Predicting Acute Kidney Injury after Cardiac Surgery by Machine Learning Approaches
Abstract
:1. Introduction
2. Predicting CSA-AKI by Machine Learning
3. Potential Directions and Future Scope
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Chew, S.T.H.; Hwang, N.C. Acute kidney injury after cardiac surgery: A narrative review of the literature. J. Cardiothorac. Vasc. Anesth. 2019, 33, 1122–1138. [Google Scholar] [CrossRef] [PubMed]
- Sakhuja, A.; Kashani, K.; Schold, J.; Cheungpasitporn, W.; Soltesz, E.; Demirjian, S. Hospital procedure volume does not predict acute kidney injury after coronary artery bypass grafting-a nationwide study. Clin. Kidney J. 2017, 10, 769–775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thongprayoon, C.; Cheungpasitporn, W.; Mao, M.A.; Srivali, N.; Kittanamongkolchai, W.; Harrison, A.M.; Greason, K.L.; Kashani, K.B. Persistent acute kidney injury following transcatheter aortic valve replacement. J. Card. Surg. 2017, 32, 550–555. [Google Scholar] [CrossRef]
- Thongprayoon, C.; Cheungpasitporn, W.; Srivali, N.; Kittanamongkolchai, W.; Sakhuja, A.; Greason, K.L.; Kashani, K.B. The association between renal recovery after acute kidney injury and long-term mortality after transcatheter aortic valve replacement. PLoS ONE 2017, 12, e0183350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thongprayoon, C.; Cheungpasitporn, W.; Shah, I.K.; Kashyap, R.; Park, S.J.; Kashani, K.; Dillon, J.J. Long-term Outcomes and Prognostic Factors for Patients Requiring Renal Replacement Therapy After Cardiac Surgery. Mayo Clin. Proc. 2015, 90, 857–864. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.R.; Kramer, R.S.; Coca, S.G.; Parikh, C.R. Duration of acute kidney injury impacts long-term survival after cardiac surgery. Ann. Thorac. Surg. 2010, 90, 1142–1148. [Google Scholar] [CrossRef] [Green Version]
- Kuitunen, A.; Vento, A.; Suojaranta-Ylinen, R.; Pettilä, V. Acute renal failure after cardiac surgery: Evaluation of the RIFLE classification. Ann. Thorac. Surg. 2006, 81, 542–546. [Google Scholar] [CrossRef] [PubMed]
- Englberger, L.; Suri, R.M.; Li, Z.; Casey, E.T.; Daly, R.C.; Dearani, J.A.; Schaff, H.V. Clinical accuracy of RIFLE and Acute Kidney Injury Network (AKIN) criteria for acute kidney injury in patients undergoing cardiac surgery. Crit. Care 2011, 15, R16. [Google Scholar] [CrossRef] [Green Version]
- Robert, A.M.; Kramer, R.S.; Dacey, L.J.; Charlesworth, D.C.; Leavitt, B.J.; Helm, R.E.; Hernandez, F.; Sardella, G.L.; Frumiento, C.; Likosky, D.S. Cardiac surgery-associated acute kidney injury: A comparison of two consensus criteria. Ann. Thorac. Surg. 2010, 90, 1939–1943. [Google Scholar] [CrossRef]
- Thongprayoon, C.; Cheungpasitporn, W.; Thamcharoen, N.; Ungprasert, P.; Kittanamongkolchai, W.; Mao, M.A.; Sakhuja, A.; Greason, K.L.; Kashani, K. Association of frailty status with acute kidney injury and mortality after transcatheter aortic valve replacement: A systematic review and meta-analysis. PLoS ONE 2017, 12, e0177157. [Google Scholar] [CrossRef] [Green Version]
- Thongprayoon, C.; Cheungpasitporn, W.; Gillaspie, E.A.; Greason, K.L.; Kashani, K.B. Association of blood transfusion with acute kidney injury after transcatheter aortic valve replacement: A meta-analysis. World J. Nephrol. 2016, 5, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Thongprayoon, C.; Cheungpasitporn, W.; Podboy, A.J.; Gillaspie, E.A.; Greason, K.L.; Kashani, K.B. The effects of contrast media volume on acute kidney injury after transcatheter aortic valve replacement: A systematic review and meta-analysis. J. Evid. Based Med. 2016, 9, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Alshaikh, H.N.; Katz, N.M.; Gani, F.; Nagarajan, N.; Canner, J.K.; Kacker, S.; Najjar, P.A.; Higgins, R.S.; Schneider, E.B. Financial impact of acute kidney injury after cardiac operations in the United States. Ann. Thorac. Surg. 2018, 105, 469–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehta, R.H.; Grab, J.D.; O’Brien, S.M.; Bridges, C.R.; Gammie, J.S.; Haan, C.K.; Ferguson, T.B.; Peterson, E.D.; Investigators, Society of Thoracic Surgeons National Cardiac Surgery Database. Bedside tool for predicting the risk of postoperative dialysis in patients undergoing cardiac surgery. Circulation 2006, 114, 2208–2216. [Google Scholar] [CrossRef] [PubMed]
