Research on Micro-Displacement Measurement Accuracy Enhancement Method Based on Ensemble NV Color Center
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parali, L.; Pechousek, J.; Şabikoğlu, I.; Novak, P.; Navarik, J.; Vujtek, M. A digital measurement system based on laser displacement sensor for piezoelectric ceramic discs vibration characterization. Optik 2016, 127, 84–89. [Google Scholar] [CrossRef]
- Braunsmann, C.; Proksch, R.; Revenko, I.; Schäffer, T.E. Creep compliance mapping by atomic force microscopy. Polymer 2014, 55, 219–225. [Google Scholar] [CrossRef]
- Jiang, C.-S.; Repins, I.; Beall, C.; Moutinho, H.; Ramanathan, K.; Al-Jassim, M. Investigation of micro-electrical properties of Cu2ZnSnSe4 thin films using scanning probe microscopy. Sol. Energy Mater. Sol. Cells 2015, 132, 342–347. [Google Scholar] [CrossRef][Green Version]
- Wang, C.; Xu, L.-L.; Zhu, J.; Yuan, Z.-W.; Yu, Y.-J.; Asundi, A.K. A novel integrated fiber-optic interferometer model and its application in micro-displacement measurement. Opt. Lasers Eng. 2016, 86, 125–131. [Google Scholar] [CrossRef]
- Li, X.; Wang, R.; Du, H.; Lu, Y. Three-dimensional micro-displacement measurement method based on capacitance-grating sensor. Measurement 2021, 187, 110179. [Google Scholar] [CrossRef]
- Zhao, R.; Li, X.; Sun, P.; Tang, Y.; Jiao, P.; Huang, Y.; Jia, J. Image Spherizing-Based Three-Dimensional Displacement Measurement Technique for Microscope with Single Camera. Photonics 2022, 9, 148. [Google Scholar] [CrossRef]
- Liu, Y.-T.; Li, B.-J. A 3-axis precision positioning device using PZT actuators with low interference motions. Precis. Eng. 2016, 46, 118–128. [Google Scholar] [CrossRef]
- Peng, Y.; Ito, S.; Shimizu, Y.; Azuma, T.; Gao, W.; Niwa, E. A Cr-N thin film displacement sensor for precision positioning of a micro-stage. Sens. Actuators A-Phys. 2014, 211, 89–97. [Google Scholar] [CrossRef]
- Doherty, M.W.; Manson, N.B.; Delaney, P.; Jelezko, F.; Wrachtrup, J.; Hollenberg, L.C. The nitrogen-vacancy colour centre in diamond. Phys. Rep.-Rev. Sec. Phys. Lett. 2013, 528, 1–45. [Google Scholar] [CrossRef][Green Version]
- Suter, D.; Jelezko, F. Single-spin magnetic resonance in the nitrogen-vacancy center of diamond. Prog. Nucl. Magn. Reson. Spectrosc. 2017, 98-99, 50–62. [Google Scholar] [CrossRef][Green Version]
- Luo, M.-X.; Li, H.-R.; Lai, H.; Wang, X. Quantum Computation Based on Photons with Three Degrees of Freedom. Sci. Rep. 2016, 6, 25977. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Doherty, M.W.; Acosta, V.M.; Jarmola, A.; Barson, M.S.; Manson, N.B.; Budker, D.; Hollenberg, L.C. Temperature shifts of the resonances of the NV-center in diamond. Phys. Rev. B 2014, 90, 5. [Google Scholar] [CrossRef][Green Version]
- Zhang, C.; Yuan, H.; Zhang, N.; Xu, L.; Zhang, J.; Li, B.; Fang, J. Vector magnetometer based on synchronous manipulation of nitrogen-vacancy centers in all crystal directions. J. Phys. D-Appl. Phys. 2018, 51, 12. [Google Scholar] [CrossRef]
