration under load | DLP, SLM, SLS, FFF, LENS, DIW | Ta Ti alloys Fe, Mg alloys PLA, PCL, PLGA HAp, β-TCP PCL/β-TCP, PLA/HAp | Strut-based BCC, FCC, diamond, octet-truss, TPMS gyroid, Voronoi | Biocompatibility, bioactivity, high interconnected porosity, high mechanical strength under load, osteointegration, anatomical adaptability | [14,17,22,24,28,32,34,35,36,41] | |
| Temporary bone substitutes | DLP, SLM, SLS, BJ, FFF, DIW | Ti alloys Fe, Mg, Zn alloys PLA, PCL, PLGA HAp, ZrO2, β-TCP PCL/β-TCP, PLA/HAp | Strut-based cubic, diamond, octet-truss, octahedron and TPMS gyroid | Biocompatibility, bioactivity, biodegradability, osteointegration, anatomical adaptability | [17,22,23,26,27,28,29,30,35,37,41] | |
| Osteochondral implants | DIW, 3DBP | GelMA PCL/β-TCP | Strut-based diamond, auxetic, TPMS gyroid Wall-based TPMS gyroid | Biocompatibility, high interconnected porosity, mechanical stability | [12,35,49] | |
| Tissue engineering | Regeneration of articular cartilage | FFF, SLS, DIW, 3DBP | PCL GelMA, alginate, collagen, chitosan | Strut-based cubic, TPMS gyroid, diamond, Wall-based gyroid, diamond | Osteochondral integration, high interconnected porosity, biomimetic mechanics | [14,22,27,29,43,47,49] |
| Skin regeneration | DIW, 3DBP | GelMA, chitosan, gelatin | 2.5D Honeycomb Strut-based cubic Wall-based cubic | Biocompatibility, permeability, adjustable mechanical resistance, antimicrobial activity | [13,27,42] | |
| Tissue engineering | Muscle regeneration | Electrospinning | GelMA, chitosan, gelatin PCL/spun fibers | Strut-based cubic | Bioelectrical compatibility, elasticity and mechanical adaptability | [14,29] |
| Matrices for cell culture | DLP, FFF, MEW | HEMA PCL | 2.5D Honeycomb, auxetic Strut-based cubic | Biocompatibility, high cell adhesion, high interconnected porosity, structural stability | [15,18,21,26,29,35,49] | |
| Matrices for tissue bio printing | FFF, DIW, 3DBP | PCL GelMA, alginate, collagen, chitosan Composite hydrogels | Strut-based diamond Wall-based cubic | Biocompatibility, biodegradability, imitation of the extracellular environment | [21,32,39,49] | |
| Matrices for direct printing of organoids | DLP, BJ, FFF, DIW, 3DBP | PCL GelMA, alginate, collagen | Strut-based cubic | Biocompatibility, bioactivity, high interconnected porosity, permeability | [21,29,32] | |
| Implantable devices | Devices for controlled drug release | DLP, FFF, SLM, BJ, DIW | Ni alloys PLA, PCL, PLGA Alginate, collagen, chitosan | Strut-based cubic, TPMS gyroid Wall-based TPMS gyroid, Schwarz | Biodegradability, high interconnected porosity, controlled or sequential release | [16,20,22,27,28,30,45] |
| Sensory devices | 4DP | MXenes | Strut-base cubic | Biocompatibility, biodegradability, high interconnected porosity, structural stability | [19] | |
| Temporary stents | SLM | Fe, Mg, Zn alloys | Strut-based BCC, diamond, TPMS gyroid, diamond | Biocompatibility, biodegradability, anatomical adaptability | [26,30,33] | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polo, S.; García-Domínguez, A.; Rubio, E.M.; Claver, J. Lattice Structures in Additive Manufacturing for Biomedical Applications: A Systematic Review. Polymers 2025, 17, 2285. https://doi.org/10.3390/polym17172285
Polo S, García-Domínguez A, Rubio EM, Claver J. Lattice Structures in Additive Manufacturing for Biomedical Applications: A Systematic Review. Polymers. 2025; 17(17):2285. https://doi.org/10.3390/polym17172285
Chicago/Turabian StylePolo, Samuel, Amabel García-Domínguez, Eva María Rubio, and Juan Claver. 2025. "Lattice Structures in Additive Manufacturing for Biomedical Applications: A Systematic Review" Polymers 17, no. 17: 2285. https://doi.org/10.3390/polym17172285
APA StylePolo, S., García-Domínguez, A., Rubio, E. M., & Claver, J. (2025). Lattice Structures in Additive Manufacturing for Biomedical Applications: A Systematic Review. Polymers, 17(17), 2285. https://doi.org/10.3390/polym17172285