- Rahmanian, P.B.; Filsoufi, F.; Castillo, J.G.; Zaku, B.; Chikwe, J.; Carpentier, A.; Adams, D.H. Predicting postoperative renal failure requiring dialysis, and an analysis of long-term outcome in patients undergoing valve surgery. J. Heart Valve Dis. 2008, 17, 657–665. [Google Scholar] [PubMed]
- Wijeysundera, D.N.; Karkouti, K.; Dupuis, J.-Y.; Rao, V.; Chan, C.T.; Granton, J.T.; Beattie, W.S. Derivation and validation of a simplified predictive index for renal replacement therapy after cardiac surgery. Jama 2007, 297, 1801–1809. [Google Scholar] [CrossRef] [Green Version]
- Chertow, G.M.; Levy, E.M.; Hammermeister, K.E.; Grover, F.; Daley, J. Independent association between acute renal failure and mortality following cardiac surgery. Am. J. Med. 1998, 104, 343–348. [Google Scholar] [CrossRef]
- Metnitz, P.G.; Krenn, C.G.; Steltzer, H.; Lang, T.; Ploder, J.; Lenz, K.; Le Gall, J.-R.; Druml, W. Effect of acute renal failure requiring renal replacement therapy on outcome in critically ill patients. Crit. Care Med. 2002, 30, 2051–2058. [Google Scholar] [CrossRef]
- Srivastava, V.; D’Silva, C.; Tang, A.; Sogliani, F.; Ngaage, D.L. The impact of major perioperative renal insult on long-term renal function and survival after cardiac surgery. Interact. Cardiovasc. Thorac. Surg. 2012, 15, 14–17. [Google Scholar] [CrossRef] [Green Version]
- Rosner, M.H.; Okusa, M.D. Acute kidney injury associated with cardiac surgery. Clin. J. Am. Soc. Nephrol. 2006, 1, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Rydén, L.; Sartipy, U.; Evans, M.; Holzmann, M.J. Acute kidney injury after coronary artery bypass grafting and long-term risk of end-stage renal disease. Circulation 2014, 130, 2005–2011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seabra, V.F.; Alobaidi, S.; Balk, E.M.; Poon, A.H.; Jaber, B.L. Off-pump coronary artery bypass surgery and acute kidney injury: A meta-analysis of randomized controlled trials. Clin. J. Am. Soc. Nephrol 2010, 5, 1734–1744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheungpasitporn, W.; Thongprayoon, C.; Kittanamongkolchai, W.; Srivali, N.; O’Corragain, O.A.; Edmonds, P.J.; Ratanapo, S.; Spanuchart, I.; Erickson, S.B. Comparison of renal outcomes in off-pump versus on-pump coronary artery bypass grafting: A systematic review and meta-analysis of randomized controlled trials. Nephrology (Carlton) 2015, 20, 727–735. [Google Scholar] [CrossRef] [PubMed]
- Lamy, A.; Devereaux, P.J.; Prabhakaran, D.; Taggart, D.P.; Hu, S.; Paolasso, E.; Straka, Z.; Piegas, L.S.; Akar, A.R.; Jain, A.R.; et al. Off-pump or on-pump coronary-artery bypass grafting at 30 days. N. Engl. J. Med. 2012, 366, 1489–1497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thongprayoon, C.; Cheungpasitporn, W.; Srivali, N.; Kittanamongkolchai, W.; Greason, K.L.; Kashani, K.B. Incidence and risk factors of acute kidney injury following transcatheter aortic valve replacement. Nephrology (Carlton) 2016, 21, 1041–1046. [Google Scholar] [CrossRef]
- Shah, K.; Chaker, Z.; Busu, T.; Shah, R.; Osman, M.; Alqahtani, F.; Alkhouli, M. Meta-Analysis Comparing Renal Outcomes after Transcatheter versus Surgical Aortic Valve Replacement. J. Interv. Cardiol. 2019, 2019, 3537256. [Google Scholar] [CrossRef] [Green Version]
- Catalano, M.; Lin, D.; Cassiere, H.; Kohn, N.; Rutkin, B.; Maurer, G.; Berg, J.A.; Jahn, J.; Esposito, R.; Hartman, A.; et al. Incidence of Acute Kidney Injury in Patients with Chronic Renal Insufficiency: Transcatheter versus Surgical Aortic Valve Replacement. J. Interv. Cardiol. 2019, 2019, 9780415. [Google Scholar] [CrossRef] [Green Version]
- Cheungpasitporn, W.; Thongprayoon, C.; Kashani, K. Transcatheter Aortic Valve Replacement: A Kidney’s Perspective. J. Ren. Inj. Prev. 2016, 5, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Thongprayoon, C.; Cheungpasitporn, W.; Srivali, N.; Ungprasert, P.; Kittanamongkolchai, W.; Greason, K.L.; Kashani, K.B. Acute kidney injury after transcatheter aortic valve replacement: A systematic review and meta-analysis. Am. J. Nephrol. 2015, 41, 372–382. [Google Scholar] [CrossRef]
