Endogenous Sphingolipid Signaling Pathway Implicated in the Action of Croton membranaceus on the Prostate Gland in BPH Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Site
2.2. Ethical Issues
2.3. Methods
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Chapman, J.V.; Gouazé-Andersson, V.; Messner, M.C.; Flowers, M.; Karimi, R.; Kester, M.; Barth, B.M.; Liu, X.; Liu, Y.Y.; Giuliano, A.E.; et al. Metabolism of short-chain ceramide by human cancer cells--Implications for therapeutic approaches. Biochem. Pharmacol. 2010, 80, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Brizuela, L.; Martin, C.; Jeannot, P.; Ader, I.; Gstalder, C.; Andrieu, G.; Bocquet, M.; Laffosse, J.M.; Gomez-Brouchet, A.; Malavaud, B.; et al. Osteoblast-derived sphingosine 1-phosphate to induce proliferation and confer resistance to therapeutics to bone metastasis-derived prostate cancer cells. Mol. Oncol. 2014, 8, 1181–1195. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.M.; Mahon, K.L.; Weir, J.M.; Mundra, P.A.; Spielman, C.; Briscoe, K.; Gurney, H.; Mallesara, G.; Marx, G.; Stockler, M.R.; et al. A distinct plasma lipid signature associated with poor prognosis in castration-resistant prostate cancer. Int. J. Cancer 2017. [Google Scholar] [CrossRef] [PubMed]
- Pyne, N.J.; Pyne, S. Sphingosine 1-phosphate and cancer. Nat. Rev. Cancer 2010, 10, 489–503. [Google Scholar] [CrossRef] [PubMed]
- Ueda, N. Ceramide-induced apoptosis in renal tubular cells: A role of mitochondria and sphingosine-1-phoshate. Int. J. Mol. Sci. 2015, 16, 5076–5124. [Google Scholar] [CrossRef] [PubMed]
- Colombini, M. Ceramide channels and their role in mitochondria-mediated apoptosis. Biochim. Biophys. Acta 2010, 1797, 1239–1244. [Google Scholar] [CrossRef] [PubMed]
- Hannun, Y.A.; Luberto, C.; Argraves, K.M. Enzymes of sphingolipid metabolism: From modular to integrative signaling. Biochemistry 2001, 40, 4893–4903. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Muñoz, A.; Kong, J.; Parhar, K.; Wang, S.; Gangoiti, P.; González, M.; Eivemark, S.; Salh, B.; Duronio, V.; Steinbrecher, U. Ceramide-1-phosphate promotes cell survival through activation of the phosphatidylinositol 3-kinase/protein kinase B pathway. FEBS Lett. 2005, 579, 3744–3750. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Sugiura, M.; Nava, V.E.; Edsall, L.C.; Kono, K.; Poulton, S.; Milstien, S.; Kohama, T.; Spiegel, S. Molecular cloning and functional characterization of a novel mammalian sphingosine kinase type 2 isoform. J. Biol. Chem. 2000, 275, 19513–19520. [Google Scholar] [CrossRef] [PubMed]
- Mandala, S.M.; Thornton, R.; Galve-Roperh, I.; Poulton, S.; Peterson, C.; Olivera, A.; Bergstrom, J.; Kurtz, M.B.; Spiegel, S. Molecular cloning and characterization of a lipid phosphohydrolase that degrades sphingosine-1-phosphate and induces cell death. Proc. Natl. Acad. Sci. USA 2000, 97, 7859–7864. [Google Scholar] [CrossRef] [PubMed]
- Le Stunff, H.; Peterson, C.; Liu, H.; Milstien, S. Sphingosine-1-phosphate and lipid phosphohydrolases. Biochim. Biophys. Acta 2002, 1582, 8–17. [Google Scholar] [CrossRef]
