Impact of Ultra-High-Dose-Rate Irradiation on DNA: Single-Strand Breaks and Base Damage
Abstract
1. Introduction
2. Results
2.1. Comparison of SSBs Between CONV-RT and FLASH-RT
2.2. The Differences in Base Damage Under FLASH and CONV Conditions
2.3. The Effect of Plasmid Concentration on Radiation-Induced SSBs and Base Damage
3. Discussion
4. Materials and Methods
4.1. Sample Preparation
4.2. Irradiation
4.3. Enzyme Treatment
4.4. Agarose Gel Electrophoresis and Quantification of DNA Strand Breaks
4.5. DNA Damage Modeling
4.6. Base Damage Modeling
4.7. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gaide, O.; Herrera, F.; Jeanneret Sozzi, W.; Gonçalves Jorge, P.; Kinj, R.; Bailat, C.; Duclos, F.; Bochud, F.; Germond, J.-F.; Gondré, M.; et al. Comparison of Ultra-High versus Conventional Dose Rate Radiotherapy in a Patient with Cutaneous Lymphoma. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2022, 174, 87–91. [Google Scholar] [CrossRef]
- Ohsawa, D.; Hiroyama, Y.; Kobayashi, A.; Kusumoto, T.; Kitamura, H.; Hojo, S.; Kodaira, S.; Konishi, T. DNA Strand Break Induction of Aqueous Plasmid DNA Exposed to 30 MeV Protons at Ultra-High Dose Rate. J. Radiat. Res. 2022, 63, 255–260. [Google Scholar] [CrossRef]
- Gao, F.; Yang, Y.; Zhu, H.; Wang, J.; Xiao, D.; Zhou, Z.; Dai, T.; Zhang, Y.; Feng, G.; Li, J.; et al. First Demonstration of the FLASH Effect with Ultrahigh Dose Rate High-Energy X-Rays. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2022, 166, 44–50. [Google Scholar] [CrossRef]
- Vozenin, M.-C.; De Fornel, P.; Petersson, K.; Favaudon, V.; Jaccard, M.; Germond, J.-F.; Petit, B.; Burki, M.; Ferrand, G.; Patin, D.; et al. The Advantage of FLASH Radiotherapy Confirmed in Mini-Pig and Cat-Cancer Patients. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2019, 25, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Favaudon, V.; Caplier, L.; Monceau, V.; Pouzoulet, F.; Sayarath, M.; Fouillade, C.; Poupon, M.-F.; Brito, I.; Hupé, P.; Bourhis, J.; et al. Ultrahigh Dose-Rate FLASH Irradiation Increases the Differential Response between Normal and Tumor Tissue in Mice. Sci. Transl. Med. 2014, 6, 245ra93. [Google Scholar] [CrossRef]
- Saade, G.; Bogaerts, E.; Chiavassa, S.; Blain, G.; Delpon, G.; Evin, M.; Ghannam, Y.; Haddad, F.; Haustermans, K.; Koumeir, C.; et al. Ultrahigh-Dose-Rate Proton Irradiation Elicits Reduced Toxicity in Zebrafish Embryos. Adv. Radiat. Oncol. 2023, 8, 101124. [Google Scholar] [CrossRef]
- Souli, M.P.; Nikitaki, Z.; Puchalska, M.; Brabcová, K.P.; Spyratou, E.; Kote, P.; Efstathopoulos, E.P.; Hada, M.; Georgakilas, A.G.; Sihver, L. Clustered DNA Damage Patterns after Proton Therapy Beam Irradiation Using Plasmid DNA. Int. J. Mol. Sci. 2022, 23, 15606. [Google Scholar] [CrossRef]
- Shi, X.; Yang, Y.; Zhang, W.; Wang, J.; Xiao, D.; Ren, H.; Wang, T.; Gao, F.; Liu, Z.; Zhou, K.; et al. FLASH X-Ray Spares Intestinal Crypts from Pyroptosis Initiated by cGAS-STING Activation upon Radioimmunotherapy. Proc. Natl. Acad. Sci. USA 2022, 119, e2208506119. [Google Scholar] [CrossRef]
- Fouillade, C.; Curras-Alonso, S.; Giuranno, L.; Quelennec, E.; Heinrich, S.; Bonnet-Boissinot, S.; Beddok, A.; Leboucher, S.; Karakurt, H.U.; Bohec, M.; et al. FLASH Irradiation Spares Lung Progenitor Cells and Limits the Incidence of Radio-Induced Senescence. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2020, 26, 1497–1506. [Google Scholar] [CrossRef]