- Thongprayoon, C.; Cheungpasitporn, W.; Srivali, N.; Harrison, A.M.; Kittanamongkolchai, W.; Greason, K.L.; Kashani, K.B. Transapical versus transfemoral approach and risk of acute kidney injury following transcatheter aortic valve replacement: A propensity-adjusted analysis. Ren. Fail. 2017, 39, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Thongprayoon, C.; Cheungpasitporn, W.; Gillaspie, E.A.; Greason, K.L.; Kashani, K.B. The risk of acute kidney injury following transapical versus transfemoral transcatheter aortic valve replacement: A systematic review and meta-analysis. Clin. Kidney J. 2016, 9, 560–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thongprayoon, C.; Cheungpasitporn, W.; Srivali, N.; Harrison, A.M.; Gunderson, T.M.; Kittanamongkolchai, W.; Greason, K.L.; Kashani, K.B. AKI after Transcatheter or Surgical Aortic Valve Replacement. J. Am. Soc. Nephrol. 2016, 27, 1854–1860. [Google Scholar] [CrossRef] [PubMed]
- Thongprayoon, C.; Cheungpasitporn, W.; Lin, J.; Mao, M.A.; Qian, Q. Acute kidney injury in octogenarians after heart valve replacement surgery: A study of two periods over the last decade. Clin. Kidney J. 2017, 10, 648–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spieker, M.; Hellhammer, K.; Katsianos, S.; Wiora, J.; Zeus, T.; Horn, P.; Kelm, M.; Westenfeld, R. Effect of Acute Kidney Injury After Percutaneous Mitral Valve Repair on Outcome. Am. J. Cardiol. 2018, 122, 316–322. [Google Scholar] [CrossRef]
- Thongprayoon, C.; Lertjitbanjong, P.; Hansrivijit, P.; Crisafio, A.; Mao, M.A.; Watthanasuntorn, K.; Aeddula, N.R.; Bathini, T.; Kaewput, W.; Cheungpasitporn, W. Acute Kidney Injury in Patients Undergoing Cardiac Transplantation: A Meta-Analysis. Medicines (Basel) 2019, 6, 108. [Google Scholar] [CrossRef] [Green Version]
- Ramos, K.A.; Dias, C.B. Acute Kidney Injury after Cardiac Surgery in Patients Without Chronic Kidney Disease. Braz. J. Cardiovasc. Surg 2018, 33, 454–461. [Google Scholar] [CrossRef]
- Thongprayoon, C.; Lertjitbanjong, P.; Cheungpasitporn, W.; Hansrivijit, P.; Fülöp, T.; Kovvuru, K.; Kanduri, S.R.; Davis, P.W.; Vallabhajosyula, S.; Bathini, T.; et al. Incidence and impact of acute kidney injury on patients with implantable left ventricular assist devices: a Meta-analysis. Ren Fail. 2020, 42, 495–512. [Google Scholar] [CrossRef]
- Wang, J.; Yu, W.; Gao, M.; Gu, C.; Yu, Y. Preoperative Prophylactic Intraaortic Balloon Pump Reduces the Incidence of Postoperative Acute Kidney Injury and Short-Term Death of High-Risk Patients Undergoing Coronary Artery Bypass Grafting: A Meta-Analysis of 17 Studies. Ann. Thorac. Surg. 2016, 101, 2007–2019. [Google Scholar] [CrossRef] [Green Version]
- Ding, W.; Ji, Q.; Wei, Q.; Shi, Y.; Ma, R.; Wang, C. Prophylactic application of an intra-aortic balloon pump in high-risk patients undergoing off-pump coronary artery bypass grafting. Cardiology 2015, 131, 109–115. [Google Scholar] [CrossRef]
- Shi, M.; Huang, J.; Pang, L.; Wang, Y. Preoperative insertion of an intra-aortic balloon pump improved the prognosis of high-risk patients undergoing off-pump coronary artery bypass grafting. J. Int. Med. Res. 2011, 39, 1163–1168. [Google Scholar] [CrossRef]
- Nonaka, T.; Kimura, N.; Hori, D.; Sasabuchi, Y.; Nakano, M.; Yuri, K.; Sanui, M.; Matsumoto, H.; Yamaguchi, A. Predictors of Acute Kidney Injury Following Elective Open and Endovascular Aortic Repair for Abdominal Aortic Aneurysm. Ann. Vasc. Dis. 2018, 11, 298–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Y.; Chen, J.; Huang, K.; Luo, D.; Liang, P.; Feng, M.; Chai, W.; Fung, E.; Lan, H.Y.; Xu, A. The incidence, risk factors and in-hospital mortality of acute kidney injury in patients after abdominal aortic aneurysm repair surgery. BMC Nephrol. 2017, 18, 184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansrivijit, P.; Lertjitbanjong, P.; Thongprayoon, C.; Cheungpasitporn, W.; Aeddula, N.R.; Salim, S.A.; Chewcharat, A.; Watthanasuntorn, K.; Srivali, N.; Mao, M.A.; et al. Acute Kidney Injury in Pediatric Patients on Extracorporeal Membrane Oxygenation: A Systematic Review and Meta-analysis. Medicines (Basel) 2019, 6, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thongprayoon, C.; Cheungpasitporn, W.; Lertjitbanjong, P.; Aeddula, N.R.; Bathini, T.; Watthanasuntorn, K.; Srivali, N.; Mao, M.A.; Kashani, K. Incidence and Impact of Acute Kidney Injury in Patients Receiving Extracorporeal Membrane Oxygenation: A Meta-Analysis. J. Clin. Med. 2019, 8, 981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coleman, M.D.; Shaefi, S.; Sladen, R.N. Preventing acute kidney injury after cardiac surgery. Curr. Opin. Anaesthesiol 2011, 24, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Candela-Toha, A.; Elías-Martín, E.; Abraira, V.; Tenorio, M.T.; Parise, D.; de Pablo, A.; Centella, T.; Liaño, F. Predicting acute renal failure after cardiac surgery: External validation of two new clinical scores. Clin. J. Am. Soc. Nephrol. 