Identification of the Knowledge Structure of Cancer Survivors’ Return to Work and Quality of Life: A Text Network Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Research Procedure and Method
2.3. Search and Collection of Articles
2.4. Keyword Extraction and Preprocessing
2.5. Semantic Network Analysis for Title
2.6. Hierarchical Topic Analysis for Abstract
- There are Chinese restaurant chains organized into a tree structure.
- A guest eats in one restaurant and then moves to the next restaurant in the subchain.
- There are many tables and seats in each restaurant and guests choose seats based on the popularity of the table.
- The popularity of the table is proportional to the number of seated guests.
- What food is placed on the table is determined by contacting the upper chain restaurant.
3. Results
3.1. Core Keywords that Emerged from the Research Titles
3.2. Semantic Network Analysis
3.3. Hierarchical Topic Analysis for Abstracts
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- American Cancer Society. Cancer Treatment & Survivorship Facts & Figures 2019–2021; American Cancer Society: Atlanta, GA, USA, 2019. [Google Scholar]
- De Jong, M.; Tamminga, S.J.; Frings-Dresen, M.H.; De Boer, A.G. Quality of working life of cancer survivors: Associations with health-and work-related variables. Support. Care Cancer 2017, 25, 1475–1484. [Google Scholar] [CrossRef] [PubMed]
- Han, K.T.; Park, E.C.; Kim, S.J.; Jang, S.I.; Shin, J.; Kim, C.O.; Choi, J.W.; Lee, S.G. Factors affecting the quality of life of Korean cancer survivors who return to the workplace. Asian Pac. J. Cancer Prev. 2014, 15, 8783–8788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Son, M.R.; Lee, J.S. Concept analysis on returning to work for cancer survivors. J. Mil. Nurs. Res. 2014, 32, 119–133. [Google Scholar]
- Shim, H.Y.; Lee, C.W.; Yu, E.S.; Park, B.Y.; Yang, E.J. Cancer survivors and returning to work perspectives from occupational health physicians in Korea. J. Korean Med. Sci. 2019, 34, 1–11. [Google Scholar] [CrossRef]
- Tavan, H.; Azadi, A.; Veisani, Y. Return to work in cancer patients: A systematic review and meta-analysis. Indian J. Palliat. Care 2019, 25, 147–152. [Google Scholar] [CrossRef]
- de Boer, A.G.; Taskila, T.; Ojajärvi, A.; van Dijk, F.J.; Verbeek, J.H. Cancer survivors and unemployment: A meta-analysis and meta-regression. JAMA 2009, 301, 753–762. [Google Scholar] [CrossRef]
- Kim, M.H.; Kim, J.S.; Kim, H.N. Return-to-work experiences among nurses after receiving cancer treatment. J. Korea Acad. Industr. Coop. Soc. 2016, 17, 215–225. [Google Scholar]
- Mehnert, A.; de Boer, A.; Feuerstein, M. Employment challenges for cancer survivors. Cancer 2013, 119, 2151–2159. [Google Scholar] [CrossRef]
- Colombino, I.C.F.; Sarri, A.J.; Castro, I.Q.; Paiva, C.E.; Vieira, R.A. Factors associated with return to work in breast cancer survivors treated at the Public Cancer Hospital in Brazil. Support. Care Cancer 2020, 28, 4445–4458. [Google Scholar] [CrossRef]
- Zomkowski, K.; Wittkopf, P.G.; Back, B.B.H.; Bergmann, A.; Dias, M.; Sperandio, F.F. Pain characteristics and quality of life of breast cancer survivors that return and do not return to work: An exploratory cross-sectional study. Disabil. Rehabil. 2020, 12, 1–6. [Google Scholar] [CrossRef]
