The Effect of Synthesis Conditions and Chemical Structure of Thermoplastic Polyimides on Their Thermomechanical Properties and Short-Term Electrical Strength
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Techniques
2.3. Objects of Study
2.4. Chemical Synthesis of Polyamic Acids
2.5. Film Preparation
3. Results and Discussion
3.1. Polyimide Chemical Synthesis
3.2. Study of the Specific Density of PIs
3.3. X-Ray Diffraction Study
3.4. Thermophysical Properties
3.5. Mechanical Properties
3.6. Short-Term Electrical Strength Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fang, J.-H. Polyimide Proton Exchange Membranes. In Advanced Polyimide Materials; Elsevier: Amsterdam, The Netherlands, 2018; pp. 323–383. [Google Scholar]
- Abadie, M.J.M. Practical Guide to Polyimides: Processable Aromatic Polyimides Based on Non-Traditional Raw Materials; iSmithers Rapra Publishing: Akron, OH, USA, 2007; Volume 84. [Google Scholar]
- Sroog, C.E. Polyimides. Prog. Polym. Sci. 1991, 16, 561–694. [Google Scholar] [CrossRef]
- Ghosh, M. Polyimides: Fundamentals and Applications; CRC Press: Boca Raton, FL, USA, 1996; ISBN 0824794664. [Google Scholar]
- Mittal, K.L. Polyimides: Synthesis, Characterization, and Applications. Volume 1; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Irwin, R.S. Polyimides–thermally stable polymers, by M. I.; Bessonov, M.M.; Koton, V.V. Kudryavtsev, and L. A. Laius, Consultants Bureau, New York, 1987, 318 pp. Price: $75.00. J. Polym. Sci. Polym. Lett. Ed. 1988, 26, 159–163. [Google Scholar] [CrossRef]
- Liaw, D.-J.; Wang, K.-L.; Huang, Y.-C.; Lee, K.-R.; Lai, J.-Y.; Ha, C.-S. Advanced polyimide materials: Syntheses, physical properties and applications. Prog. Polym. Sci. 2012, 37, 907–974. [Google Scholar] [CrossRef]
- Lu, Y.H.; Zhan, M.S.; Zheng, W.H. Preparation and properties of T300 carbon fiber-reinforced thermoplastic polyimide composites. J. Appl. Polym. Sci. 2006, 102, 646–654. [Google Scholar] [CrossRef]
- Zhang, R.; Fallon, J.J.; Joseph, R.M.; Thomas, J.A.; Hassan, M.S.; Choudhury, S.R.; Gilmer, E.L.; Kubota, M.; Deitzel, J.M.; Riffle, J.S.; et al. Preparation of Submicrometer High-Performance Poly(ether imide) Particles for Fabricating Carbon Fiber Reinforced Polymer Composites. Ind. Eng. Chem. Res. 2018, 57, 15346–15356. [Google Scholar] [CrossRef]
- Vaganov, G.; Ivan’kova, E.; Didenko, A.; Popova, E.; Elokhovskiy, V.; Kasatkin, I.; Yudin, V. High-performance crystallized composite carbon nanoparticles/polyimide fibers. J. Appl. Polym. Sci. 2022, 139, e52748. [Google Scholar] [CrossRef]
- Yudin, V.; Svetlichnyi, V.; Gubanova, N.; Didenko, A.; Popova, E.; Sukhanova, T.; Grigoriev, A.; Kostereva, T.; Arbel, I.; Marom, G. Influence of crystallinity of R-BAPB-type polyimide matrix on thermal and mechanical properties of carbon-fiber-reinforced composites. In Polyimides and Other High Temperature Polymers; CRC Press: Boca Raton, FL, USA, 2005; pp. 299–316. [Google Scholar] [CrossRef]
- Damaceanu, M.-D.; Darie-Nita, R.N. Polyimides: Advances in Blends and Nanocomposites; Elsevier: Amsterdam, The Netherlands, 2024; Volume 410. [Google Scholar]
- He, X.; Xu, M.; Dou, Q.; Li, Y.; Wang, Q.; Wang, T.; Tao, L. Preparation of High Mechanical Performance Polyimides by Microbranched Cross-Linked Structures. J. Polym. Sci. 2024, 63, 954–965. [Google Scholar] [CrossRef]
- Mitsui, H.; Shiono, T.; Ushiki, M.; Sato, Y.; Sudo, S.; Ono, S.; Murase, T. Electrical and mechanical properties of thermoplastics polyimide insulated coaxial cable for use under high temperature and radioactive conditions. IEEJ Trans. Fundam. Mater. 1995, 115, 338–343. [Google Scholar] [CrossRef]
