A High-Frequency-Compatible Miniaturized Bandpass Filter with Air-Bridge Structures Using GaAs-Based Integrated Passive Device Technology
Abstract
1. Introduction
2. Materials and Methods
2.1. Equivalent Circuit
2.2. Current Density
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Su, L.; Naqui, J.; Mata-Contreras, J.; Martin, F. Miniature microwave notch filters and comparators based on transmission lines loaded with stepped impedance resonators (SIRs). Micromachines 2015, 7, 1–10. [Google Scholar] [CrossRef]
- Liang, L.G.; Wang, C.; Kim, N.Y. Dual-band ultra-wideband bandpass filter with eight-resonant modes and quad-transmission zeros employing synchronous-quasi-resonance. Radioengineering 2017, 26, 713–720. [Google Scholar] [CrossRef]
- Liang, L.G.; Wang, C.; Kim, N.Y. Implementation of ultra-wideband bandpass filter with modularized design based on synchronous-quasi-resonance and double-curved-route. IET Microw. Antennas Propag. 2018. [Google Scholar] [CrossRef]
- White, J.F. High Frequency Techniques: An Introduction to RF and Microwave Design and Computer Simulation, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2004; pp. 335–398. ISBN 978-0-471-45591-2. [Google Scholar]
- Hong, J.S.; Lancaster, M.J. Microstrip Filters for RF/microwave Applications, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2001; pp. 1–6. ISBN 0-471-22161-9. [Google Scholar]
- Sebastian, M.T.; Jantunen, H. Low loss dielectric materials for LTCC applications: A review. Int. Mate. Rev. 2008, 53, 57–90. [Google Scholar] [CrossRef]
- Simon, R.W.; Hammond, R.B.; Berkowitz, S.J.; Willemsen, B.A. Superconducting microwave filter systems for cellular telephone base stations. Proc. IEEE 2004, 92, 1585–1596. [Google Scholar] [CrossRef]
- Yao, J.J. RF MEMS from a device perspective. J. Micromech. Microeng. 2000, 10, R9. [Google Scholar] [CrossRef]
- Kunze, M.; Heinrich, W. Hybrid dynamic-quasi-static finite-difference analysis of MMIC components with non-ideal conductivity. AEU-Int. J. Electron. Commun. 2003, 57, 137–146. [Google Scholar] [CrossRef]
- Bowick, C. RF Circuit Design, 2nd ed.; Elsevier: New York, NY, USA, 2007; pp. 37–62. ISBN 978-0-750-68518-4. [Google Scholar]
- Hsu, C.Y.; Chen, C.Y.; Chuang, H.R. A 77-GHz CMOS on-chip bandpass filter with balanced and unbalanced outputs. IEEE Electron Device Lett. 2010, 31, 1205–1207. [Google Scholar] [CrossRef]
- Yang, Y.; Zhu, H.; Zhu, X.; Xue, Q. A Low-loss bandpass filter using edge-coupled resonator with capacitive feeding in (Bi)-CMOS technology. IEEE Electron Device Lett. 2018, 39, 787–790. [Google Scholar] [CrossRef]
- Nan, L.; Mouthaan, K.; Xiong, Y.Z.; Shi, J.L.; Rustaagi, S.C.; Ooi, B.L. Design of 60-and 77-GHz narrow-bandpass filters in CMOS technology. IEEE Trans. Circuits Syst. 2008, 55, 738–742. [Google Scholar] [CrossRef]
- Pant, R.; Marpaung, D.; Kabakova, I.V.; Morrison, B.; Poulton, C.G.; Eggleton, B.J. On-chip stimulated Brillouin Scattering for microwave signal processing and generation. Laser Photon. Rev. 2014, 8, 653–666. [Google Scholar] [CrossRef]
- Zhang, W.; Minasian, R.A. Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering. IEEE Photon. Technol. Lett. 2011, 23, 1775–1777. [Google Scholar] [CrossRef]
- Casas-Bedoya, A.; Morrison, B.; Pagani, M.; Marpaung, D.; Eggleton, B.J. Tunable narrowband microwave photonic filter created by stimulated Brillouin scattering from a silicon nanowire. Opt. Lett. 2015, 40, 4154–4157. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.H. Enhancement of 5 GHz on-chip bandpass filter performance by using CMOS-MEMS inductors. Microsyst. Technol. 2018, 24, 2371–2377. [Google Scholar] [CrossRef]
- Jafari, B.; Sheikhaei, S. Pseudo-impulse tail current shaping for phase noise reduction in CMOS LC oscillators. Microelectron. J. 2018, 74, 60–68. [Google Scholar] [CrossRef]
- Jeon, H.; Kim, N.Y. A compact quadrature coupler on GaAs IPD process for LTE applications. IEICE Electron. Express 2013, 10, 20130386. [Google Scholar] [CrossRef]