- Van Veldhoven, P.P.; Mannaerts, G.P. Sphingosine-phosphate lyase. Adv. Lipid Res. 1993, 26, 69–98. [Google Scholar] [PubMed]
- Neubauer, H.A.; Pitson, S.M. Roles, regulation and inhibitors of sphingosine kinase 2. FEBS J. 2013, 280, 5317–5336. [Google Scholar] [CrossRef] [PubMed]
- Olivera, A.; Rosenfeldt, H.M.; Bektas, M.; Wang, F.; Ishii, I.; Chun, J.; Milstien, S.; Spiegel, S. Sphingosine kinase type 1 induces G12/13 mediated stress fiber formation, yet promotes growth and survival independent of G protein-coupled receptors. J. Biol. Chem. 2003, 278, 46452–46460. [Google Scholar] [CrossRef] [PubMed]
- Hait, N.C.; Oskeritziana, C.A.; Paugha, S.W.; Milstienb, S.; Spiegela, S. Sphingosine kinases, sphingosine 1-phosphate, apoptosis and diseases. Biochim. Biophys. Acta 2006, 1758, 2016–2026. [Google Scholar] [CrossRef] [PubMed]
- Alshaker, H.; Sauer, L.; Monteil, D.; Ottaviani, S.; Srivats, S.; Böhler, T.; Pchejetski, D. Therapeutic Potential of Targeting SK1 in Human Cancers. Adv. Cancer Res. 2013, 117, 143–200. [Google Scholar] [PubMed]
- Heffernan-Stroud, L.A.; Helke, K.L.; Jenkins, R.W.; De Costa, A.M.; Hannun, Y.A.; Obeid, L.M. Defining a role for sphingosine kinase 1 in p53-dependent tumors. Oncogene 2012, 31, 1166–1175. [Google Scholar] [CrossRef] [PubMed]
- Brizuela, L.; Ader, I.; Mazerolles, C.; Bocquet, M.; Malavaud, B.; Cuvillier, O. First evidence of sphingosine 1-phosphate lyase protein expression and activity downregulation in human neoplasm: Implication for resistance to therapeutics in prostate cancer. Mol. Cancer Ther. 2012, 11, 1841–1851. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, N.; Okada, T.; Hayashi, S.; Fujita, T.; Jahangeer, S.; Nakamur, S. Sphingosine kinase 2 is a nuclear protein and inhibits DNA synthesis. J. Biol. Chem. 2003, 278, 46832–46839. [Google Scholar] [CrossRef] [PubMed]
- Strub, G.M.; Maceyka, M.; Hait, N.C.; Milstien, S.; Spiegela, S. Extracellular and Intracellular Actions of Sphingosine-1-Phosphate. Adv. Exp. Med. Biol. 2010, 688, 141–155. [Google Scholar] [PubMed]
- Maceyka, M.; Sankala, H.; Hait, N.C.; Le Stunff, H.; Liu, H.; Toman, R.; Collier, C.; Zhang, M.; Satin, L.S.; Merrill, A.H., Jr.; et al. SphK1 and SphK2, sphingosine kinase isoenzymes with opposing functions in sphingolipid metabolism. J. Biol. Chem. 2005, 280, 37118–37129. [Google Scholar] [CrossRef] [PubMed]
- Schrecengost, R.S.; Keller, S.N.; Schiewer, M.J.; Knudsen, K.E.; Smith, C.D. Downregulation of Critical Oncogenes by the Selective SK2 Inhibitor ABC294640 Hinders Prostate Cancer Progression. Mol. Cancer Res. 2015. [Google Scholar] [CrossRef] [PubMed]
- Antoon, J.W.; White, M.D.; Slaughter, E.M.; Driver, J.L.; Khalili, H.S.; Elliott, S.; Smith, C.D.; Burow, M.E.; Beckman, B.S. Targeting NFkB mediated breast cancer chemoresistance through selective inhibition of sphingosine kinase-2. Cancer Biol. Ther. 2011, 11, 678–689. [Google Scholar] [CrossRef] [PubMed]
- Azimi, H.; Khakshur, A.A.; Aghdasi, I.; Fallah-Tafti, M.; Abdollahi, M. A review of animal and human studies for management of benign prostatic hyperplasia with natural products: Perspective of new pharmacological agents. Inflamm. Allergy Drug Targets 2012, 11, 207–221. [Google Scholar] [CrossRef] [PubMed]