2008, 3, 1260–1265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thakar, C.V.; Christianson, A.; Freyberg, R.; Almenoff, P.; Render, M.L. Incidence and outcomes of acute kidney injury in intensive care units: A Veterans Administration study. Crit. Care Med. 2009, 37, 2552–2558. [Google Scholar] [CrossRef]
- Amini, S.; Najafi, M.N.; Karrari, S.P.; Mashhadi, M.E.; Mirzaei, S.; Tashnizi, M.A.; Moeinipour, A.A.; Hoseinikhah, H.; Aazami, M.H.; Jafari, M. Risk Factors and Outcome of Acute Kidney Injury after Isolated CABG Surgery: A Prospective Cohort Study. Braz. J. Cardiovasc. Surg. 2019, 34, 70–75. [Google Scholar] [CrossRef]
- Yi, Q.; Li, K.; Jian, Z.; Xiao, Y.B.; Chen, L.; Zhang, Y.; Ma, R.Y. Risk Factors for Acute Kidney Injury after Cardiovascular Surgery: Evidence from 2,157 Cases and 49,777 Controls—A Meta-Analysis. Cardiorenal Med. 2016, 6, 237–250. [Google Scholar] [CrossRef] [Green Version]
- Najjar, M.; Yerebakan, H.; Sorabella, R.A.; Donovan, D.J.; Kossar, A.P.; Sreekanth, S.; Kurlansky, P.; Borger, M.A.; Argenziano, M.; Smith, C.R.; et al. Acute kidney injury following surgical aortic valve replacement. J. Card. Surg. 2015, 30, 631–639. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Yu, W.; Zhou, Y.; Yang, Y.; Li, C.; Liu, N.; Hou, X.; Wang, L. Independent Risk Factors Contributing to Acute Kidney Injury According to Updated Valve Academic Research Consortium-2 Criteria After Transcatheter Aortic Valve Implantation: A Meta-analysis and Meta-regression of 13 Studies. J. Cardiothorac Vasc. Anesth. 2017, 31, 816–826. [Google Scholar] [CrossRef] [PubMed]
- Thongprayoon, C.; Hansrivijit, P.; Kovvuru, K.; Kanduri, S.R.; Torres-Ortiz, A.; Acharya, P.; Gonzalez-Suarez, M.L.; Kaewput, W.; Bathini, T.; Cheungpasitporn, W. Diagnostics, Risk Factors, Treatment and Outcomes of Acute Kidney Injury in a New Paradigm. J. Clin. Med. 2020, 9, 1104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thakar, C.V.; Arrigain, S.; Worley, S.; Yared, J.-P.; Paganini, E.P. A clinical score to predict acute renal failure after cardiac surgery. J. Am. Soc. Nephrol. 2005, 16, 162–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aronson, S.; Fontes, M.L.; Miao, Y.; Mangano, D. Risk index for perioperative renal dysfunction/failure. Circulation 2007, 115, 733–742. [Google Scholar] [CrossRef] [Green Version]
- Birnie, K.; Verheyden, V.; Pagano, D.; Bhabra, M.; Tilling, K.; Sterne, J.A.; Murphy, G.J. Predictive models for kidney disease: Improving global outcomes (KDIGO) defined acute kidney injury in UK cardiac surgery. Crit. Care 2014, 18, 606. [Google Scholar] [CrossRef] [Green Version]
- Jorge-Monjas, P.; Bustamante-Munguira, J.; Lorenzo, M.; Heredia-Rodríguez, M.; Fierro, I.; Gómez-Sánchez, E.; Hernandez, A.; Álvarez, F.J.; Bermejo-Martin, J.F.; Gómez-Pesquera, E. Predicting cardiac surgery–associated acute kidney injury: The CRATE score. J. Crit. Care 2016, 31, 130–138. [Google Scholar] [CrossRef] [Green Version]
- Wong, B.; St. Onge, J.; Korkola, S.; Prasad, B. Validating a scoring tool to predict acute kidney injury (AKI) following cardiac surgery. Can. J. Kidney Health Dis. 2015, 2, 37. [Google Scholar] [CrossRef] [Green Version]
- Huen, S.C.; Parikh, C.R. Predicting acute kidney injury after cardiac surgery: A systematic review. Ann. Thorac. Surg. 2012, 93, 337–347. [Google Scholar] [CrossRef] [Green Version]
- Englberger, L.; Suri, R.M.; Li, Z.; Dearani, J.A.; Park, S.J.; Sundt, T.M., III; Schaff, H.V. Validation of clinical scores predicting severe acute kidney injury after cardiac surgery. Am. J. Kidney Dis. 2010, 56, 623–631. [Google Scholar] [CrossRef]
