Polyaniline/ZnO Hybrid Nanocomposite: Morphology, Spectroscopy and Optimization of ZnO Concentration for Photovoltaic Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Device Preparation
2.2. Device and Thin Film Characterization
3. Results
3.1. Material’s Characterization
3.2. Current–Voltage (I-V) Characteristics
3.2.1. I-V Parameters in the Dark
Prepared Devices | ZnO (wt%) | VTO (V) | RR at (V) | n | I0 (mA) | ϕb (eV) | Rsh | Rs |
---|---|---|---|---|---|---|---|---|
Pure PANI | 0 | 1.07 | 135 at ±3.2 | 10 | 3.7 × 10−5 | 0.91 | 0.13 GΩ | 2 kΩ |
PANI/ZnO | 1 | 1.05 | 43.3 at ± 3.2 | 2.7 | 9.5 × 10−7 | 0.93 | 65 kΩ | 2 kΩ |
PANI/ZnO | 2 | 0.77 | 32.5 at ± 3.2 | 4.8 | 3.7 × 10−7 | 1.02 | 69 kΩ | 2 kΩ |
PANI/ZnO | 3 | 0.68 | 66.8 at ± 3.2 | 18.7 | 1.7 × 10−5 | 1.01 | 76 kΩ | 1 kΩ |
PANI/ZnO | 4 | 0.97 | 168 at ± 3.2 | 18.8 | 3.6 × 10−5 | 0.91 | 0.13 GΩ | 2 kΩ |
3.2.2. Illumination of I-V Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beygisangchin, M.; Rashid, S.A.; Shafie, S.; Sadrolhosseini, A.R.; Lim, H.N. Preparations, Properties, and Applications of Polyaniline and Polyaniline Thin Films—A Review. Polymers 2021, 13, 2003. [Google Scholar] [CrossRef] [PubMed]
- Czyżowska, A.; Barbasz, A. A review: Zinc oxide nanoparticles—Friends or enemies? Int. J. Environ. Health Res. 2020, 32, 885–901. [Google Scholar] [CrossRef] [PubMed]
- Droepenu, E.K.; Wee, B.S.; Chin, S.F.; Kok, K.Y.; Maligan, M.F. Zinc oxide nanoparticles synthesis methods and its effect on morphology: A review. Biointerface Res. Appl. Chem. 2022, 12, 4261–4292. [Google Scholar] [CrossRef]
- Bush, K.A.; Manzoor, S.; Frohna, K.; Yu, Z.J.; Raiford, J.A.; Palmstrom, A.F.; Wang, H.P.; Prasanna, R.; Bent, S.F.; Holman, Z.C.; et al. Minimizing Current and Voltage Losses to Reach 25% Efficient Monolithic Two-Terminal Perovskite-Silicon Tandem Solar Cells. ACS Energy Lett. 2018, 3, 2173–2180. [Google Scholar] [CrossRef]
- Guguloth, L.; Raja Shekar, P.V.; Reddy Channu, V.S.; Kumari, K. Effect of reduced fluorinated graphene oxide as ternary component on synergistically boosting the performance of polymer bulk heterojunction solar cells. Sol. Energy 2021, 225, 259–265. [Google Scholar] [CrossRef]
- Guo, Z.; Jena, A.K.; Kim, G.M.; Miyasaka, T. The high open-circuit voltage of perovskite solar cells: A review. Energy Environ. Sci. 2022, 15, 3171–3222. [Google Scholar] [CrossRef]
- Heeger, A.J. 25th Anniversary Article: Bulk Heterojunction Solar Cells: Understanding the Mechanism of Operation. Adv. Mater. 2014, 26, 10–28. [Google Scholar] [CrossRef]
- Mdluli, S.B.; Ramoroka, M.E.; Yussuf, S.T.; Modibane, K.D.; John-Denk, V.S.; Iwuoha, E.I. π-Conjugated Polymers and Their Application in Organic and Hybrid Organic-Silicon Solar Cells. Polymers 2022, 14, 716. [Google Scholar] [CrossRef]
- Meng, L.; Fan, H.; Lane, J.M.D.; Qin, Y. Bottom-Up Approaches for Precisely Nanostructuring Hybrid Organic/Inorganic Multi-Component Composites for Organic Photovoltaics. MRS Adv. 2020, 5, 2055–2065. [Google Scholar] [CrossRef]
