Genomic-Inbreeding Landscape and Selection Signatures in the Polo Argentino Horse Breed
Abstract
:1. Introduction
2. Results
2.1. Heterozygosity and H-W Equilibrium Analysis
2.2. ROH Characterization
2.3. Inbreeding Analysis
2.4. ROHi Identification and Functional Analysis
3. Discussion
4. Materials and Methods
4.1. Samples
4.2. DNA Extraction and Genotyping
Genotype Quality Control
4.3. Genomic Analysis
4.3.1. Estimation of Heterozygosity and H-W Equilibrium in the Population
4.3.2. Inbreeding Coefficient Based on ROH
4.3.3. ROH Island (ROHi) Identification
4.3.4. Functional Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Machmoum, M.; Boujenane, I.; Azelhak, R.; Badaoui, B.; Petit, D.; Piro, M. Genetic Diversity and Population Structure of Arabian Horse Populations Using Microsatellite Markers. J. Equine Vet. Sci. 2020, 93, 103200. [Google Scholar] [CrossRef] [PubMed]
- Cole, J.B. Perspective: Can we actually do anything about inbreeding? J. Dairy Sci. 2024, 107, 643–648. [Google Scholar] [CrossRef]
- Wellmann, R.; Hartwig, S.; Bennewitz, J. Optimum contribution selection for conserved populations with historic migration. Genet. Sel. Evol. 2012, 44, 34. [Google Scholar] [CrossRef]
- Rothschild, M.F. Genomics and genetics: A daily double for the horse industry. Equine Vet. J. 2017, 49, 260–262. [Google Scholar] [CrossRef]
- Kardos, M.; Luikart, G.; Allendorf, F.W. Measuring individual inbreeding in the age of genomics: Marker-based measures are better than pedigrees. Heredity 2015, 115, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Leroy, G. Inbreeding depression in livestock species: Review and meta-analysis. Anim. Genet. 2014, 45, 618–628. [Google Scholar] [CrossRef]
- Charlesworth, D.; Willis, J.H. The genetics of inbreeding depression. Nat. Rev. Genet. 2009, 10, 783–796. [Google Scholar] [CrossRef]
- McQuillan, R.; Leutenegger, A.L.; Abdel-Rahman, R.; Franklin, C.S.; Pericic, M.; Barac-Lauc, L.; Smolej-Narancic, N.; Janicijevic, B.; Polasek, O.; Tenesa, A.; et al. Runs of Homozygosity in European Populations. Am. J. Hum. Genet. 2008, 83, 359–372. [Google Scholar] [CrossRef] [PubMed]
- Hill, E.W.; McGivney, B.A.; MacHugh, D.E. Inbreeding depression and durability in the North American Thoroughbred horse. Anim. Genet. 2023, 54, 408–411. [Google Scholar] [CrossRef]
- McGivney, B.A.; Han, H.; Corduff, L.R.; Katz, L.M.; Tozaki, T.; MacHugh, D.E.; Hill, E.W. Genomic inbreeding trends, influential sire lines and selection in the global Thoroughbred horse population. Sci. Rep. 2020, 10, 466. [Google Scholar] [CrossRef]
- Fisher, R.A. A fuller theory of junctions in inbreeding. Heredity 1954, 8, 187–197. [Google Scholar] [CrossRef]
- Doekes, H.P.; Veerkamp, R.F.; Bijma, P.; de Jong, G.; Hiemstra, S.J.; Windig, J.J. Inbreeding depression due to recent and ancient inbreeding in Dutch Holstein-Friesian dairy cattle. Genet. Sel. Evol. 2019, 51, 54. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, K.A.; Panigrahi, M.; Kumar, H.; Bhushan, B.; Dutt, T.; Mishra, B.P. Selection signatures in livestock genome: A review of concepts, approaches and applications. Livest. Sci. 2020, 241, 104257. [Google Scholar] [CrossRef]