- Costa, C.; Lopes, P.; Castro, J.; Matos, J.R.; Lopes, H.; Gouveia, J.R.; Pinto, S.M.; Ribeiro, I.; Oliveira, L.; Dutra, T.A. High-performance thermoplastics obtained by fused filament fabrication: Effects of harsh environmental conditions of power transformers. Prog. Addit. Manuf. 2024, 10, 203–218. [Google Scholar] [CrossRef]
- Li, Y.; Yin, J.; Feng, Y.; Li, J.; Zhao, H.; Zhu, C.; Yue, D.; Liu, Y.; Su, B.; Liu, X. Metal-organic Framework/Polyimide composite with enhanced breakdown strength for flexible capacitor. Chem. Eng. J. 2022, 429, 132228. [Google Scholar] [CrossRef]
- Zhang, W.; Jiang, M.; Guan, F.; Liu, S.; Wang, L.; Li, Y.; Yue, D.; Li, J.; Liu, X.; Feng, Y. Influence of the acceptor-fillers on the dielectric properties of polyimide composites. Polym. Test. 2023, 122, 108025. [Google Scholar] [CrossRef]
- Ogbonna, V.E.; Popoola, A.P.I.; Popoola, O.M. Silica nanofillers-reinforced polyimide composites for mechanical, thermal, and electrical insulation applications and recommendations: A review. J. Phys. Conf. Ser. 2022, 2368, 012001. [Google Scholar] [CrossRef]
- Zhang, W.; Fu, Q.; Yuan, Q.; Li, H.; Yue, D.; Feng, Y.; Chen, Q.; Yin, J. Preparation and dielectric properties of polyimide-based composites with Al-Nb co-doped SiO2. High Perform. Polym. 2024, 36, 109–118. [Google Scholar] [CrossRef]
- Ding, S.; Yu, S.; Zhu, X.; Xie, S.; Sun, R.; Liao, W.H.; Wong, C.P. Enhanced breakdown strength of polymer composites by low filler loading and its mechanisms. Appl. Phys. Lett. 2017, 111, 153902. [Google Scholar] [CrossRef]
- Kapton® Polyimide Films. Available online: https://www.dupont.com/electronics-industrial/kapton-polyimide-film.html#headingacc0 (accessed on 14 April 2025).
- McClure, D.J. Polyimide film as a vacuum coating substrate. In Proceedings of the Association of Industrial Metallizers, Coaters and Laminators Fall Technical Conference and 23rd International Vacuum Web Coating Conference 2009, Amelia Island, FL, USA, 17–22 October 2009; Volume 2, pp. 991–1030. [Google Scholar]
- Chen, Q.; Zhang, Y.Y.; Huang, P.; Li, Y.Q.; Fu, S.Y. Improved bond strength, reduced porosity and enhanced mechanical properties of 3D-printed polyetherimide composites by carbon nanotubes. Compos. Commun. 2022, 30, 101083. [Google Scholar] [CrossRef]
- Bell, V.L.; Stump, B.L.; Gager, H. Polyimide structure–property relationships. II. Polymers from isomeric diamines. J. Polym. Sci. Polym. Chem. Ed. 1976, 14, 2275–2291. [Google Scholar] [CrossRef]
- Hegde, M.; Lafont, U.; Norder, B.; Picken, S.J.; Samulski, E.T.; Rubinstein, M.; Dingemans, T. SWCNT Induced Crystallization in an Amorphous All-Aromatic Poly(ether imide). Macromolecules 2013, 46, 1492–1503. [Google Scholar] [CrossRef]
- Yudin, V.E.; Svetlichnyy, V.M.; Gubanova, T.N.; Grigoryev, A.I.; Sukhanova, T.Y.; Gofman, I.V.; Didenko, A.L.; Popova, Y.N.; Fedorova, G.N.; Kudravtsev, V.V. Partially crystalline polyimides as binders for carbon fiber plastics. Polym. Sci. Ser. A 2002, 2, 257–267. [Google Scholar]