- Afriyie, D.K.; Asare, G.A.; Bugyei, K.; Lin, J.; Peng, J.; Hong, Z. Mitochondria-dependent apoptogenic activity of aqueous root extract of Croton membranaceus against human BPH-1 cells. Genet. Mol. Res. 2014, 1, 149–162. [Google Scholar] [CrossRef] [PubMed]
- Bayor, M. The Anticancer and Other Bioactivity Investigations on the Extract and Some Compounds of Croton membranaceus (Euphobiaceae). Ph.D Thesis, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana, 2008. [Google Scholar]
- Nickel, J.C.; Shoskes, D.; Roehrborn, C.G.; Moyad, M. Nutraceuticals in Prostate Disease: The Urologist’s Role. Rev. Urol. 2008, 10, 192–206. [Google Scholar]
- Afriyie, D.K.; Asare, G.A.; Bugyei, K.; Lin, J.-M.; Peng, J.; Hong, Z.-F. Treatment of benign prostatic hyperplasia with Croton membranaceus in an experimental animal model. J. Ethnopharmacol. 2014, 157, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Asare, G.A.; Afriyie, D.; Ngala, R.A.; Annan, Y.; Appiah, A.A.; Musah, I.; Adjei, S.; Bamfo, K.B.; Sule, S.D.; Gyan, B.A.; et al. Shrinkage of Prostate and Improved Quality of Life: Management of BPH Patients with Croton membranaceus Ethanolic Root Extract. Evid.-Based Complement. Altern. Med. 2015. [Google Scholar] [CrossRef] [PubMed]
- Appiah, A.A.; Asomaning, W.A.; Oppong, I.V.; Duker-Eshun, G.; Clement, J.A.; Okine, L.K.; Achel, G.; Gyampo, O.; Adjei, S.; Nyarko, A.K.; et al. Prospects of Croton membranaceus for prostate health. In African Natural Plant Products: Volume II: Discoveries and Challenges in Chemistry, Health, and Nutrition; Juliani, H.R., Simon, J.E., Ho, C.-T., Eds.; Oxford University Press: Washington, DC, USA, 2013; Volume 1127, pp. 79–92. [Google Scholar]
- Asare, G.A.; Yahaya, E.S.; Afriyie, D.K.; Adjei, S.; Asiedu, B. Genotoxic and Cytotoxic Activity of Aqueous Extracts of Croton membranaceus in Rodent Bone Marrow and Human Benign Prostate Hyperplasic Cells. EJMP 2015, 9, 1–7. [Google Scholar] [CrossRef]
- Parsons, J.K.; Bergstrom, J.; Barrett-Connor, E. Lipids, Lipoproteins, and Risk of Benign Prostatic Hyperplasia in Community Dwelling Men. BJU Int. 2008, 101, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Bin, K.L. Epidemiology of clinical benign prostatic hyperplasia. Asian J. Urol. 2017, 4, 148–151. [Google Scholar]
- Wang, J.-Y.; Fu, Y.-Y.; Kang, D.-Y. A Systematic Review and Meta-Analysis. The Association between Metabolic Syndrome and Characteristics of Benign Prostatic Hyperplasia. Medicine (Baltimore) 2016, 95, e3243. [Google Scholar] [CrossRef] [PubMed]
- Gacci, M.; Santi, R.; Nesi, G.; Giannessi, C.; Sebastianelli, A.; Giancane, S.; Khorrami, S.; Salvi, M.; Vignozzi, L.; Morelli, A. High density lipoprotein (HDL) serum levels are correlated to histologic features of inflammatory infiltrate and weight of prostatic adenoma in men treated with simple prostatectomy for benign prostatic hyperplasia. J. Urol. 2012, 187, e699. [Google Scholar] [CrossRef]