- Grilz-Seger, G.; Druml, T.; Neuditschko, M.; Mesarič, M.; Cotman, M.; Brem, G. Analysis of ROH patterns in the Noriker horse breed reveals signatures of selection for coat color and body size. Anim. Genet. 2019, 50, 334–346. [Google Scholar] [CrossRef]
- Laseca, N.; Molina, A.; Ramón, M.; Valera, M.; Azcona, F.; Encina, A.; Demyda-Peyrás, S. Fine-Scale Analysis of Runs of Homozygosity Islands Affecting Fertility in Mares. Front. Vet. Sci. 2022, 9, 754028. [Google Scholar] [CrossRef] [PubMed]
- Bower, M.A.; McGivney, B.A.; Campana, M.G.; Gu, J.; Andersson, L.S.; Barrett, E.; Davis, C.R.; Mikko, S.; Stock, F.; Voronkova, V.; et al. The genetic origin and history of speed in the Thoroughbred racehorse. Nat. Commun. 2012, 3, 643. [Google Scholar] [CrossRef]
- Azcona, F.; Valera, M.; Molina, A.; Trigo, P.; Peral-Garcia, P.; Sole, M.; Demyda-Peyras, S. Impact of reproductive biotechnologies on genetic variability of Argentine Polo horses. Livest. Sci. 2020, 231, 103848. [Google Scholar] [CrossRef]
- Azcona, F.; Molina Alcalá, A.; Peral Garcia, P.; Demyda-Peyrás, S. Genomic data reveals a serious underestimation of pedigree inbreeding levels in Polo Argentino horses. In Proceedings of the 2021 International Society for Animal Genetics Meeting, Virtual, 26–30 July 2021. [Google Scholar]
- Poyato-Bonilla, J.; Laseca, N.; Demyda Peyrás, S.; Molina Alcalá, A.; Valera, M. 500 years of breeding in the Carthusian Strain of Pura Raza Español horse: An evolutional analysis using genealogical and genomic data. J. Anim. Breed. Genet. 2021, 139, 84–99. [Google Scholar] [CrossRef]
- Druml, T.; Neuditschko, M.; Grilz-Seger, G.; Horna, M.; Ricard, A.; Mesaric, M.; Cotman, M.; Pausch, H.; Brem, G. Population Networks Associated with Runs of Homozygosity Reveal New Insights into the Breeding History of the Haflinger Horse. J. Hered. 2018, 109, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Petersen, J.L.; Mickelson, J.R.; Cothran, E.G.; Andersson, L.S.; Axelsson, J.; Bailey, E.; Bannasch, D.; Binns, M.M.; Borges, A.S.; Brama, P.; et al. Genetic Diversity in the Modern Horse Illustrated from Genome-Wide SNP Data. PLoS ONE 2013, 8, e54997. [Google Scholar] [CrossRef] [PubMed]
- Martinez, M.M.; Costa, M.; Corva, P.M. Analysis of Genetic Variability in the Argentine Polo Horse With a Panel of Microsatellite Markers. J. Equine Vet. Sci. 2021, 96, 103320. [Google Scholar] [CrossRef]
- Cunningham, E.P.; Dooley, J.J.; Splan, R.K.; Bradley, D.G. Microsatellite diversity, pedigree relatedness and the contributions of founder lineages to thoroughbred horses. Anim. Genet. 2001, 32, 360–364. [Google Scholar] [CrossRef]
- Todd, E.; Ho, S.; Thomson, P.; Ang, R.; Velie, B.; Hamilton, N. Founder-specific inbreeding depression affects racing performance in Thoroughbred horses. Sci. Rep. 2018, 8, 6167. [Google Scholar] [CrossRef]
- Hill, E.W.; Stoffel, M.A.; McGivney, B.A.; MacHugh, D.E.; Pemberton, J.M. Inbreeding depression and the probability of racing in the Thoroughbred horse. Proc. Biol. Sci. 2022, 289, 20220487. [Google Scholar] [CrossRef] [PubMed]