- Chirkov, S.V.; Kechekyan, A.S.; Belov, N.A.; Antonov, S.V.; Alentiev, A.Y. The influence of uniform deformation of Ultem-1000 polyetherimide films on their mechanical and gas transport characteristics. Pet. Chem. 2016, 56, 1074–1084. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, Z.; Tang, C.; Zhang, T.; Zhang, Y.; Zhang, Y.; Chi, Q. Study of the Dielectric and Corona Resistance Properties of PI Films Modified with Fluorene Moiety/Aluminum Sec-Butoxide. Polymers 2024, 16, 767. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, Z.; Huo, S.; Lin, J.; He, S. Improved Dielectric Breakdown Strength of Polyimide by Incorporating Polydopamine-Coated Graphitic Carbon Nitride. Polymers 2022, 14, 385. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, C.; Lin, J.; Sun, H.; Yang, Y.; Yang, W. A strategy for accurate prediction of dielectric permittivity and dielectric strength in polyimide. High Volt. 2024, 9, 1393–1401. [Google Scholar] [CrossRef]
- Tanikella, R.V.; Sung, T.; Bidstrup-Allen, S.A.; Kohl, P.A. Rapid curing of positive tone photosensitive polybenzoxazole based dielectric resin by variable frequency microwave processing. IEEE Trans. Compon. Packag. Technol. 2006, 29, 411–419. [Google Scholar] [CrossRef]
- Chu, H.J.; Wei, H.L.; Zhu, J.; Zhu, B.K.; Xu, Y.Y. Morphology and dielectric property of cellular polyimide films prepared by phase inversion. Adv. Mater. Res. 2012, 557–559, 704–707. [Google Scholar] [CrossRef]
- Meddeb, A.B.; Ounaies, Z.; Lanagan, M. Enhancement of electrical properties of polyimide films by plasma treatment. Chem. Phys. Lett. 2016, 649, 111–114. [Google Scholar] [CrossRef]
- Hu, J.; Wang, J.; Qi, S.; Tian, G.; Wu, D. Thermoplastic and soluble co-polyimide resins fabricated via the incorporation of 2,3,3′,4′-biphenyltetracarboxylic dianhydride. High Perform. Polym. 2019, 31, 1272–1279. [Google Scholar] [CrossRef]
- Zha, J.-W.; Liu, X.-J.; Tian, Y.; Dang, Z.-M.; Chen, G. High-Temperature Polyimide Dielectric Materials for Energy Storage. In Polyimide for Electronic and Electrical Engineering Applications; IntechOpen: London, UK, 2021. [Google Scholar]
- Inan, T.Y. High-Performance Polymer Type Capacitors. In Electrochemical Capacitors: Theory, Materials and Applications; Materials Research Forum LLC: Millersville, PA, USA, 2018; pp. 139–208. [Google Scholar]
- Zhou, H.; Zhang, L.; Mao, Y.; Qu, C.; Wang, D.; Zhang, X.; Fan, X.; Li, H.; Su, K.; Liu, C. Synthesis and characterization of melt-processable polyimides derived from diaminodiphenylsulfone and benzophenone tetracarboxylic dianhydride with excellent heat resistance and thermoplasticity. J. Appl. Polym. Sci. 2021, 138, 51219. [Google Scholar] [CrossRef]
- Hong, W.; Yuan, L.; Ma, Y.; Cui, C.; Zhang, H.; Yang, S.; Sun, W.H. Resin transfer moldable fluorinated phenylethynyl-terminated imide oligomers with high tg: Structure–melt stability relationship. Polymers 2021, 13, 903. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, X.; Pan, Z.; Liu, P.; Mao, M.; Song, K.; Mao, Z.; Sun, R.; Wang, D.; Zhang, S. Superior High-Temperature Energy Density in Molecular Semiconductor/Polymer All-Organic Composites. Adv. Funct. Mater. 2023, 33, 2210050. [Google Scholar] [CrossRef]
- Ogbonna, V.E.; Popoola, O.M.; Popoola, P.I. A review on boron nitride reinforced polyimide-based nanocomposites for high-temperature capacitive energy storage: Challenges and recommendations. J. Thermoplast. Compos. Mater. 2025, 1–26. [Google Scholar] [CrossRef]
- Damaceanu, M.D. Progress on Polymers Containing Imide Rings for Advanced Technologies: A Contribution from ICMPP of the Romanian Academy. Chemistry 2022, 4, 1339–1359. [Google Scholar] [CrossRef]
- Dupont DuPontTM Kapton®, H.N. Available online: https://www.dupont.com/content/dam/electronics/amer/us/en/electronics/public/documents/en/EI-10206-Kapton-HN-Data-Sheet.pdf (accessed on 13 May 2025).