- Zhao, M.; Lin, Q.; Zhu, L.; Zhao, L.; Jiang, Z. Antenna for microwave manipulation of NV colour centres. Micro Nano Lett. 2020, 15, 793–796. [Google Scholar] [CrossRef]
- Backlund, M.P.; Kehayias, P.; Walsworth, R.L. Diamond-Based Magnetic Imaging with Fourier Optical Processing. Phys. Rev. Appl. 2017, 8, 11. [Google Scholar] [CrossRef][Green Version]
- Rondin, L.; Tetienne, J.-P.; Hingant, T.; Roch, J.-F.; Maletinsky, P.; Jacques, V. Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys. 2014, 77, 26. [Google Scholar] [CrossRef][Green Version]
- Freeman, M.R.; Choi, B.C. Advances in Magnetic Microscopy. Science 2001, 294, 1484–1488. [Google Scholar] [CrossRef][Green Version]
- Blakley, S.M.; Fedotov, I.V.; Amitonova, L.V.; Serebryannikov, E.E.; Perez, H.; Kilin, S.Y.; Zheltikov, A.M. Fiber-optic vectorial magnetic-field gradiometry by a spatiotemporal differential optical detection of magnetic resonance in nitrogen-vacancy centers in diamond. Opt. Lett. 2016, 41, 2057–2060. [Google Scholar] [CrossRef]
- Nie, Y.; Huang, K.; Cheng, L.; Cui, J.; Li, J.; Heng, L. Manipulation of Spin Polarization Using NV Ensemble in Diamond for Precision Displacement Detection with an Adjustable Sensitivity. IEEE Sens. J. 2020, 21, 5961–5966. [Google Scholar] [CrossRef]
- Fescenko, I.; Jarmola, A.; Savukov, I.; Kehayias, P.; Smits, J.; Damron, J.; Ristoff, N.; Mosavian, N.; Acosta, V.M. Diamond magnetometer enhanced by ferrite flux concentrators. Phys. Rev. Res. 2020, 2, 023394. [Google Scholar] [CrossRef]
- Leroy, P.; Coillot, C.; Roux, A.; Chanteur, G. High magnetic field amplification for improving the sensitivity of Hall sensors. IEEE Sens. J. 2006, 6, 707–713. [Google Scholar] [CrossRef]
- Wang, L.; Guo, H.; Chen, Y.-L.; Wu, D.-J.; Zhao, R.; Liu, W.-Y.; Li, C.-M.; Xia, M.-J.; Zhao, B.-B.; Zhu, Q.; et al. A method of measuring micro-displacement based on spin magnetic resonance effect of diamond color center. Acta Phys. Sin. 2018, 67, 8. [Google Scholar] [CrossRef]
- Wang, X.; Zheng, D.; Wang, X.; Liu, X.; Wang, Q.; Zhao, J.; Guo, H.; Qin, L.; Tang, J.; Ma, Z.; et al. Portable Diamond NV Magnetometer Head Integrated with 520 nm Diode Laser. IEEE Sens. J. 2022, 22, 5580–5587. [Google Scholar] [CrossRef]
- Fu, K.-M.; Santori, C.; Barclay, P.; Beausoleil, R.G. Conversion of neutral nitrogen-vacancy centers to negatively charged nitrogen-vacancy centers through selective oxidation. Appl. Phys. Lett. 2010, 96, 3. [Google Scholar] [CrossRef][Green Version]
- Bluvstein, D.; Zhang, Z.; Jayich, A.C.B. Identifying and Mitigating Charge Instabilities in Shallow Diamond Nitrogen-Vacancy Centers. Phys. Rev. Lett. 2019, 122, 7. [Google Scholar] [CrossRef][Green Version]
- Ma, Y.; Rohlfing, M.; Gali, A. Excited states of the negatively charged nitrogen-vacancy color center in diamond. Phys. Rev. B 2010, 81, 4. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, C.; Xu, L.; Ding, M.; Quan, W.; Tang, Z.; Yuan, H. Microwave Magnetic Field Coupling with Nitrogen-Vacancy Center Ensembles in Diamond with High Homogeneity. Appl. Magn. Reson. 2016, 47, 589–599. [Google Scholar] [CrossRef]