- Meyermans, R.; Gorssen, W.; Buys, N.; Janssens, S. How to study runs of homozygosity using PLINK? A guide for analyzing medium density SNP data in livestock and pet species. BMC Genom. 2020, 21, 94. [Google Scholar] [CrossRef] [PubMed]
- Schurink, A.; Shrestha, M.; Eriksson, S.; Bosse, M.; Bovenhuis, H.; Back, W.; Johansson, A.M.; Ducro, B.J. The Genomic Makeup of Nine Horse Populations Sampled in the Netherlands. Genes 2019, 10, 480. [Google Scholar] [CrossRef] [PubMed]
- Sumreddee, P.; Hay, E.H.; Toghiani, S.; Roberts, A.; Aggrey, S.E.; Rekaya, R. Grid search approach to discriminate between old and recent inbreeding using phenotypic, pedigree and genomic information. BMC Genom. 2021, 22, 538. [Google Scholar] [CrossRef]
- Baumung, R.; Farkas, J.; Boichard, D.; Mészáros, G.; Sölkner, J.; Curik, I. grain: A computer program to calculate ancestral and partial inbreeding coefficients using a gene dropping approach. J. Anim. Breed. Genet. 2015, 132, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Hedrick, P.W.; Garcia-Dorado, A. Understanding Inbreeding Depression, Purging, and Genetic Rescue. Trends Ecol. Evol. 2016, 31, 940–952. [Google Scholar] [CrossRef] [PubMed]
- Fawcett, J.A.; Sato, F.; Sakamoto, T.; Iwasaki, W.M.; Tozaki, T.; Innan, H. Genome-wide SNP analysis of Japanese Thoroughbred racehorses. PLoS ONE 2019, 14, e0218407. [Google Scholar] [CrossRef] [PubMed]
- Petersen, J.L.; Mickelson, J.R.; Rendahl, A.K.; Valberg, S.J.; Andersson, L.S.; Axelsson, J.; Bailey, E.; Bannasch, D.; Binns, M.M.; Borges, A.S.; et al. Genome-Wide Analysis Reveals Selection for Important Traits in Domestic Horse Breeds. PLoS Genet. 2013, 9, e1003211. [Google Scholar] [CrossRef]
- Yokomori, T.; Ohnuma, A.; Tozaki, T.; Segawa, T.; Itou, T. Identification of Personality-Related Candidate Genes in Thoroughbred Racehorses Using a Bioinformatics-Based Approach Involving Functionally Annotated Human Genes. Animals 2023, 13, 769. [Google Scholar] [CrossRef] [PubMed]
- Azcona, F.; Karlau, A.; Trigo, P.; Molina, A.; Demyda-Peyrás, S. Genomic tools for early selection among Thoroughbreds and Polo Argentino horses for practicing polo. J. Equine Vet. Sci. 2024, 138, 105098. [Google Scholar] [CrossRef] [PubMed]
- Wickens, C.; Brooks, S.A. Genetics of Equine Behavioral Traits. Vet. Clin. N. Am. Equine Pract. 2020, 36, 411–424. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, R.P.; Demyda Peyrás, S.; Prado Silva, R.H.; Arroyo, P.; Trigo, P.I. Análisis de componentes principales en las etapas clasificatorias de una prueba de doma. In Proceedings of the XXXIII Conferencias Internacionales de Veterinaria Equina, FCV UNR, San Antonio de Areco, Argentina, 7–8 November 2022. [Google Scholar]
- Galizzi Vecchiotti, G.; Galanti, R. Evidence of heredity of cribbing, weaving and stall-walking in thoroughbred horses. Livest. Prod. Sci. 1986, 14, 91–95. [Google Scholar] [CrossRef]
- Yokomori, T.; Tozaki, T.; Ohnuma, A.; Ishimaru, M.; Sato, F.; Hori, Y.; Segawa, T.; Itou, T. Non-Synonymous Substitutions in Cadherin 13, Solute Carrier Family 6 Member 4, and Monoamine Oxidase A Genes are Associated with Personality Traits in Thoroughbred Horses. Behav. Genet. 2024, 54, 333–341. [Google Scholar] [CrossRef] [PubMed]