- Levy, K.; Natarajan, S.; Wang, J.; Chow, S.; Eggold, J.T.; Loo, P.E.; Manjappa, R.; Melemenidis, S.; Lartey, F.M.; Schüler, E.; et al. Abdominal FLASH Irradiation Reduces Radiation-Induced Gastrointestinal Toxicity for the Treatment of Ovarian Cancer in Mice. Sci. Rep. 2020, 10, 21600. [Google Scholar] [CrossRef]
- Cooper, C.R.; Jones, D.; Jones, G.D.; Petersson, K. FLASH Irradiation Induces Lower Levels of DNA Damage Ex Vivo, an Effect Modulated by Oxygen Tension, Dose, and Dose Rate. Br. J. Radiol. 2022, 95, 20211150. [Google Scholar] [CrossRef]
- Montay-Gruel, P.; Acharya, M.M.; Gonçalves Jorge, P.; Petit, B.; Petridis, I.G.; Fuchs, P.; Leavitt, R.; Petersson, K.; Gondré, M.; Ollivier, J.; et al. Hypofractionated FLASH-RT as an Effective Treatment against Glioblastoma That Reduces Neurocognitive Side Effects in Mice. Clin. Cancer Res. 2021, 27, 775–784. [Google Scholar] [CrossRef]
- Fu, Q.-B.; Zhang, Y.; Wang, Y.-C.; Huang, T.-C.; Zhu, H.-Y.; Deng, X.-W. Systematic Analysis and Modeling of the FLASH Sparing Effect as a Function of Dose and Dose Rate. Nucl. Sci. Tech. 2024, 35, 171. [Google Scholar] [CrossRef]
- Singers Sørensen, B.; Krzysztof Sitarz, M.; Ankjærgaard, C.; Johansen, J.; Andersen, C.E.; Kanouta, E.; Overgaard, C.; Grau, C.; Poulsen, P. In Vivo Validation and Tissue Sparing Factor for Acute Damage of Pencil Beam Scanning Proton FLASH. Radiother. Oncol. 2022, 167, 109–115. [Google Scholar] [CrossRef]
- Diffenderfer, E.S.; Verginadis, I.I.; Kim, M.M.; Shoniyozov, K.; Velalopoulou, A.; Goia, D.; Putt, M.; Hagan, S.; Avery, S.; Teo, K.; et al. Design, Implementation, and in Vivo Validation of a Novel Proton FLASH Radiation Therapy System. Int. J. Radiat. Oncol. Biol. Phys. 2020, 106, 440–448. [Google Scholar] [CrossRef]
- Sroussi, H.Y.; Epstein, J.B.; Bensadoun, R.-J.; Saunders, D.P.; Lalla, R.V.; Migliorati, C.A.; Heaivilin, N.; Zumsteg, Z.S. Common Oral Complications of Head and Neck Cancer Radiation Therapy: Mucositis, Infections, Saliva Change, Fibrosis, Sensory Dysfunctions, Dental Caries, Periodontal Disease, and Osteoradionecrosis. Cancer Med. 2017, 6, 2918–2931. [Google Scholar] [CrossRef]
- Wanstall, H.C.; Korysko, P.; Farabolini, W.; Corsini, R.; Bateman, J.J.; Rieker, V.; Hemming, A.; Henthorn, N.T.; Merchant, M.J.; Santina, E.; et al. VHEE FLASH Sparing Effect Measured at CLEAR, CERN with DNA Damage of pBR322 Plasmid as a Biological Endpoint. Sci. Rep. 2024, 14, 14803. [Google Scholar] [CrossRef]
- Luo, H.; Yuan, Q.-G.; Zhang, P.; Ma, L.; Mao, R.; Lei, H.; Ge, H. Ultra-high dose rate irradiation induced DNA strand break in plasmid DNA. Chin. J. Radiol. Med. Prot. 2023, 43, 161–167. [Google Scholar] [CrossRef]
- Konishi, T.; Kusumoto, T.; Hiroyama, Y.; Kobayashi, A.; Mamiya, T.; Kodaira, S. Induction of DNA Strand Breaks and Oxidative Base Damages in Plasmid DNA by Ultra-High Dose Rate Proton Irradiation. Int. J. Radiat. Biol. 2023, 99, 1405–1412. [Google Scholar] [CrossRef]
- Perstin, A.; Poirier, Y.; Sawant, A.; Tambasco, M. Quantifying the DNA-Damaging Effects of FLASH Irradiation With Plasmid DNA. Int. J. Radiat. Oncol. Biol. Phys. 2022, 113, 437–447. [Google Scholar] [CrossRef]