- Wang, C.J.; Shi, F.Z.; Wang, P.F.; Duan, C.K.; Du, J.F. Nanoscale magnetic field sensing and imaging based on nitrogen-vacancy center in diamond. Acta Phys. Sin. 2018, 67, 9. [Google Scholar]
- Liu, D.Q.; Chang, Y.C.; Liu, G.Q.; Pan, X.Y. Electron spin studies of nitrogen vacancy centers in nanodiamonds. Acta Phys. Sin. 2013, 62, 5. [Google Scholar]
- Matsuzaki, Y.; Shimo-Oka, T.; Tanaka, H.; Tokura, Y.; Semba, K.; Mizuochi, N. Hybrid quantum magnetic-field sensor with an electron spin and a nuclear spin in diamond. Phys. Rev. A 2016, 94, 6. [Google Scholar] [CrossRef][Green Version]
- Balasubramanian, G.; Chan, I.Y.; Kolesov, R.; Al-Hmoud, M.; Tisler, J.; Shin, C.; Kim, C.; Wojcik, A.; Hemmer, P.R.; Krueger, A.; et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 2008, 455, 648–651. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Doherty, M.W.; Dolde, F.; Fedder, H.; Jelezko, F.; Wrachtrup, J.; Manson, N.B.; Hollenberg, L.C.L. Theory of the ground-state spin of the NV− center in diamond. Phys. Rev. B 2012, 85, 21. [Google Scholar] [CrossRef][Green Version]
- Vagin, D.V.; Gerasimenko, T.N.; Polyakov, P.A. Exact analytical expression for magnetic field induction of rectangular shape sample. Mosc. Univ. Phys. Bull. 2008, 63, 422–424. [Google Scholar] [CrossRef]
- Li, Z.-H.; Wang, T.-Y.; Guo, Q.; Guo, H.; Wen, H.-F.; Tang, J.; Liu, J. Enhancement of magnetic detection by ensemble NV color center based on magnetic flux concentration effect. Acta Phys. Sin. 2021, 70. [Google Scholar] [CrossRef]
- Ma, J.; Yang, W.M.; Li, J.W.; Wang, M.; Chen, S.L. The effects of magnetization methods with additional permanent magnet on the magnetic field distribution and levitation force of single domain GdBCO bulk superconductor. Acta Phys. Sin. 2012, 61, 6. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Li, Z.; Zhang, H.; Guo, H.; Shi, Z.; Ma, Z. Research on Micro-Displacement Measurement Accuracy Enhancement Method Based on Ensemble NV Color Center. Micromachines 2023, 14, 938. https://doi.org/10.3390/mi14050938
Liu Y, Li Z, Zhang H, Guo H, Shi Z, Ma Z. Research on Micro-Displacement Measurement Accuracy Enhancement Method Based on Ensemble NV Color Center. Micromachines. 2023; 14(5):938. https://doi.org/10.3390/mi14050938
Chicago/Turabian StyleLiu, Yuqi, Zhonghao Li, Hao Zhang, Hao Guo, Ziyang Shi, and Zongmin Ma. 2023. "Research on Micro-Displacement Measurement Accuracy Enhancement Method Based on Ensemble NV Color Center" Micromachines 14, no. 5: 938. https://doi.org/10.3390/mi14050938
APA StyleLiu, Y., Li, Z., Zhang, H., Guo, H., Shi, Z., & Ma, Z. (2023). Research on Micro-Displacement Measurement Accuracy Enhancement Method Based on Ensemble NV Color Center. Micromachines, 14(5), 938. https://doi.org/10.3390/mi14050938