- McGivney, B.A.; Hernandez, B.; Katz, L.M.; MacHugh, D.E.; McGovern, S.P.; Parnell, A.C.; Wiencko, H.L.; Hill, E.W. A genomic prediction model for racecourse starts in the Thoroughbred horse. Anim. Genet. 2019, 50, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Wang, K.S.; Aragam, N. NTM and NR3C2 polymorphisms influencing intelligence: Family-based association studies. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2011, 35, 154–160. [Google Scholar] [CrossRef]
- Gurgul, A.; Jasielczuk, I.; Semik-Gurgul, E.; Pawlina-Tyszko, K.; Stefaniuk-Szmukier, M.; Szmatola, T.; Polak, G.; Tomczyk-Wrona, I.; Bugno-Poniewierska, M. A genome-wide scan for diversifying selection signatures in selected horse breeds. PLoS ONE 2019, 14, e0210751. [Google Scholar] [CrossRef]
- Velie, B.D.; Fegraeus, K.J.; Solé, M.; Rosengren, M.K.; Røed, K.H.; Ihler, C.-F.; Strand, E.; Lindgren, G. A genome-wide association study for harness racing success in the Norwegian-Swedish coldblooded trotter reveals genes for learning and energy metabolism. BMC Genet. 2018, 19, 80. [Google Scholar] [CrossRef]
- Felício, D.; du Mérac, T.R.; Amorim, A.; Martins, S. Functional implications of paralog genes in polyglutamine spinocerebellar ataxias. Hum. Genet. 2023, 142, 1651–1676. [Google Scholar] [CrossRef] [PubMed]
- Sturgill, E.R.; Aoki, K.; Lopez, P.H.; Colacurcio, D.; Vajn, K.; Lorenzini, I.; Majić, S.; Yang, W.H.; Heffer, M.; Tiemeyer, M.; et al. Biosynthesis of the major brain gangliosides GD1a and GT1b. Glycobiology 2012, 22, 1289–1301. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Lenk, G.M.; Mikusevic, V.; Mindell, J.A.; Meisler, M.H. The chloride antiporter CLCN7 is a modifier of lysosome dysfunction in FIG4 and VAC14 mutants. PLoS Genet. 2023, 19, e1010800. [Google Scholar] [CrossRef]
- Corona-Rivera, J.R.; Zenteno, J.C.; Ordoñez-Labastida, V.; Cruz-Cruz, J.P.; Cortés-Pastrana, R.C.; Peña-Padilla, C.; Bobadilla-Morales, L.; Corona-Rivera, A.; Martínez-Herrera, A. MTSS2-related neurodevelopmental disorder: Further delineation of the phenotype. Eur. J. Med. Genet. 2023, 66, 104826. [Google Scholar] [CrossRef]
- Araujo, A.C.; Carneiro, P.L.S.; Alvarenga, A.B.; Oliveira, H.R.; Miller, S.P.; Retallick, K.; Brito, L.F. Haplotype-Based Single-Step GWAS for Yearling Temperament in American Angus Cattle. Genes 2021, 13, 17. [Google Scholar] [CrossRef]
- Wakatsuki, S.; Araki, T. Novel insights into the mechanism of reactive oxygen species-mediated neurodegeneration. Neural Regen. Res. 2023, 18, 746–749. [Google Scholar] [CrossRef] [PubMed]
- Babaev, O.; Cruces-Solis, H.; Piletti Chatain, C.; Hammer, M.; Wenger, S.; Ali, H.; Karalis, N.; de Hoz, L.; Schlüter, O.M.; Yanagawa, Y.; et al. IgSF9b regulates anxiety behaviors through effects on centromedial amygdala inhibitory synapses. Nat. Commun. 2018, 9, 5400. [Google Scholar] [CrossRef]