- Nah, C.W.; Ti, L.K.; Liu, W.; Ng, R.R.G.; Shen, L.; Chew, S.T.H. A clinical score to predict acute kidney injury after cardiac surgery in a Southeast-Asian population. Interact. Cardiovasc. Thorac. Surg. 2016, 23, 757–761. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Fan, Q.-L.; Han, Q.-X.; Geng, W.-J.; Zhao, H.-H.; Ding, X.-N.; Yan, J.-Y.; Zhu, H.-Y. Machine learning in nephrology: Scratching the surface. Chin. Med. J. 2020, 687–698. [Google Scholar] [CrossRef] [PubMed]
- Molitoris, B.A. Beyond Biomarkers: Machine Learning in Diagnosing Acute Kidney Injury. Mayo Clin. Proc. 2019, 94, 748–750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiofolo, C.; Chbat, N.; Ghosh, E.; Eshelman, L.; Kashani, K. Automated Continuous Acute Kidney Injury Prediction and Surveillance: A Random Forest Model. Mayo Clin. Proc. 2019, 94, 783–792. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, S.M.; Goldstein, S.L.; Bagshaw, S.M. Acute Kidney Injury and Big Data. Contrib. Nephrol. 2018, 193, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Rajkomar, A.; Dean, J.; Kohane, I. Machine Learning in Medicine. N. Engl. J. Med. 2019, 380, 1347–1358. [Google Scholar] [CrossRef] [PubMed]
- Baxter, R.D.; Fann, J.I.; DiMaio, J.M.; Lobdell, K. Digital Health Primer for Cardiothoracic Surgeons. Ann. Thorac. Surg. 2020. [Google Scholar] [CrossRef] [PubMed]
- Chae, D. Data Science and Machine Learning in Anesthesiology. Korean J. Anesthesiol. 2020. [Google Scholar] [CrossRef]
- Yuan, Q.; Zhang, H.; Deng, T.; Tang, S.; Yuan, X.; Tang, W.; Xie, Y.; Ge, H.; Wang, X.; Zhou, Q.; et al. Role of Artificial Intelligence in Kidney Disease. Int. J. Med. Sci 2020, 17, 970–984. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Pinto, L.N.; Venable, L.R.; Fahrenbach, J.; Churpek, M.M. Comparison of variable selection methods for clinical predictive modeling. Int J. Med. Inf. 2018, 116, 10–17. [Google Scholar] [CrossRef]
- Yin, W.J.; Yi, Y.H.; Guan, X.F.; Zhou, L.Y.; Wang, J.L.; Li, D.Y.; Zuo, X.C. Preprocedural Prediction Model for Contrast-Induced Nephropathy Patients. J. Am. Heart Assoc. 2017, 6. [Google Scholar] [CrossRef]
- Tang, C.Q.; Li, J.Q.; Xu, D.Y.; Liu, X.B.; Hou, W.J.; Lyu, K.Y.; Xiao, S.C.; Xia, Z.F. Comparison of machine learning method and logistic regression model in prediction of acute kidney injury in severely burned patients. Zhonghua Shao Shang Za Zhi 2018, 34, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, L.P.; Reyfman, P.A.; Smith, A.D.R.; Zeng, Z.; Kho, A.; Sanchez-Pinto, L.N.; Luo, Y. Early prediction of acute kidney injury following ICU admission using a multivariate panel of physiological measurements. BMC Med. Inf. Decis. Mak 2019, 19, 16. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, B.A.; Navar, A.M.; Carter, R.E. Moving beyond regression techniques in cardiovascular risk prediction: Applying machine learning to address analytic challenges. Eur. Heart J. 2017, 38, 1805–1814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szlosek, D.A.; Ferrett, J. Using Machine Learning and Natural Language Processing Algorithms to Automate the Evaluation of Clinical Decision Support in Electronic Medical Record Systems. EGEMS (Wash DC) 2016, 4, 1222. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.C.; Yoon, H.K.; Nam, K.; Cho, Y.J.; Kim, T.K.; Kim, W.H.; Bahk, J.H. Derivation and Validation of Machine Learning Approaches to Predict Acute Kidney Injury after Cardiac Surgery. J. Clin. Med. 2018, 7, 322. [Google Scholar] [CrossRef] [Green Version]
- Rau, C.-S.; Wu, S.-C.; Chuang, J.-F.; Huang, C.-Y.; Liu, H.-T.; Chien, P.-C.; Hsieh, C.-H. Machine learning models of survival prediction in trauma patients. J. Clin. Med. 2019, 8, 799. [Google Scholar] [CrossRef] [Green Version]
- Chicco, D.; Jurman, G. Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone. BMC Med. Inform. Decis. Mak. 2020, 20, 16. [Google Scholar] [CrossRef]
- Cao, Y.; Fang, X.; Ottosson, J.; Näslund, E.; Stenberg, E. A Comparative Study of Machine Learning Algorithms in Predicting Severe Complications after Bariatric Surgery. J. Clin. Med. 2019, 8, 668. [Google Scholar] [CrossRef] [Green Version]
- Lin, K.; Hu, Y.; Kong, G. Predicting in-hospital mortality of patients with acute kidney injury in the ICU using random forest model. Int J. Med. Inf. 2019, 125, 55–61. [Google Scholar] [CrossRef]
- Shorten, G.; Srinivasan, K.K.; Reinertsen, I. Machine learning and evidence-based training in technical skills. Br. J. Anaesth. 2018, 121, 521–523. [Google Scholar] [CrossRef] [Green Version]