- Vozenin, M.-C.; Bourhis, J.; Durante, M. Towards Clinical Translation of FLASH Radiotherapy. Nat. Rev. Clin. Oncol. 2022, 19, 791–803. [Google Scholar] [CrossRef] [PubMed]
- Limoli, C.L.; Vozenin, M.-C. Reinventing Radiobiology in the Light of FLASH Radiotherapy. Annu. Rev. Cancer Biol. 2023, 7, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Adrian, G.; Konradsson, E.; Beyer, S.; Wittrup, A.; Butterworth, K.T.; McMahon, S.J.; Ghita, M.; Petersson, K.; Ceberg, C. Cancer Cells Can Exhibit a Sparing FLASH Effect at Low Doses Under Normoxic In Vitro-Conditions. Front. Oncol. 2021, 11, 686142. [Google Scholar] [CrossRef]
- Hatahet, Z.; Kow, Y.W.; Purmal, A.A.; Cunningham, R.P.; Wallace, S.S. New Substrates for Old Enzymes. 5-Hydroxy-2’-Deoxycytidine and 5-Hydroxy-2’-Deoxyuridine Are Substrates for Escherichia Coli Endonuclease III and Formamidopyrimidine DNA N-Glycosylase, While 5-Hydroxy-2’-Deoxyuridine Is a Substrate for Uracil DNA N-Glycosylase. J. Biol. Chem. 1994, 269, 18814–18820. [Google Scholar]
- Dizdaroglu, M.; Laval, J.; Boiteux, S. Substrate Specificity of the Escherichia Coli Endonuclease III: Excision of Thymine- and Cytosine-Derived Lesions in DNA Produced by Radiation-Generated Free Radicals. Biochemistry 1993, 32, 12105–12111. [Google Scholar] [CrossRef]
- Friedberg, E.C.; Walker, G.C.; Siede, W.; Wood, R.D. DNA Repair and Mutagenesis; American Society for Microbiology Press: Washington, DC, USA, 2005; ISBN 978-1-55581-319-2. [Google Scholar]
- Krokan, H.E.; Standal, R.; Slupphaug, G. DNA Glycosylases in the Base Excision Repair of DNA. Biochem. J. 1997, 325, 1–16. [Google Scholar] [CrossRef]
- Seeberg, E.; Eide, L.; Bjørås, M. The Base Excision Repair Pathway. Trends Biochem. Sci. 1995, 20, 391–397. [Google Scholar] [CrossRef]
- Prakash, A.; Doublié, S.; Wallace, S.S. Chapter 4—The Fpg/Nei Family of DNA Glycosylases: Substrates, Structures, and Search for Damage. In Progress in Molecular Biology and Translational Science; Doetsch, P.W., Ed.; Mechanisms of DNA Repair; Academic Press: Cambridge, MA, USA, 2012; Volume 110, pp. 71–91. [Google Scholar]
- Ikeda, S.; Biswas, T.; Roy, R.; Izumi, T.; Boldogh, I.; Kurosky, A.; Mitra, S. Purification and Characterization of Human NTH1, a Homolog of Escherichia Coli Endonuclease III: DIRECT IDENTIFICATION OF LYS-212 AS THE ACTIVE NUCLEOPHILIC RESIDUE. J. Biol. Chem. 1998, 273, 21585–21593. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, C.; Hu, A.; Wang, Y.; Zhou, W.; Qiu, J.; Wang, J.; Fu, Q.; Huang, T.; Zha, H.; et al. Influencing Factors of the FLASH Effect: Unveiling the Importance of Free Radicals. arXiv 2024, arXiv:2411.19194. [Google Scholar]
- Labarbe, R.; Hotoiu, L.; Barbier, J.; Favaudon, V. A Physicochemical Model of Reaction Kinetics Supports Peroxyl Radical Recombination as the Main Determinant of the FLASH Effect. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2020, 153, 303–310. [Google Scholar] [CrossRef]
- Froidevaux, P.; Grilj, V.; Bailat, C.; Geyer, W.R.; Bochud, F.; Vozenin, M.-C. FLASH Irradiation Does Not Induce Lipid Peroxidation in Lipids Micelles and Liposomes. Radiat. Phys. Chem. 2023, 205, 110733. [Google Scholar] [CrossRef]