- Kyzyurov, S.A.; Borisova, M.E.; Pavlov, A.A.; Kamalov, A.M.; Didenko, A.L. Absorption Properties of Polyimide Films with Various Macromolecular Rigidity. In Proceedings of the 2024 Conference of Young Researchers in Electrical and Electronic Engineering (ElCon), Saint Petersburg, Russia, 29–30 January 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 609–612. [Google Scholar]
- Gofman, I.V.; Ivan’kova, E.M.; Abalov, I.V.; Smirnova, V.E.; Popova, E.N.; Orell, O.; Vuorinen, J.; Yudin, V.E. Effect of nanoparticles of various types as fillers on mechanical properties of block samples of a heat-resistant polyimide material: A comparative analysis. Polym. Sci. Ser. A 2016, 58, 87–94. [Google Scholar] [CrossRef]
- Thompson, J.M. Infrared Spectroscopy; Jenny Stanford Publishing: Singapore, 2018; ISBN 9781351206037. [Google Scholar]
- Eisenbach, C.D.; Gronski, W. Hydrogen bonding and phase separation in segmented polyurethane elastomers as studied by 13 C NMR magic angle spinning and FT-IR spectroscopy. Die Makromol. Chemie, Rapid Commun. 1983, 4, 707–713. [Google Scholar] [CrossRef]
- Lawrence, J.; Patel, A.; Brisson, J. The thermal conductivity of Kapton HN between 0.5 and 5 K. Cryogenics 2000, 40, 203–207. [Google Scholar] [CrossRef]
- Kamalov, A.; Didenko, A.; Ivanov, A.; Kodolova-Chukhontseva, V.; Terebova, N.; Ivan’kova, E.; Popova, E.; Yudin, V. Effect of the rigidity of polyimide matrices on the electrical conductivity of graphene-containing composites. J. Polym. Res. 2025, 32, 2. [Google Scholar] [CrossRef]
- Nagao, M.; Sawa, G.; Ieda, M. Dielectric breakdown of polyimide film in high-temperature region. Electr. Eng. Jpn. 1977, 97, 7–11. [Google Scholar] [CrossRef]
- Tong, H.; Fu, J.; Ahmad, A.; Fan, T.; Hou, Y.; Xu, J. Sulfonyl-Containing Polyimide Dielectrics with Advanced Heat Resistance and Dielectric Properties for High-Temperature Capacitor Applications. Macromol. Mater. Eng. 2019, 304, 1800709. [Google Scholar] [CrossRef]
Sample PAA | Mn, g/mol | Mw, g/mol | Ð = Mw/Mn |
---|---|---|---|
PMDA-ODA(DMAc) | 42,600 | 69,000 | 1.62 |
PMDA-ODA (DMF) | 21,300 | 52,400 | 2.46 |
PMDA-ODA (NMP) | 40,500 | 67,900 | 1.67 |
ODPA-ODA (DMAc) | 17,000 | 34,000 | 1.99 |
ODPA-ODA (DMF) | 10,000 | 19,500 | 1.94 |
ODPA-ODA (NMP) | 16,200 | 29,900 | 1.84 |
R-ODA (DMAc) | 33,600 | 52,300 | 1.56 |
R-ODA (DMF) | 27,800 | 45,800 | 1.65 |
R-ODA (NMP) | 31,500 | 50,100 | 1.59 |
Samples of solvent used in the synthesis of PAA | Density ρ, g/cm3 | |
Imidization temperature 360 °C | Imidization temperature 380 °C | |
PMDA-ODA in DMAc | 1.398 | 1.415 |
PMDA-ODA in DMF | 1.399 | 1.410 |
PMDA-ODA in NMP | 1.408 | 1.411 |
Samples of solvent used in the synthesis of PAA | Density ρ, g/cm3 | |
Imidization temperature 300 °C | Imidization temperature 340 °C | |
ODPA-ODA in DMAc | 1.356 | 1.369 |