- Rył, A.; Rotter, I.; Miazgowski, T.; Słojewski, M.; Dołęgowska, B.; Lubkowska, A.; Laszczyńska, M. Metabolic syndrome and benign prostatic hyperplasia: Association or coincidence? Diabetol. Metab. Syndr. 2015, 7, 94. [Google Scholar] [CrossRef] [PubMed]
- Corona, G.; Vignozzi, L.; Rastrelli, G.; Lotti, F.; Cipriani, S.; Maggi, M. Benign Prostatic Hyperplasia: A New Metabolic Disease of the Aging Male and Its Correlation with Sexual Dysfunctions. Int. J. Endocrinol. 2014. [Google Scholar] [CrossRef] [PubMed]
- Akbay, E.; Bozlu, M.; Doruk, E.; Akbay, E.; Çayan, S.; Ulusoy, E. Effect of Terazosin on the Lipid Profile in Patients with Symptomatic Benign Prostatic Hyperplasia. Urol. Int. 2001, 67, 156–159. [Google Scholar] [CrossRef] [PubMed]
- Traish, A.; Haider, K.S.; Doros, G.; Haider, A. Long-term dutasteride therapy in men with benign prostatic hyperplasia alters glucose and lipid profiles and increases severity of erectile dysfunction. Horm. Mol. Biol. Clin. Investig. 2017, 30. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Gao, F.; Chen, K.; Tian, M.-I.; Zhao, D.-I. Sphingosine kinase 1 as an anticancer therapeutic target. Drug Des. Dev. Ther. 2015, 9, 3239–3245. [Google Scholar] [CrossRef] [PubMed]
- Van Veldhoven, P.P.; Gijsbers, S.; Mannaerts, G.P.; Vermeesch, J.R.; Brys, V. Human sphingosine-1-phosphate lyase: cDNA cloning, functional expression studies and mapping to chromosome 10q22. Biochim. Biophys. Acta 2000, 1487, 128–134. [Google Scholar] [CrossRef]
- Kumar, A.; Oskouian, B.; Fyrst, H.; Zhang, M.; Paris, F.; Saba, J.D. S1P lyase regulates DNA damage responses through a novel sphingolipid feedback mechanism. Cell Death Dis. 2011, 2, e11. [Google Scholar] [CrossRef] [PubMed]
- Min, J.; Van Veldhoven, P.P.; Zhang, L.; Hanigan, M.H.; Alexander, H.; Alexander, S. Sphingosine-1-phosphate lyase regulates sensitivity of human cells to select chemotherapy drugs in a p38-dependent manner. Mol. Cancer Res. 2005, 3, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Oskouian, B.; Sooriyakumaran, P.; Borowsky, A.D.; Crans, A.; Dillard, T.L.; Tam, Y.Y.; Bandhuvula, P.; Saba, J.D. Sphingosine-1-phosphate lyase potentiates apoptosis via p53- and p38-dependent pathways and is down-regulated in colon cancer. Proc. Natl. Acad. Sci. USA 2006, 103, 17384–17389. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Charles, A.G.; Frankel, A.J.; Cabot, M.C. Increasing intracellular ceramide: An approach that enhances the cytotoxic response in prostate cancer cells. Urology 2003, 61, 1047–1052. [Google Scholar] [CrossRef]
- Samsel, L.; Zaidel, G.; Drumgoole, H.M.; Jelovac, D.; Drachenberg, C.; Rhee, J.G.; Brodie, A.M.H.; Bielawska, A.; Smyth, M.J. The Ceramide Analog, B13, Induces Apoptosis in Prostate Cancer Cell Lines and Inhibits Tumor Growth in Prostate Cancer Xenografts. Prostate 2004, 58, 382–393. [Google Scholar] [CrossRef] [PubMed]
- Eto, M.; Bennouna, J.; Hunter, O.C.; Lotze, M.T.; Amoscato, A.A. Importance of C16 ceramide accumulation during apoptosis in prostate cancer cells. Int. J. Urol. 2006, 13, 148–156. [Google Scholar] [CrossRef] [PubMed]
Parameter (ng/mL) | Mean ± SD Before | Mean ± SD After | p-Value Before/After |