- Coleman, J.R.I.; Bryois, J.; Gaspar, H.A.; Jansen, P.R.; Savage, J.E.; Skene, N.; Plomin, R.; Muñoz-Manchado, A.B.; Linnarsson, S.; Crawford, G.; et al. Biological annotation of genetic loci associated with intelligence in a meta-analysis of 87,740 individuals. Mol. Psychiatry 2019, 24, 182–197. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Ming, C.; Li, Y.; Su, L.Y.; Su, Y.H.; Otecko, N.O.; Liu, H.Q.; Wang, M.S.; Yao, Y.G.; Li, H.P.; et al. Rapid Evolution of Genes Involved in Learning and Energy Metabolism for Domestication of the Laboratory Rat. Mol. Biol. Evol. 2017, 34, 3148–3153. [Google Scholar] [CrossRef] [PubMed]
- Aomine, Y.; Sakurai, K.; Macpherson, T.; Ozawa, T.; Miyamoto, Y.; Yoneda, Y.; Oka, M.; Hikida, T. Importin α3 (KPNA3) Deficiency Augments Effortful Reward-Seeking Behavior in Mice. Front. Neurosci. 2022, 16, 905991. [Google Scholar] [CrossRef]
- Deutschman, E.; Ward, J.R.; Kumar, A.; Ray, G.; Welch, N.; Lemieux, M.E.; Dasarathy, S.; Longworth, M.S. Condensin II protein dysfunction impacts mitochondrial respiration and mitochondrial oxidative stress responses. J. Cell Sci. 2019, 132, jcs233783. [Google Scholar] [CrossRef] [PubMed]
- Muhammad Aslam, M.K.; Sharma, V.K.; Pandey, S.; Kumaresan, A.; Srinivasan, A.; Datta, T.K.; Mohanty, T.K.; Yadav, S. Identification of biomarker candidates for fertility in spermatozoa of crossbred bulls through comparative proteomics. Theriogenology 2018, 119, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Mi, Y.; Shi, Z.; Li, J. Spata19 is critical for sperm mitochondrial function and male fertility. Mol. Reprod. Dev. 2015, 82, 907–913. [Google Scholar] [CrossRef] [PubMed]
- Obholz, K.L.; Akopyan, A.; Waymire, K.G.; MacGregor, G.R. FNDC3A is required for adhesion between spermatids and Sertoli cells. Dev. Biol. 2006, 298, 498–513. [Google Scholar] [CrossRef]
- Bi, Y.; He, Y.; Huang, J.Y.; Xu, L.; Tang, N.; He, T.C.; Feng, T. Induced maturation of hepatic progenitor cells in vitro. Braz. J. Med. Biol. Res. 2013, 46, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Müller, D.; Kuiper, H.; Böneker, C.; Mömke, S.; Drögemüller, C.; Chowdhary, B.P.; Distl, O. Assignment of BGLAP, BMP2, CHST4, SLC1A3, SLC4A1, SLC9A5 and SLC20A1 to equine chromosomes by FISH and confirmation by RH mapping. Anim. Genet. 2005, 36, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Kang, J.K.; Jung, Y.H.; Lee, S.B.; Rametta, R.; Dongiovanni, P.; Valenti, L.; Pajvani, U.B. Adipocyte PHLPP2 inhibition prevents obesity-induced fatty liver. Nat. Commun. 2021, 12, 1822. [Google Scholar] [CrossRef]
- Yan, J.; Lawson, J.E.; Reed, L.J. Role of the regulatory subunit of bovine pyruvate dehydrogenase phosphatase. Proc. Natl. Acad. Sci. USA 1996, 93, 4953–4956. [Google Scholar] [CrossRef] [PubMed]
- Votion, D.M.; Gnaiger, E.; Lemieux, H.; Mouithys-Mickalad, A.; Serteyn, D. Physical fitness and mitochondrial respiratory capacity in horse skeletal muscle. PLoS ONE 2012, 7, e34890. [Google Scholar] [CrossRef]
- Littiere, T.O.; Castro, G.H.F.; Rodriguez, M.d.P.R.; Bonafé, C.M.; Magalhães, A.F.B.; Faleiros, R.R.; Vieira, J.I.G.; Santos, C.G.; Verardo, L.L. Identification and Functional Annotation of Genes Related to Horses’ Performance: From GWAS to Post-GWAS. Animals 2020, 10, 1173. [Google Scholar] [CrossRef]