ODPA-ODA in DMF | 1.354 | 1.371 |
ODPA-ODA in NMP | 1.355 | 1.369 |
Samples of solvent used in the synthesis of PAA | Density ρ, g/cm3 | |
Imidization temperature 300 °C | Imidization temperature 330 °C | |
R-ODA in DMAc | 1.370 | 1.354 |
R-ODA in DMF | 1.370 | 1.354 |
R-ODA in NMP | 1.371 | 1.353 |
Sample and Solvent PAA | Imidization Up to °C | Tm, °C | ΔH, J/g | Tg, o 2 Scan | Residual Weight, % | τ5, °C | τ10, °C |
---|---|---|---|---|---|---|---|
PMDA-ODA in DMAc | 360 | - | - | 383.2 | 60.9 | 586 | 600 |
380 | - | - | 382.8 | ||||
PMDA-ODA in DMF | 360 | - | - | 373.5 | 61.4 | 580 | 595 |
380 | - | - | 376.7 | ||||
PMDA-ODA in NMP | 360 | - | - | 378.1 | 59.5 | 583 | 598 |
380 | - | - | 382.9 | ||||
ODPA-ODA in DMAc | 300 | - | - | 268.4 | 59.0 | 551 | 572 |
340 | - | - | 267.0 | ||||
ODPA-ODA in DMF | 300 | - | - | 262.0 | 59.3 | 550 | 572 |
340 | - | - | 257.4 | ||||
ODPA-ODA in NMP | 300 | - | - | 265.4 | 59.4 | 550 | 572 |
340 | - | - | 267.5 | ||||
R-ODA in DMAc | 300 | - | - | 215.0 | 58.5 | 546 | 566 |
330 | 316.1 | <0.3 | 214.5 | ||||
R-ODA in DMF | 300 | - | - | 214.4 | 59.1 | 550 | 568 |
330 | 316.9 | 5.8 | 213.3 | ||||
R-ODA in NMP | 300 | - | - | 215.6 | 58.7 | 550 | 568 |
330 | 316.4 | 1.5 | 214.7 |
Solvent | Tg (tgδmax), °C | ||||
PMDA-ODA (360 °C) | PMDA-ODA (380 °C) | ODPA-ODA (300 °C) | ODPA-ODA (340 °C) | R-ODA (300 °C) | |
DMF | 354.0 | 370.0 | 237.0 | 245.1 | 192.1 |
NMP | 359.0 | 370.0 | 249.0 | 250.0 | 191.7 |
DMAc | 369.0 | 372.8 | 244.0 | 248.6 | 192.6 |
Tg (E′), °C | |||||
Solvent | PMDA-ODA (360 °C) | PMDA-ODA (380 °C) | ODPA-ODA (300 °C) | ODPA-ODA (340 °C) | R-ODA (300 °C) |
DMF | 319.0 | 349.0 | 240.0 | 235.4 | 184.8 |
NMP | 323.0 | 348.7 | 225.0 | 241.7 | 183.8 |
DMAc | 328.0 | 351.1 | 226.0 | 240.6 | 184.8 |
Sample and Solvent PAA | Imidization Up to °C | Young’s Modulus E, GPa | Strength at Break σ, MPa | Strain at Break ε, % |
---|---|---|---|---|
PMDA-ODA in NMP | 360 °C | 2.26 ± 0.01 | 97 ± 6 | 17 ± 2 |
380 °C | 2.40 ± 0.20 | 151 ± 14 | 80 ± 6 | |
PMDA-ODA in DMF | 360 °C | 1.97 ± 0.08 | 107 ± 7 | 40 ± 5 |
380 °C | 2.47 ± 0.03 | 128 ± 9 | 63 ± 7 | |
PMDA-ODA in DMAc | 360 °C | 1.76 ± 0.05 | 90 ± 5 | 27 ± 2 |
380 °C | 2.14 ± 0.30 | 168 ± 10 | 93 ± 13 | |
ODPA-ODA in NMP | 300 °C | 2.52 ± 0.16 | 109 ± 6 | 17 ± 3 |
340 °C | 2.61 ± 0.03 | 137 ± 11 | 55 ± 5 | |
ODPA-ODA in DMF | 300 °C | 3.17 ± 0.11 | 126 ± 11 | 14 ± 3 |
340 °C | 2.90 ± 0.02 | 165 ± 9 | 50 ± 3 | |
ODPA-ODA in DMAc | 300 °C | 3.02 ± 0.11 | 149 ± 10 | 103 ± 7 |
340 °C | 2.61 ± 0.02 | 125 ± 7 | 32 ± 5 | |
R-ODA in NMP | 300 °C | 2.74 ± 0.15 | 109 ±11 | 23 ± 4 |
330 °C | 2.32 ± 0.15 | 89 ± 6 | 33 ± 7 | |
R-ODA in DMF | 300 °C | 2.29 ± 0.15 | 69 ± 10 | 16 ± 4 |
330 °C | 2.78 ± 0.26 | 131 ± 13 | 11 ± 4 | |
R-ODA in DMAc | 300 °C | 2.33 ± 0.12 | 97 ± 4 | 18 ± 4 |