- Wang, C.; Kim, N.Y. Analytical optimization of high-performance and high-yield spiral inductor in integrated passive device technology. Microelectron. J. 2012, 43, 176–181. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Kim, N.Y. A high performance compact Wilkinson power divider using GaAs-based optimized integrated passive device fabrication process for LTE application. Solid-State Electron. 2015, 103, 147–153. [Google Scholar] [CrossRef]
- Kim, E.S.; Kim, N.Y. Micro-fabricated resonator based on inscribing a meandered-line coupling capacitor in an air-bridged circular spiral inductor. Micromachines 2018, 9, 294. [Google Scholar] [CrossRef]
- Haobijam, G.; Palathinkal, R.P. Design and Analysis of Spiral Inductors, 1st ed.; Springer: New York, NY, USA, 2013; pp. 21–51. ISBN 978-81-322-1514-1. [Google Scholar]
- Choi, B.H.; Jin, Z.J.; Kim, M.G.; Sun, H.; Yun, T.Y. Equivalent-circuit model based on mathematical analysis for multilayer chip inductors. IET Microw. Antennas Propag. 2008, 2, 378–382. [Google Scholar] [CrossRef]
- Aryan, N.P. Design and Modeling of Inductors, Capacitors and Coplanar Waveguides at Tens of GHz Frequencies., 1st ed.; Springer: New York, NY, USA, 2014; pp. 19–34. ISBN 978-3-319-10187-3. [Google Scholar]
- Pakasiri, C.; Hsu, K.C.; Wang, S. Low-loss and highly-selective differential bandpass filter on integrated passive device process. Microw. Opt. Technol. Lett. 2018, 60, 970–975. [Google Scholar] [CrossRef]
- Sitaraman, S.; Sukumaran, V.; Pulugurtha, M.R.; Wu, Z.; Suzuki, Y.; Kim, Y.; Sundaram, V.; Kim, J.; Tummala, R.R. Miniaturized bandpass filters as ultrathin 3-D IPDs and embedded thinfilms in 3-D glass modules. IEEE Trans. Compon. Packag. Manuf. Technol. 2017, 7, 1410–1418. [Google Scholar] [CrossRef]
- Li, C.H.; Yu, M.C.; Lin, H.J. A compact 0.9-/2.6-GHz dual-band RF energy harvester using SiP technique. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 666–668. [Google Scholar] [CrossRef]
- Wong, K.W.; Mansour, R.R.; Weale, G. Reconfigurable bandstop and bandpass filters with wideband balun using IPD technology for frequency agile applications. IEEE Trans. Compon. Packag. Manuf. Technol. 2017, 7, 610–620. [Google Scholar] [CrossRef]
Parameter | a | b | c | d | e | f | rin |
---|---|---|---|---|---|---|---|
Unit (μm) | 20 | 15 | 1178.5 | 970 | 60 | 258.7 | 300 |
Parameter | a | b | c | d | e | f | rin |
---|---|---|---|---|---|---|---|
Unit (μm) | 16 | 19 | 1174.5 | 966 | 64 | 254.7 | 300 |
Parameter | a | b | c | d | e | f | rin |
---|---|---|---|---|---|---|---|
Unit (μm) | 20 | 15 | 1178.5 | 970 | N/A | 258.7 | 300 |
Terms | (GHz) | (GHz) | (GHz) | (GHz) | (GHz) | FBW (%) | (GHz) |
---|---|---|---|---|---|---|---|
250 μm | 2.026 | 2.749 | 1.303 | 2.749 | 1.893 | 76.401 | 5.066 |
275 μm | 1.929 | 2.625 | 1.234 | 2.625 | 1.800 | 77.233 | 4.703 |
300 μm | 1.834 | 2.519 | 1.148 | 2.519 | 1.701 | 80.581 | 4.474 |
325 μm | 1.775 | 2.451 | 1.099 | 2.451 | 1.641 | 82.397 | 4.315 |
350 μm | 1.694 | 2.352 | 1.037 | 2.352 | 1.562 | 84.232 | 4.063 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.-J.; Kim, E.-S.; Liang, J.-G.; Qiang, T.; Kim, N.-Y. A High-Frequency-Compatible Miniaturized Bandpass Filter with Air-Bridge Structures Using GaAs-Based Integrated Passive Device Technology. Micromachines 2018, 9, 463. https://doi.org/10.3390/mi9090463
Wang Z-J, Kim E-S, Liang J-G, Qiang T, Kim N-Y. A High-Frequency-Compatible Miniaturized Bandpass Filter with Air-Bridge Structures Using GaAs-Based Integrated Passive Device Technology. Micromachines. 2018; 9(9):463. https://doi.org/10.3390/mi9090463
Chicago/Turabian StyleWang, Zhi-Ji, Eun-Seong Kim, Jun-Ge Liang, Tian Qiang, and Nam-Young Kim. 2018. "A High-Frequency-Compatible Miniaturized Bandpass Filter with Air-Bridge Structures Using GaAs-Based Integrated Passive Device Technology" Micromachines 9, no. 9: 463. https://doi.org/10.3390/mi9090463
APA StyleWang, Z.-J., Kim, E.-S., Liang, J.-G., Qiang, T., & Kim, N.-Y. (2018). A High-Frequency-Compatible Miniaturized Bandpass Filter with Air-Bridge Structures Using GaAs-Based Integrated Passive Device Technology. Micromachines, 9(9), 463. https://doi.org/10.3390/mi9090463