- Kong, F.-Q.; Wang, X.; Ni, M.-N.; Sui, L.; Yang, M.-J. Effect of Concentration of DNA and Dose Rate in DNA Damage Induced by γ Ray. Nucl. Phys. Rev. 2007, 24, 103–107. [Google Scholar] [CrossRef]
- Hanai, R.; Yazu, M.; Hieda, K. On the Experimental Distinction between Ssbs and Dsbs in Circular DNA. Int. J. Radiat. Biol. 1998, 73, 475–479. [Google Scholar] [CrossRef] [PubMed]
- McMahon, S.J.; Currell, F.J. A Robust Curve-Fitting Procedure for the Analysis of Plasmid DNA Strand Break Data from Gel Electrophoresis. Radiat. Res. 2011, 175, 797–805. [Google Scholar] [CrossRef]
- Povirk, L.F.; Wübter, W.; Köhnlein, W.; Hutchinson, F. DNA Double-Strand Breaks and Alkali-Labile Bonds Produced by Bleomycin. Nucleic Acids Res. 1977, 4, 3573–3580. [Google Scholar] [CrossRef]
Radiation Quality | Energy (MeV) | Plasmid Concentration (ng/ul) | Dose (Gy) | Mean Dose Rate (Gy/s) | Enzyme | (×10−3 SSB/Gy/molecule) | (×10−4 DSB/Gy/molecule) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 95%CI | p-Value (t-Test) | Mean | 95%CI | p-Value (t-Test) | ||||||
Electron * | 6 | 15 | 0–60 | UHDR | \ | 22.1 | ±0.4 | <0.0001 | 0.9 | ±0.4 | <0.0001 |
CONV | 25.9 | ±0.5 | 1.5 | ±0.6 | |||||||
UHDR | Fpg | 57.7 | ±1.7 | <0.0001 | 6.9 | ±1.3 | <0.0001 | ||||
CONV | 71.4 | ±2.5 | 10.2 | ±1.3 | |||||||
UHDR | Fpg+ Nth | 65.4 | ±2.0 | <0.0001 | 2.5 | ±1.5 | <0.0001 | ||||
CONV | 84.0 | ±4.6 | 12.8 | ±1.8 | |||||||
50 | 0–40 | UHDR | \ | 9.0 | ±0.3 | 0.0004 | |||||
CONV | 10.5 | ±0.3 | |||||||||
UHDR | Fpg | 28.0 | ±1.2 | <0.0001 | |||||||
CONV | 31.5 | ±1.4 | |||||||||
UHDR | Fpg+ Nth | 31.7 | ±2.0 | 0.0003 | |||||||
CONV | 36.0 | ±2.4 | |||||||||
Electron [17] | 201 | 100 | 0–150 | 2E9 | \ | 9.8 | ±0.4 | \ | 2.6 | ±0.1 | \ |
0.08 | 13.3 | ±0.6 | 2.2 | ±0.3 | |||||||
Electron [18] | 9 | 0–30 | 125 | 10.9 | ±0.4 | 1.1 | ±0.4 | ||||
0.05 | 11.8 | ±0.4 | 8.8 | ±0.4 | |||||||
Proton [19] | 59.5 | 50 | 0–65 | 48.6 | 12.5 | ±1.0 | 2.5 | ±0.2 | |||
0.057 | 16.9 | ±1.0 | 2.7 | ±0.4 | |||||||
48.6 | Fpg | 20.1 | ±1.2 | 4.3 | ±0.4 | ||||||
0.057 | 26.2 | ±1.4 | 5.0 | ±0.4 | |||||||
Proton [2] | 27.5 | 50 | 0–100 | 40 | \ | 8.8 | ±0.3 | 1.1 | ±0.3 | ||
0.05 | 10.8 | ±1.3 | 1.2 | ±0.4 | |||||||
Electron [20] | 16 | 24 | 0–30 | 93.2 | 59.2 | ±4.9 | 5.4 | ±4.3 | |||
46.6 | 53.3 | ±3.1 | 5.4 | ±3.3 | |||||||
0.167 | 145.0 | ±27.4 | 8.1 | ±5.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhang, Y.; Huang, C.; Fu, Q.; Huang, T. Impact of Ultra-High-Dose-Rate Irradiation on DNA: Single-Strand Breaks and Base Damage. Int. J. Mol. Sci. 2025, 26, 1800. https://doi.org/10.3390/ijms26051800
Wang Y, Zhang Y, Huang C, Fu Q, Huang T. Impact of Ultra-High-Dose-Rate Irradiation on DNA: Single-Strand Breaks and Base Damage. International Journal of Molecular Sciences. 2025; 26(5):1800. https://doi.org/10.3390/ijms26051800
Chicago/Turabian StyleWang, Yucheng, Yan Zhang, Chenyang Huang, Qibin Fu, and Tuchen Huang. 2025. "Impact of Ultra-High-Dose-Rate Irradiation on DNA: Single-Strand Breaks and Base Damage" International Journal of Molecular Sciences 26, no. 5: 1800. https://doi.org/10.3390/ijms26051800
APA StyleWang, Y., Zhang, Y., Huang, C., Fu, Q., & Huang, T. (2025). Impact of Ultra-High-Dose-Rate Irradiation on DNA: Single-Strand Breaks and Base Damage. International Journal of Molecular Sciences, 26(5), 1800. https://doi.org/10.3390/ijms26051800