- Giuliani, M.; Papadakos, J.; Broadhurst, M.; Jones, J.; McQuestion, M.; Le, L.W.; Beck, L.; Waldron, J.; Ringash, J. The prevalence and determinants of return to work in head and neck cancer survivors. Support. Care Cancer 2019, 27, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Torp, S.; Syse, J.; Paraponaris, A.; Gudbergsson, S. Return to work among self-employed cancer survivors. J. Cancer Surviv. 2017, 11, 189–200. [Google Scholar] [CrossRef] [PubMed]
- de Boer, A.G.; Taskila, T.K.; Tamminga, S.J.; Feuerstein, M.; Frings-Dresen, M.H.W.; Verbeek, J.H. Interventions to enhance return-to-work for cancer patients. Cochrane Database Syst. Rev. 2015, CD007569. [Google Scholar] [CrossRef] [PubMed]
- Westra, B.L.; Sylvia, M.; Weinfurter, E.F.; Pruinelli, L.; Park, J.I.; Dodd, D.; Keenan, G.M.; Senk, P.; Richesson, R.L.; Baukner, V.; et al. Big data science: A literature review of nursing research exemplars. Nurs. Outlook 2017, 65, 549–561. [Google Scholar] [CrossRef] [PubMed]
- Cho, I.; Slight, S.P.; Nanji, K.C.; Seger, D.L.; Maniam, N.; Fiskio, J.; Dykes, P.C.; Bates, D.W. The effect of provider characteristics on the responses to medication-related decision support alerts. Int. J. Med. Inform. 2015, 84, 630–639. [Google Scholar] [CrossRef] [Green Version]
- Ji, Y.A.; Nam, S.J.; Kim, H.G.; Lee, J.; Lee, S.K. Research topics and trends in medical education by social network analysis. BMC Med. Educ. 2018, 18, 222. [Google Scholar] [CrossRef]
- Merrill, J.A.; Sheehan, B.M.; Carley, K.M.; Stetson, P.D. Transition networks in a cohort of patients with congestive heart failure: A novel application of informatics methods to inform care coordination. Appl. Clin. Inform. 2015, 6, 548–564. [Google Scholar] [CrossRef] [Green Version]
- Cha, M.K.; Kwon, S.H. A semantic network analysis of “Creative Economics” in news frame. Korean J. Journal. Commun Stud. 2015, 59, 88–120. [Google Scholar]
- Kim, M.; Choi, M.; Youm, Y. Semantic network analysis of online news and social media text related to comprehensive nursing care service. J. Korean Acad. Nurs. 2017, 47, 806–816. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.K.; Jeong, S.; Kim, H.G.; Yom, Y.H. A social network analysis of research topics in Korean nursing science. J. Korean Acad. Nurs. 2011, 41, 623–632. [Google Scholar] [CrossRef] [Green Version]
- Kwon, S.Y.; Bae, K.R. A study on the knowledge structure of cancer survivors based on social network analysis. J. Korean Acad. Nurs. 2016, 46, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Park, C.S.; Park, E.-J. Identification of knowledge structure of pain management nursing research applying text network analysis. J. Korean Acad. Nurs. 2019, 49, 538. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Jang, S.N. Mapping the knowledge structure of frailty in journal articles by text network analysis. PLoS ONE 2018, 13, e0196104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blei, D.M.; Griffiths, T.L.; Jordan, M.I. The nested chinese restaurant process and bayesian nonparametric inference of topic hierarchies. JACM 2010, 57, 7. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.K.; Kellner, A.; Raggett, D. Stochastic Language Models (N-Gram) Specification, W3C Working Draft 3. Available online: http://www.w3.org/TR/ngram-spec/ (accessed on 14 December 2020).