- Ghahramani, Z. Probabilistic machine learning and artificial intelligence. Nature 2015, 521, 452–459. [Google Scholar] [CrossRef] [PubMed]
- Quax, S.; van Gerven, M. Emergent mechanisms of evidence integration in recurrent neural networks. PLoS ONE 2018, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voglis, S.; van Niftrik, C.H.B.; Staartjes, V.E.; Brandi, G.; Tschopp, O.; Regli, L.; Serra, C. Feasibility of machine learning based predictive modelling of postoperative hyponatremia after pituitary surgery. Pituitary 2020. Epub ahead of print. [Google Scholar] [CrossRef]
- Lee, C.K.; Hofer, I.; Gabel, E.; Baldi, P.; Cannesson, M. Development and validation of a deep neural network model for prediction of postoperative in-hospital mortality. Anesthesiology 2018, 129, 649. [Google Scholar] [CrossRef]
- Olsen, R.M.; Aasvang, E.K.; Meyhoff, C.S.; Sorensen, H.B.D. Towards an automated multimodal clinical decision support system at the post anesthesia care unit. Comput. Biol. Med. 2018, 101, 15–21. [Google Scholar] [CrossRef]
- Meiring, C.; Dixit, A.; Harris, S.; MacCallum, N.S.; Brealey, D.A.; Watkinson, P.J.; Jones, A.; Ashworth, S.; Beale, R.; Brett, S.J. Optimal intensive care outcome prediction over time using machine learning. PLoS ONE 2018, 13, e0206862. [Google Scholar] [CrossRef] [Green Version]
- Hatib, F.; Jian, Z.; Buddi, S.; Lee, C.; Settels, J.; Sibert, K.; Rinehart, J.; Cannesson, M. Machine-learning algorithm to predict hypotension based on high-fidelity arterial pressure waveform analysis. Anesthesiol. J. Am. Soc. Anesthesiol. 2018, 129, 663–674. [Google Scholar] [CrossRef]
- Kendale, S.; Kulkarni, P.; Rosenberg, A.D.; Wang, J. Supervised machine-learning predictive analytics for prediction of postinduction hypotension. Anesthesiol. J. Am. Soc. Anesthesiol. 2018, 129, 675–688. [Google Scholar] [CrossRef]
- Lee, H.-C.; Ryu, H.-G.; Chung, E.-J.; Jung, C.-W. Prediction of bispectral index during target-controlled infusion of propofol and remifentanil. Anesthesiology 2018, 128, 492–501. [Google Scholar] [CrossRef]
- Peker, M.; Şen, B.; Gürüler, H. Rapid automated classification of anesthetic depth levels using GPU based parallelization of neural networks. J. Med. Syst. 2015, 39, 18. [Google Scholar] [CrossRef]
- Nagaraj, S.B.; Biswal, S.; Boyle, E.J.; Zhou, D.W.; McClain, L.M.; Bajwa, E.K.; Quraishi, S.A.; Oluwaseun, A.; Barbieri, R.; Purdon, P.L. Patient-specific classification of ICU sedation levels from heart rate variability. Crit. Care Med. 2017, 45, e683. [Google Scholar] [CrossRef] [PubMed]
- Shalbaf, R.; Behnam, H.; Sleigh, J.W.; Steyn-Ross, A.; Voss, L.J. Monitoring the depth of anesthesia using entropy features and an artificial neural network. J. Neurosci. Methods 2013, 218, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Shalbaf, A.; Shalbaf, R.; Saffar, M.; Sleigh, J. Monitoring the level of hypnosis using a hierarchical SVM system. J. Clin. Monit. Comput. 2019, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ortolani, O.; Conti, A.; Di Filippo, A.; Adembri, C.; Moraldi, E.; Evangelisti, A.; Maggini, M.; Roberts, S. EEG signal processing in anaesthesia. Use of a neural network technique for monitoring depth of anaesthesia. Br. J. Anaesth. 2002, 88, 644–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hever, G.; Cohen, L.; O’Connor, M.F.; Matot, I.; Lerner, B.; Bitan, Y. Machine learning applied to multi-sensor information to reduce false alarm rate in the ICU. J. Clin. Monit. Comput. 2019, 34, 339–352. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Mohr, N.M.; Street, W.N.; Nadkarni, P. Machine learning in relation to emergency medicine clinical and operational scenarios: An overview. West. J. Emerg. Med. 2019, 20, 219. [Google Scholar] [CrossRef] [PubMed]
- Abraham, A.; Pedregosa, F.; Eickenberg, M.; Gervais, P.; Mueller, A.; Kossaifi, J.; Gramfort, A.; Thirion, B.; Varoquaux, G. Machine learning for neuroimaging with scikit-learn. Front. Neuroinformatics 2014, 8, 14. [Google Scholar] [CrossRef] [Green Version]
- Abdul Salim, S.; Tran, H.; Thongprayoon, C.; Fulop, T.; Cheungpasitporn, W. Comparison of drug-coated balloon angioplasty versus conventional angioplasty for arteriovenous fistula stenosis: Systematic review and meta-analysis. J. Vasc. Access 2020, 21, 357–365. [Google Scholar] [CrossRef]