- Wang, K.; Yi, C.; Liu, C.; Hu, X.; Chuang, S.; Gong, X. Effects of Magnetic Nanoparticles and External Magnetostatic Field on the Bulk Heterojunction Polymer Solar Cells. Sci. Rep. 2015, 5, 9265. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, J.; Bi, P.; Ren, J.; Wang, Y.; Yang, Y.; Liu, X.; Zhang, S.; Hou, J. Tandem Organic Solar Cell with 20.2% Efficiency. Joule 2022, 6, 171–184. [Google Scholar] [CrossRef]
- Ashok Kumar, S.; Shankar, J.S.; Periyasamy, B.K. Study on interfacial interactions and optoelectronic properties of MEH-PPV/SnO2 hetero-structure. Semicond. Sci. Technol. 2022, 37, 045015. [Google Scholar] [CrossRef]
- Ma, R.; Yan, C.; Yu, J.; Liu, T.; Liu, H.; Li, Y.; Chen, J.; Luo, Z.; Tang, B.; Lu, X.; et al. High-Efficiency Ternary Organic Solar Cells with a Good Figure-of-Merit Enabled by Two Low-Cost Donor Polymers. ACS Energy Lett. 2022, 7, 2547–2556. [Google Scholar] [CrossRef]
- Rashid, I.A.; Tariq, A.; Shakir, H.F.; Afzal, A.; Ali, F.; Abuzar, M.; Haider, T. Electrically conductive epoxy/polyaniline composite fabrication and characterization for electronic applications. J. Reinf. Plast. Compos. 2021, 41, 34–45. [Google Scholar] [CrossRef]
- Zhou, K.; Xian, K.; Ye, L. Morphology control in high-efficiency all-polymer solar cells. InfoMat 2022, 4, e12270. [Google Scholar] [CrossRef]
- Kausar, A. Polyaniline/graphene nanoplatelet nanocomposite towards high-end features and applications. Mater. Res. Innov. 2021, 26, 249–261. [Google Scholar] [CrossRef]
- Doustkhah, E.; Esmat, M.; Fukata, N.; Ide, Y.; Hanaor, D.A.H.; Assadi, M.H.N. MOF-derived nanocrystalline ZnO with controlled orientation and photocatalytic activity. Chemosphere 2022, 303, 134932. [Google Scholar] [CrossRef]
- Mahalingam, S.; Low, F.W.; Omar, A.; Manap, A.; Rahim, N.A.; Tan, C.H.; Abdullah, H.; Voon, C.H.; Rokhmat, M.; Wibowo, E.; et al. Zinc oxide/graphene nanocomposite as efficient photoelectrode in dye-sensitized solar cells: Recent advances and future outlook. Int. J. Energy Res. 2022, 46, 7082–7100. [Google Scholar] [CrossRef]
- Tahir, M.; Din, I.U.; Zeb, M.; Aziz, F.; Wahab, F.; Gul, Z.; Alamgeer; Sarker, M.R.; Ali, S.; Ali, S.H.M.; et al. Thin Films Characterization and Study of N749-Black Dye for Photovoltaic Applications. Coatings 2022, 12, 1163. [Google Scholar] [CrossRef]
- Islam, Z.U.; Tahir, M.; Syed, W.A.; Aziz, F.; Wahab, F.; Said, S.M.; Sarker, M.R.; Md Ali, S.H.; Sabri, M.F.M. Fabrication and Photovoltaic Properties of Organic Solar Cell Based on Zinc Phthalocyanine. Energies 2020, 13, 962. [Google Scholar] [CrossRef]
- Shahat, M.A.; Ghitas, A.; El-Hossary, F.M.; El-Rahman, A.M.A. Performance Enhancement of Organic Solar Cells via Modification of the PAni-TiO2 Interface with Hydrogen Plasma Treatment. Recent Trends Chem. Mater. Sci. 2022, 8, 72–88. [Google Scholar] [CrossRef]
- Assadi, M.H.N.; Zheng, R.K.; Li, S.; Ringer, S.R. First-principles investigation of electrical and magnetic properties of ZnO based diluted magnetic semiconductors codoped with H. J. Appl. Phys. 2012, 111, 113901. [Google Scholar] [CrossRef]