330 °C | 2.46 ± 0.15 | 107 ± 2 | 84 ± 9 |
Sample | Solution concentration, % | Solvent | Electrical strength, kV/mm | |
Imidization up to 360 °C | Imidization up to 360 °C | |||
PMDA-ODA | 5 | DMAc | 222 ± 8 | 239 ± 8 |
15 | DMAc | 207 ± 18 | 184 ± 12 | |
5 | DMF | 197 ± 14 | 253 ± 25 | |
15 | DMF | 252 ± 23 | 195 ± 15 | |
5 | NMP | 238 ± 14 | 200 ± 32 | |
15 | NMP | 258 ± 29 | 199 ± 19 | |
Sample | Solution concentration, % | Solvent | Electrical strength, kV/mm | |
Imidization up to 300 °C | Imidization up to 340 °C | |||
ODPA- ODA | 5 | DMAc | 250 ± 24 | 237 ± 14 |
20 | DMAc | 196 ± 10 | 191 ± 13 | |
5 | DMF | 192 ± 15 | 225 ± 16 | |
20 | DMF | 182 ± 9 | 131 ± 11 | |
5 | NMP | 193 ± 8 | 244 ± 31 | |
20 | NMP | 175 ± 8 | 191 ± 15 | |
Sample | Solution concentration, % | Solvent | Electrical strength, kV/mm | |
Imidization up to 300 °C | Imidization up to 300 °C | |||
R-ODA | 5 | DMAc | 216 ± 17 | 210 ± 19 |
20 | DMAc | 173 ± 11 | 143 ± 5 | |
5 | DMF | 178 ± 10 | 184 ± 6 | |
20 | DMF | 147 ± 6 | 195 ± 18 | |
5 | NMP | 223 ± 8 | 194 ± 7 | |
20 | NMP | 173 ± 13 | 147 ± 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazarychev, V.M.; Pavlov, A.A.; Kamalov, A.M.; Borisova, M.E.; Didenko, A.L.; Ivan’kova, E.M.; Kraft, V.E.; Vaganov, G.V.; Nikolaeva, A.L.; Ivanova, A.S.; et al. The Effect of Synthesis Conditions and Chemical Structure of Thermoplastic Polyimides on Their Thermomechanical Properties and Short-Term Electrical Strength. Polymers 2025, 17, 1385. https://doi.org/10.3390/polym17101385
Nazarychev VM, Pavlov AA, Kamalov AM, Borisova ME, Didenko AL, Ivan’kova EM, Kraft VE, Vaganov GV, Nikolaeva AL, Ivanova AS, et al. The Effect of Synthesis Conditions and Chemical Structure of Thermoplastic Polyimides on Their Thermomechanical Properties and Short-Term Electrical Strength. Polymers. 2025; 17(10):1385. https://doi.org/10.3390/polym17101385
Chicago/Turabian StyleNazarychev, Victor M., Andrey A. Pavlov, Almaz M. Kamalov, Margarita E. Borisova, Andrei L. Didenko, Elena M. Ivan’kova, Vadim E. Kraft, Gleb V. Vaganov, Alexandra L. Nikolaeva, Anna S. Ivanova, and et al. 2025. "The Effect of Synthesis Conditions and Chemical Structure of Thermoplastic Polyimides on Their Thermomechanical Properties and Short-Term Electrical Strength" Polymers 17, no. 10: 1385. https://doi.org/10.3390/polym17101385
APA StyleNazarychev, V. M., Pavlov, A. A., Kamalov, A. M., Borisova, M. E., Didenko, A. L., Ivan’kova, E. M., Kraft, V. E., Vaganov, G. V., Nikolaeva, A. L., Ivanova, A. S., Lavrentiev, V. K., Popova, E. N., Abalov, I. V., Blokhin, A. N., Bugrov, A. N., & Kudryavtsev, V. V. (2025). The Effect of Synthesis Conditions and Chemical Structure of Thermoplastic Polyimides on Their Thermomechanical Properties and Short-Term Electrical Strength. Polymers, 17(10), 1385. https://doi.org/10.3390/polym17101385