- Cheungpasitporn, W.; Kashani, K. Electronic Data Systems and Acute Kidney Injury. Contrib. Nephrol. 2016, 187, 73–83. [Google Scholar] [CrossRef]
- The, L. Artificial intelligence in health care: Within touching distance. Lancet 2018, 390, 2739. [Google Scholar] [CrossRef]
- Laszczyńska, O.; Severo, M.; Azevedo, A. Electronic Medical Record-Based Predictive Model for Acute Kidney Injury in an Acute Care Hospital. Stud. Health Technol. Inf. 2016, 228, 810–812. [Google Scholar]
- Geubbels, N.; de Brauw, L.M.; Acherman, Y.I.; van de Laar, A.W.; Bruin, S.C. Risk Stratification Models: How Well do They Predict Adverse Outcomes in a Large Dutch Bariatric Cohort? Obes. Surg. 2015, 25, 2290–2301. [Google Scholar] [CrossRef] [PubMed]
- Stenberg, E.; Cao, Y.; Szabo, E.; Näslund, E.; Näslund, I.; Ottosson, J. Risk Prediction Model for Severe Postoperative Complication in Bariatric Surgery. Obes Surg 2018, 28, 1869–1875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, L.; Wang, Y.; Xue, Q.; Tong, J.; Zhou, C.M.; Yang, J.J. A comparative study of machine learning algorithms for predicting acute kidney injury after liver cancer resection. PeerJ 2020, 8, e8583. [Google Scholar] [CrossRef]
- Lee, H.-C.; Yoon, S.B.; Yang, S.-M.; Kim, W.H.; Ryu, H.-G.; Jung, C.-W.; Suh, K.-S.; Lee, K.H. Prediction of acute kidney injury after liver transplantation: Machine learning approaches vs. logistic regression model. J. Clin. Med. 2018, 7, 428. [Google Scholar] [CrossRef] [Green Version]
- Tran, N.K.; Sen, S.; Palmieri, T.L.; Lima, K.; Falwell, S.; Wajda, J.; Rashidi, H.H. Artificial intelligence and machine learning for predicting acute kidney injury in severely burned patients: A proof of concept. Burns 2019, 45, 1350–1358. [Google Scholar] [CrossRef]
- Huang, C.; Murugiah, K.; Mahajan, S.; Li, S.X.; Dhruva, S.S.; Haimovich, J.S.; Wang, Y.; Schulz, W.L.; Testani, J.M.; Wilson, F.P.; et al. Enhancing the prediction of acute kidney injury risk after percutaneous coronary intervention using machine learning techniques: A retrospective cohort study. PLoS Med. 2018, 15, e1002703. [Google Scholar] [CrossRef]
- Thottakkara, P.; Ozrazgat-Baslanti, T.; Hupf, B.B.; Rashidi, P.; Pardalos, P.; Momcilovic, P.; Bihorac, A. Application of Machine Learning Techniques to High-Dimensional Clinical Data to Forecast Postoperative Complications. PLoS ONE 2016, 11, e0155705. [Google Scholar] [CrossRef] [Green Version]
- Mohamadlou, H.; Lynn-Palevsky, A.; Barton, C.; Chettipally, U.; Shieh, L.; Calvert, J.; Saber, N.R.; Das, R. Prediction of Acute Kidney Injury with a Machine Learning Algorithm Using Electronic Health Record Data. Can. J. Kidney Health Dis. 2018, 5, 2054358118776326. [Google Scholar] [CrossRef] [Green Version]
- Grogan, K.L.; Goldsmith, M.P.; Masino, A.J.; Nelson, O.; Tsui, F.-C.; Simpao, A.F. A narrative review of analytics in pediatric cardiac anesthesia and critical care medicine. J. Cardiothorac. Vasc. Anesth. 2020, 34, 479–482. [Google Scholar] [CrossRef]
- Tomašev, N.; Glorot, X.; Rae, J.W.; Zielinski, M.; Askham, H.; Saraiva, A.; Mottram, A.; Meyer, C.; Ravuri, S.; Protsyuk, I.; et al. A clinically applicable approach to continuous prediction of future acute kidney injury. Nature 2019, 572, 116–119. [Google Scholar] [CrossRef] [PubMed]
- Dorado-Díaz, P.I.; Sampedro-Gómez, J.; Vicente-Palacios, V.; Sánchez, P.L. Applications of artificial intelligence in Cardiology. The future is already here. Rev. Española De Cardiol. (Engl. Ed) 2019, 72, 1065–1075. [Google Scholar] [CrossRef]
- Kilic, A. Artificial Intelligence and Machine Learning in Cardiovascular Health Care. Ann. Thorac. Surg. 2020, 109, 1323–1329. [Google Scholar] [CrossRef] [PubMed]
- Koyner, J.L.; Carey, K.A.; Edelson, D.P.; Churpek, M.M. The Development of a Machine Learning Inpatient Acute Kidney Injury Prediction Model. Crit. Care Med. 2018, 46, 1070–1077. [Google Scholar] [CrossRef]
- Parikh, C.R.; Coca, S.G.; Thiessen-Philbrook, H.; Shlipak, M.G.; Koyner, J.L.; Wang, Z.; Edelstein, C.L.; Devarajan, P.; Patel, U.D.; Zappitelli, M. Postoperative biomarkers predict acute kidney injury and poor outcomes after adult cardiac surgery. J. Am. Soc. Nephrol. 2011, 22, 1748–1757. [Google Scholar] [CrossRef] [Green Version]