- Arya, S.B.; Kumar, G.; Kaur, H.; Kaur, A.; Tuli, A. ARL11 regulates lipopolysaccharide-stimulated macrophage activation by promoting mitogen-activated protein kinase (MAPK) signaling. J. Biol. Chem. 2018, 293, 9892–9909. [Google Scholar] [CrossRef] [PubMed]
- Dos, S.J.T.; Dos, S.C.R.; Alcântara-Neves, N.M.; Barreto, M.L.; Figueiredo, C.A. Variants in the CYSLTR2 are associated with asthma, atopy markers and helminths infections in the Brazilian population. Prostaglandins Leukot. Essent. Fatty Acids 2019, 145, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Ben Hamouda, S.; Miglino, M.A.; de Sá Schiavo Matias, G.; Beauchamp, G.; Lavoie, J.P. Asthmatic Bronchial Matrices Determine the Gene Expression and Behavior of Smooth Muscle Cells in a 3D Culture Model. Front. Allergy 2021, 2, 762026. [Google Scholar] [CrossRef] [PubMed]
- Devienne, M.F.; Guezennec, C.Y. Energy expenditure of horse riding. Eur. J. Appl. Physiol. 2000, 82, 499–503. [Google Scholar] [CrossRef]
- Weibel, E.R.; Taylor, C.R.; Hoppeler, H.; Karas, R.H. Adaptive variation in the mammalian respiratory system in relation to energetic demand: I. Introduction to problem and strategy. Respir. Physiol. 1987, 69, 1–6. [Google Scholar] [CrossRef]
- Ahern, B.J.; Sole, A.; de Klerk, K.; Hogg, L.R.; Vallance, S.A.; Bertin, F.R.; Franklin, S.H. Evaluation of postsale endoscopy as a predictor of future racing performance in an Australian thoroughbred yearling population. Aust. Vet. J. 2022, 100, 254–260. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; De Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed]
- Biscarini, F.; Cozzi, P.; Gaspa, G.; Marras, G. detectRUNS: Detect Runs of Homozygosity and Runs of Heterozygosity in Diploid Genomes. 2019. Available online: https://CRAN.R-project.org/package=detectRUNS (accessed on 6 November 2024).
- Lencz, T.; Lambert, C.; DeRosse, P.; Burdick, K.E.; Morgan, T.V.; Kane, J.M.; Kucherlapati, R.; Malhotra, A.K. Runs of homozygosity reveal highly penetrant recessive loci in schizophrenia. Proc. Natl. Acad. Sci. USA 2007, 104, 19942–19947. [Google Scholar] [CrossRef]
- Purfield, D.C.; Berry, D.P.; McParland, S.; Bradley, D.G. Runs of homozygosity and population history in cattle. BMC Genet. 2012, 13, 70. [Google Scholar] [CrossRef] [PubMed]
- Goszczynski, D.; Molina, A.; Terán, E.; Morales-Durand, H.; Ross, P.; Cheng, H.; Giovambattista, G.; Demyda-Peyrás, S. Runs of homozygosity in a selected cattle population with extremely inbred bulls: Descriptive and functional analyses revealed highly variable patterns. PLoS ONE 2018, 13, e0200069. [Google Scholar] [CrossRef] [PubMed]
- Huber, W.; Carey, V.J.; Gentleman, R.; Anders, S.; Carlson, M.; Carvalho, B.S.; Bravo, H.C.; Davis, S.; Gatto, L.; Girke, T.; et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat. Methods 2015, 12, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, M. HelloRanges: Introduce *Ranges to Bedtools Users. R Package Version 1.28.0. 2023. Available online: https://bioconductor.org/packages/HelloRanges (accessed on 6 November 2024).