---|---|---|---|
TPSA | 25.71 ± 20.10 | 16.15 ± 15.66 | 0.000 * |
FPSA | 4.54 ± 3.17 | 3.25 ± 2.57 | 0.018 * |
Parameter (mmol/L) | Mean ± SD Before | Mean ± SD After | p-Value Before/After |
---|---|---|---|
TC | 5.03 ± 1.12 | 5.19 ± 1.15 | 0.423 |
TG | 1.15 ± 0.43 | 1.22 ± 0.56 | 0.517 |
HDL | 0.76 ± 0.33 | 0.88 ± 0.32 | 0.062 |
LDL | 3.74 ± 1.03 | 3.75 ± 1.02 | 0.959 |
AP0 A | 1.31 ± 0.45 | 1.52 ± 0.47 | 0.024 * |
APO B | 0.58 ± 0.37 | 0.50 ± 0.13 | 0.2221 |
Parameter (ng/mL) | Mean ± SD Before | Mean ± SD After | p-Value Before/After |
---|---|---|---|
SPK 1 | 1.84 ± 1.34 | 1.50 ± 1.29 | 0.302 |
SPK 2 | 110.4 ± 57.67 | 98.63 ± 34.59 | 0.359 |
SPK1/SPK2 | 0.042 ± 0.018 | 0.017 ± 0.011 | 0.049 * |
SPK Lyase | 143.7 ± 24.20 | 161.4 ± 35.66 | 0.050 * |
Parameter (ng/mL) | Mean ± SD Before | Mean ± SD After | p-Value Before/After |
---|---|---|---|
Ceramide | 64.77 ± 11.09 | 72.92 ± 10.83 | 0.004 * |
MDA | 41.15 = 16.00 | 52.95 = 15.18 | 0.047 * |
Parameter | r-Value Before | r-Value After | p-Value Before | p-Value After |
---|---|---|---|---|
TPSA (ng/mL) | −0.0741 | 0.2372 | 0.697 | 0.206 |
APO A (mmol/L) | 0.2045 | −0.2338 | 0.278 | 0.213 |
SPK2 (ng/mL) | 0.0827 | 0.0936 | 0.664 | 0.622 |
SPK1 (ng/mL) | 0.3826 | −0.1649 | 0.036* | 0.383 |
SPK Lyase (ng/mL) | 0.0324 | −0.2275 | 0.864 | 0.226 |
Ceramide (ng/mL) | 0.4286 | 0.0227 | 0.018* | 0.905 |
Parameter (mmol/L) | r-Value Before | r-Value After | p-Value Before | p-Value After |
---|---|---|---|---|
T. Chol | −0.1181 | 0.0634 | 0.5343 | 0.7393 |
TG | 0.4370 | 0.0329 | 0.0158 * | 0.8628 |
HDL | 0.0324 | −0.2275 | 0.8649 | 0.2266 |
LDL | −0.2229 | 0.1330 | 0.2365 | 0.4834 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asare, G.A.; Anang, Y.; Afriyie, D.K.; Amoah, B.Y.; Asiedu, B.; Doku, D.; Ocansey, H.S.; Odei Danso, N.Y.; Tekpor, P.; Osam, S. Endogenous Sphingolipid Signaling Pathway Implicated in the Action of Croton membranaceus on the Prostate Gland in BPH Patients. Medicines 2017, 4, 84. https://doi.org/10.3390/medicines4040084
Asare GA, Anang Y, Afriyie DK, Amoah BY, Asiedu B, Doku D, Ocansey HS, Odei Danso NY, Tekpor P, Osam S. Endogenous Sphingolipid Signaling Pathway Implicated in the Action of Croton membranaceus on the Prostate Gland in BPH Patients. Medicines. 2017; 4(4):84. https://doi.org/10.3390/medicines4040084
Chicago/Turabian StyleAsare, George Awuku, Yvonne Anang, Daniel K. Afriyie, Brodrick Yeboah Amoah, Bernice Asiedu, Derek Doku, Hannah Serwah Ocansey, Nana Yaw Odei Danso, Prince Tekpor, and Sarah Osam. 2017. "Endogenous Sphingolipid Signaling Pathway Implicated in the Action of Croton membranaceus on the Prostate Gland in BPH Patients" Medicines 4, no. 4: 84. https://doi.org/10.3390/medicines4040084
APA StyleAsare, G. A., Anang, Y., Afriyie, D. K., Amoah, B. Y., Asiedu, B., Doku, D., Ocansey, H. S., Odei Danso, N. Y., Tekpor, P., & Osam, S. (2017). Endogenous Sphingolipid Signaling Pathway Implicated in the Action of Croton membranaceus on the Prostate Gland in BPH Patients. Medicines, 4(4), 84. https://doi.org/10.3390/medicines4040084