- Alkuam, E.; Mohammed, M.; Chen, T.P. Fabrication of CdS nanorods and nanoparticles with PANI for (DSSCs) dye-sensitized solar cells. Sol. Energy 2017, 150, 317–324. [Google Scholar] [CrossRef]
- Turkten, N.; Karatas, Y.; Bekbolet, M. Preparation of PANI Modified ZnO Composites via Different Methods: Structural, Morphological and Photocatalytic Properties. Water 2021, 13, 1025. [Google Scholar] [CrossRef]
- Begum, A.N.; Dhachanamoorthi, N.; Saravanan, M.E.R.; Jayamurugan, P.; Manoharan, D.; Ponnuswamy, V. Influence of annealing effects on polyaniline for good microstructural modification. Optik 2013, 124, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Kandulna, R.; Choudhary, R.B. Robust electron transport properties of PANI/PPY/ZnO polymeric nanocomposites for OLED applications. Optik 2017, 144, 40–48. [Google Scholar] [CrossRef]
- Ahmed, F.; Kumar, S.; Arshi, N.; Anwar, M.S.; Su-Yeon, L.; Kil, G.S.; Park, D.W.; Koo, B.H.; Lee, C.G. Preparation and characterizations of polyaniline (PANI)/ZnO nanocomposites film using solution casting method. Thin Solid Films 2011, 519, 8375–8378. [Google Scholar] [CrossRef]
- Patil, S.L.; Pawar, S.G.; Chougule, M.A.; Raut, B.T.; Godse, P.R.; Sen, S.; Patil, V.B. Structural, Morphological, Optical, and Electrical Properties of PANi-ZnO Nanocomposites. Int. J. Polym. Mater. 2012, 61, 809–820. [Google Scholar] [CrossRef]
- Uddin, S.I.; Tahir, M.; Aziz, F.; Sarker, M.R.; Muhammad, F.; Khan, D.N.; Ali, S.H.M. Thickness Optimization and Photovoltaic Properties of Bulk Heterojunction Solar Cells Based on PFB–PCBM Layer. Energies 2020, 13, 5915. [Google Scholar] [CrossRef]
- Zeb, M.; Tahir, M.; Muhammad, F.; Mohd Said, S.; Mohd Sabri, M.F.; Sarker, M.R.; Hamid Md Ali, S.; Wahab, F. Amplified Spontaneous Emission and Optical Gain in Organic Single Crystal Quinquethiophene. Crystals 2019, 9, 609. [Google Scholar] [CrossRef]
- El-Zaidia, E.F.M.; Darwish, A.A.A. Electronic properties and photovoltaic performance of VONc-ZnO hybrid junction solar cells. Synth. Met. 2020, 259, 116227. [Google Scholar] [CrossRef]
- Zaidan, K.M.; Hussein, H.F.; Talib, R.A.; Hassan, A.K. Synthesis and characterization of (Pani/n-si)solar cell. Energy Procedia 2011, 6, 85–91. [Google Scholar] [CrossRef]
- El-Nahass, M.M.; Abd-El-Rahman, K.F.; Farag, A.A.M.; Darwish, A.A.A. Photovoltaic properties of NiPc/p-Si (organic/inorganic) heterojunctions. Org. Electron. 2005, 6, 129–136. [Google Scholar] [CrossRef]
- Oosterhout, S.D.; Wienk, M.M.; Van Bavel, S.S.; Thiedmann, R.; Jan Anton Koster, L.; Gilot, J.; Loos, J.; Schmidt, V.; Janssen, R.A.J. The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells. Nat. Mater. 2009, 8, 818–824. [Google Scholar] [CrossRef]
- Nguyen, B.P.; Kim, T.; Park, C.R. Nanocomposite-based bulk heterojunction hybrid solar cells. J. Nanomater. 2014, 2014, 26. [Google Scholar] [CrossRef]