ROH Length | Number of ROH | Percentage of Total ROH | Mean Length ± SD (Mb) | Percentage of Horses with ROH |
---|---|---|---|---|
<5.5 Mb | 30,760 | 76% | 3 ± 1 | 100% |
≥5.5–<8.3 Mb | 5057 | 13% | 6.7 ± 0.8 | 99.8% |
≥8.3–<16.6 Mb | 3672 | 9% | 11.1 ± 2.2 | 100% |
≥16.6 Mb | 750 | 2% | 22.4 ± 7 | 75.7% |
Total | 40,239 | 100% | 4.6 ± 3.8 | 100% |
Mean ± SD | Percentage of Total FROH | |
---|---|---|
FROH | 0.151 ± 0.03 | - |
FROH3G | 0.011 ± 0.01 | 7% |
FROH6G | 0.041 ± 0.02 | 27% |
FROH9G | 0.069 ± 0.02 | 46% |
FROHANC | 0.082 ± 0.01 | 54% |
ROHi | ECA | No. SNPs | Start | End | Length (pb) | Mean p | Genes |
---|---|---|---|---|---|---|---|
1 | 1 | 3 | 47,620,527 | 47,855,868 | 235,341 | 0.007 | No genes found |
2 | 3 | 91 | 21,763,318 | 24,717,282 | 2,953,964 | 0.0046 | A0A3Q2H454_HORSE, A0A3Q2HI84_HORSE, AARS1, ATXN1L, CALB2, CHST4, CLEC18B, CMTR2, COG4, DHODH, DHX38, EXOSC6, FA2H, FCSK, GLG1, HYDIN, IL34, IST1, IST1 homolog (A0A3Q2HHC8_HORSE), IST1 homolog (F7DPV9_HORSE), LOC100054938, MARVELD3, MLKL, MTSS2, PDPR, PHLPP2, PKD1L3, PMFBP1, RFWD3, SF3B3, ST3GAL2, TAT, TLE7, TXNL4B, VAC14, WDR59, ZFHX3, ZNF19, ZNF23, ZNF821, ZNRF1 |
3 | 7 | 64 | 40,715,678 | 43,730,750 | 3,015,072 | 0.0017 | ACAD8, B3GAT1, GLB1L2, IGSF9B, JAM3, LOC100072895, NCAPD3, NTM, OPCML, RNA-directed DNA polymerase, SPATA19, THYN1 |
4 | 17 | 39 | 20,602,482 | 22,313,205 | 1,710,723 | 0.0044 | ARL11, CAB39L, CDADC1, CYSLTR2, EBPL, FNDC3A, KCNRG, KPNA3, MLNR, PHF11, RCBTB1, SETDB2, SPRYD7, TRIM13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azcona, F.; Molina, A.; Demyda-Peyrás, S. Genomic-Inbreeding Landscape and Selection Signatures in the Polo Argentino Horse Breed. Int. J. Mol. Sci. 2025, 26, 26. https://doi.org/10.3390/ijms26010026
Azcona F, Molina A, Demyda-Peyrás S. Genomic-Inbreeding Landscape and Selection Signatures in the Polo Argentino Horse Breed. International Journal of Molecular Sciences. 2025; 26(1):26. https://doi.org/10.3390/ijms26010026
Chicago/Turabian StyleAzcona, Florencia, Antonio Molina, and Sebastián Demyda-Peyrás. 2025. "Genomic-Inbreeding Landscape and Selection Signatures in the Polo Argentino Horse Breed" International Journal of Molecular Sciences 26, no. 1: 26. https://doi.org/10.3390/ijms26010026
APA StyleAzcona, F., Molina, A., & Demyda-Peyrás, S. (2025). Genomic-Inbreeding Landscape and Selection Signatures in the Polo Argentino Horse Breed. International Journal of Molecular Sciences, 26(1), 26. https://doi.org/10.3390/ijms26010026