- Coca, S.G.; Garg, A.X.; Thiessen-Philbrook, H.; Koyner, J.L.; Patel, U.D.; Krumholz, H.M.; Shlipak, M.G.; Parikh, C.R. Urinary biomarkers of AKI and mortality 3 years after cardiac surgery. J. Am. Soc. Nephrol. 2014, 25, 1063–1071. [Google Scholar] [CrossRef]
- Arthur, J.M.; Hill, E.G.; Alge, J.L.; Lewis, E.C.; Neely, B.A.; Janech, M.G.; Tumlin, J.A.; Chawla, L.S.; Shaw, A.D. Evaluation of 32 urine biomarkers to predict the progression of acute kidney injury after cardiac surgery. Kidney Int. 2014, 85, 431–438. [Google Scholar] [CrossRef] [Green Version]
- Koyner, J.L.; Vaidya, V.S.; Bennett, M.R.; Ma, Q.; Worcester, E.; Akhter, S.A.; Raman, J.; Jeevanandam, V.; O’Connor, M.F.; Devarajan, P.; et al. Urinary biomarkers in the clinical prognosis and early detection of acute kidney injury. Clin. J. Am. Soc. Nephrol. 2010, 5, 2154–2165. [Google Scholar] [CrossRef] [Green Version]
Cardiac Surgery | Incidence of AKI | Dialysis-Requiring AKI | Reference(s) |
---|---|---|---|
CABG (off-pump) | 4.0–19.1% | 2.4% | [22,23,24] |
CABG (on-pump) | 22.2–32.1% | 1.1% | [23,24] |
TAVR (mixed) | 7.1–28% | 1.0–2.8% | [25,26,27,28,29] |
TAVR, transfemoral | 18.0% | N/A | [30,31] |
TAVR, transapical | 38.0% | N/A | [30,31] |
SAVR | 12.1–29.7% | 3.0–4.1% | [26,27,32,33] |
MVR, surgical | 19.4% | 2.8% | [33] |
MV repair, percutaneous | 18.0% | 0% | [34] |
Heart transplant | 47.1% | 11.8% | [35] |
Combined valvular surgery and CABG | 4.8% | N/A | [36] |
LVAD | 24.9% | 12.6% | [37] |
Prophylactic IABP placement | 5.2–10.3% | 0.0–0.9% | [38,39,40] |
Aortic repair, open | 14.1–42.8% | N/A | [41,42] |
Aortic repair, endovascular | 3.7–27.1% | N/A | [41,42] |
ECMO | 62.8% | 44.9% | [43,44] |
Operative Status | Risk Factor | Subject | Odds Ratio (95% CI) | Reference(s) |
---|---|---|---|---|
Pre-operative | Age | CABG | 1.016 (1.002–1.030) | [48] |
Cardiac surgery | 4.870 (3.500–6.240) | [49] | ||
BMI (kg/m2) | SAVR | 1.032 (1.007–1.057) | [50] | |
Diabetes | CABG | 1.360 (1.022–1.809) | [48] | |
Cardiac surgery | 1.520 (1.070–2.160) | [49] | ||
CKD | TAVR | 3.530 (1.940–6.440) | [51] | |
NYHA class III/IV | Cardiac surgery | 2.530 (1.320–4.860) | [49] | |
Hypertension | Cardiac surgery | 1.680 (1.440–1.970) | [49] | |
PVD | Cardiac surgery | 1.310 (1.090–1.570) | [49] | |
Emergency surgery | Cardiac surgery | 4.760 (3.050–7.430) | [49] | |
Intra-operative | On-pump | CABG | 2.630 (1.543–4.483) | [48] |
RBC transfusion | CABG | 2.154 (1.237–3.753) | [48] | |
SAVR | 1.094 (1.006–1.191) | [50] | ||
CPB time | Cardiac surgery | 33.780 (23.150–44.410) | [49] | |
Aortic clamping time | Cardiac surgery | 13.240 (7.780–18.690) | [49] | |
Use of IABP | Cardiac surgery | 4.440 (2.370–8.300) | [49] | |
Post-operative | Prolonged mechanical ventilation | CABG | 2.697 (1.0240–7.071) | [48] |
Infection | Cardiac surgery | 3.580 (1.430–8.970) | [49] | |
Redo operation | Cardiac surgery | 2.570 (1.750–3.780) | [49] | |
Low cardiac output | Cardiac surgery | 2.300 (1,050–5.040) | [49] | |
Protective | eGFR (per 10 mL/min/1.73m2) | TAVR | 0.780 (0.680–0.870) | [25] |
Opium abuse | CABG | 0.630 (0.409–0.921) | [48] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thongprayoon, C.; Hansrivijit, P.; Bathini, T.; Vallabhajosyula, S.; Mekraksakit, P.; Kaewput, W.; Cheungpasitporn, W. Predicting Acute Kidney Injury after Cardiac Surgery by Machine Learning Approaches. J. Clin. Med. 2020, 9, 1767. https://doi.org/10.3390/jcm9061767
Thongprayoon C, Hansrivijit P, Bathini T, Vallabhajosyula S, Mekraksakit P, Kaewput W, Cheungpasitporn W. Predicting Acute Kidney Injury after Cardiac Surgery by Machine Learning Approaches. Journal of Clinical Medicine. 2020; 9(6):1767. https://doi.org/10.3390/jcm9061767
Chicago/Turabian StyleThongprayoon, Charat, Panupong Hansrivijit, Tarun Bathini, Saraschandra Vallabhajosyula, Poemlarp Mekraksakit, Wisit Kaewput, and Wisit Cheungpasitporn. 2020. "Predicting Acute Kidney Injury after Cardiac Surgery by Machine Learning Approaches" Journal of Clinical Medicine 9, no. 6: 1767. https://doi.org/10.3390/jcm9061767
APA StyleThongprayoon, C., Hansrivijit, P., Bathini, T., Vallabhajosyula, S., Mekraksakit, P., Kaewput, W., & Cheungpasitporn, W. (2020). Predicting Acute Kidney Injury after Cardiac Surgery by Machine Learning Approaches. Journal of Clinical Medicine, 9(6), 1767. https://doi.org/10.3390/jcm9061767