- Gunasekar, K.; Chakravarthi, N.; Cho, W.; Lee, J.W.; Kim, S.W.; Cha, S.H.; Kotov, N.A.; Jin, S.H. Optimization of polymer solar cells performance by incorporated scattering of ZnO nanoparticles with different particle geometry. Synth. Met. 2015, 205, 185–189. [Google Scholar] [CrossRef]
Peaks (cm−1) | Bonds Nature/Dynamics |
---|---|
545 | Zn-O Stretch Vibration |
647 | C-H Out-of-Plane Bend in Benzenoid Ring |
721 | C-H Out-of-Plane Bend in Benzenoid Ring |
810 | C-H Out-of-Plane Bend in Benzenoid Ring |
1000 | C-O Stretch |
1305 | PANI/ZnO Spectra |
1475 | C-H Bend or In-Plane Bend |
1546 | C=C Stretch of Quinoid Ring |
1646 | C=N Stretch of Quinoid Ring |
2840 | C-H Stretch |
2908 | C-H Stretch |
3375 | O-H Stretch |
Material | Element | Weight % | Atomic % |
---|---|---|---|
PANI | C K | 88.86 | 89.97 |
N K | 11.32 | 10.03 | |
ZnO | O K | 18.64 | 48.95 |
Zn L | 81.36 | 51.05 | |
PANI/ZnO | C K | 40.12 | 44.86 |
N K | 7.48 | 6.62 | |
O K | 18.31 | 48.08 | |
Zn L | 33.56 | 21.05 |
Prepared Devices | ISC (mA) | VOC (V) | FF (%) | PMax (W) | η (%) |
---|---|---|---|---|---|
Pure PANI | 6.8 | 0.68 | 67 | 3.14 | 3.10 ± 0.5 |
PANI:ZnO 1 wt% | 7 | 0.68 | 65 | 3.13 | 3.09 ± 0.5 |
PANI:ZnO 2 wt% | 7.5 | 0.69 | 69 | 3.57 | 3.57 ± 0.5 |
PANI:ZnO 3 wt% | 8.9 | 0.7 | 72 | 4.48 | 4.48 ± 0.5 |
PANI:ZnO 4 wt% | 8.21 | 0.7 | 71 | 4.09 | 4.08 ± 0.5 |
Device Structure | Matrix | Dopant | PCE (%) | References |
---|---|---|---|---|
ITO/PEDOT:SS/P3HT:ZnO(1:1)/Al | P3HT | ZnO | 2.0 | [34] |
ITO/PEDOT:SS/PCPDTBT:CdSe(9:1)/Lif/Al | PCPDTBT | CdSe | 3.20 | [35] |
ITO/PEDOT:PSS/P3HT:PC71BM:ZnO NS(1:0.8:3)/LiF/Al | P3HT:PC71BM | ZnO | 3.81 | [36] |
ITO/P3HT/PANI/ZnO(1:3)/Ag | PANI | ZnO | 4.48 | Present work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alamgeer; Tahir, M.; Sarker, M.R.; Ali, S.; Ibraheem; Hussian, S.; Ali, S.; Imran Khan, M.; Khan, D.N.; Ali, R.; et al. Polyaniline/ZnO Hybrid Nanocomposite: Morphology, Spectroscopy and Optimization of ZnO Concentration for Photovoltaic Applications. Polymers 2023, 15, 363. https://doi.org/10.3390/polym15020363
Alamgeer, Tahir M, Sarker MR, Ali S, Ibraheem, Hussian S, Ali S, Imran Khan M, Khan DN, Ali R, et al. Polyaniline/ZnO Hybrid Nanocomposite: Morphology, Spectroscopy and Optimization of ZnO Concentration for Photovoltaic Applications. Polymers. 2023; 15(2):363. https://doi.org/10.3390/polym15020363
Chicago/Turabian StyleAlamgeer, Muhammad Tahir, Mahidur R. Sarker, Shabina Ali, Ibraheem, Shahid Hussian, Sajad Ali, Muhammad Imran Khan, Dil Nawaz Khan, Rashid Ali, and et al. 2023. "Polyaniline/ZnO Hybrid Nanocomposite: Morphology, Spectroscopy and Optimization of ZnO Concentration for Photovoltaic Applications" Polymers 15, no. 2: 363. https://doi.org/10.3390/polym15020363
APA StyleAlamgeer, Tahir, M., Sarker, M. R., Ali, S., Ibraheem, Hussian, S., Ali, S., Imran Khan, M., Khan, D. N., Ali, R., & Mohd Said, S. (2023). Polyaniline/ZnO Hybrid Nanocomposite: Morphology, Spectroscopy and Optimization of ZnO Concentration for Photovoltaic Applications. Polymers, 15(2), 363. https://doi.org/10.3390/polym15020363