- Lehmann, F.; Rodin, E.Y. (Eds.) Semantic Networks in Artificial Intelligence; International Series in Modern Applied Mathematics and Computer Science; Pergamon Press: Oxford, UK, 1992; Chapter 24; p. 6. ISBN 978-0080420127. [Google Scholar]
- Blondel, V.D.; Guillaume, J.L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008, 10, p10008. [Google Scholar] [CrossRef] [Green Version]
- Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent dirichlet allocation. J. Mach. Learn. Res. 2003, 3, 993–1022. [Google Scholar]
- Blei, D.M.; Jordan, M.I.; Griffiths, T.L.; Tenenbaum, J.B. Hierarchical topic models and the nested Chinese restaurant process. In Proceedings of the 16th International Conference on Neural Information Processing Systems (NIPS’03), Whistler, BC, Canada, 8–13 December 2003; MIT Press: Cambridge, MA, USA, 2003; pp. 17–24. [Google Scholar]
- Kim, Y.H.; Kim, Y.J. Social Network Analysis; Parkyoungsa: Seoul, Korea, 2016. [Google Scholar]
- Paraponaris, A.; Teyssier, L.S.; Ventelou, B. Job tenure and self-reported workplace discrimination for cancer survivors 2 years after diagnosis: Does employment legislation matter? Health Policy 2010, 98, 144–155. [Google Scholar] [CrossRef] [PubMed]
- Lindbohm, M.L.; Kuosma, E.; Taskila, T.; Hietanen, P.; Carlsen, K.; Gudbergsson, S.; Gunnarsdottir, H. Cancer as the cause of changes in work situation (a NOCWO study). Psycho Oncol. 2011, 20, 805–812. [Google Scholar] [CrossRef]
- Luker, K.; Campbell, M.; Amir, Z.; Davies, L. A UK survey of the impact of cancer on employment. Occup. Med. 2013, 63, 494–500. [Google Scholar] [CrossRef] [Green Version]
- Macmillan Cancer Support. Making the ShiM—Providing Specialist Work Support to People with Cancer. Available online: https://www.macmillan.org.uk/_images/making-the-shift-specialist-work-support-for-people-with-cancer_tcm9-295091.pdf (accessed on 27 August 2020).
- Seifart, U.; Schmielau, J. Return to work of cancer survivors. Oncol. Res. Treat. 2017, 40, 760–763. [Google Scholar] [CrossRef]
- Park, C.S. Using text network analysis for analyzing academic papers in nursing. Perspect. Nurs. Sci. 2019, 16, 12–24. [Google Scholar] [CrossRef]
- Freeman, L.C. Centrality in social networks conceptual clarification. Soc. Netw. 1978, 1, 215–239. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.M.; Kuprian, N.; Herbert, K.; Amidi, A.; Austin, J.; Valdimarsdottir, H.; Rini, C. A mixed methods analysis of perceived cognitive impairment in hematopoietic stem cell transplant survivors. Palliat. Support. Care 2019, 17, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Persoon, S.; Buffart, L.M.; Chinapaw, M.J.M.; Nollet, F.; Frings-Dresen, M.H.; Koning, S.; Kersten, M.J.; Tamminga, S.J. Return to work experiences of patients treated with stem cell transplantation for a hematologic malignancy. Support. Care Cancer 2019, 27, 2987–2997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marmot, M.; Allen, J.; Bell, R.; Bloomer, E.; Goldblatt, P. Consortium for the European Review of Social Determinants of Health and the Health Divide. WHO European review of social determinants of health and the health divide. Lancet 2012, 380, 1011–1029. [Google Scholar] [CrossRef]
- Paltrinieri, S.; Fugazzaro, S.; Bertozzi, L.; Bassi, M.C.; Pellegrini, M.; Vicentini, M.; Mazzini, E.; Costi, S. Return to work in European cancer survivors: A systematic review. Support. Care Cancer 2018, 26, 2983–2994. [Google Scholar] [CrossRef]
Rank | Keyword | Frequency | Keyword | Edges | Keyword | Degree Centrality | Keyword | Betweenness Centrality |
---|---|---|---|---|---|---|---|---|
1 | breast | 52 | breast | 182 | breast | 0.305 | breast | 0.188 |
2 | patients | 32 | patient | 164 | patient | 0.271 | patient | 0.138 |
3 | rehabilitation | 31 | intervention | 138 | intervention | 0.194 | intervention | 0.067 |
4 | intervention | 27 | rehabilitation | 125 | rehabilitation | 0.170 | rehabilitation | 0.060 |
5 | treatment | 20 | employment | 117 | employment | 0.149 | treatment | 0.052 |
6 | employment | 20 | treatment | 103 | treatment | 0.148 | employment | 0.049 |
7 | systematic | 16 | trial | 90 | trial | 0.132 | development (38) | 0.045 |
8 | trial | 15 | impact | 89 | impact | 0.130 | impact | 0.032 |
9 | occupational | 15 | occupational | 81 | occupational | 0.120 | systematic | 0.030 |
10 | impact | 15 | control | 81 | control | 0.118 | diagnosis | 0.027 |
11 | year | 14 | woman | 73 | woman | 0.110 | adult | 0.026 |
12 | prospective | 13 | prospective | 71 | prospective | 0.106 | follow (22) | 0.026 |
13 | diagnosis | 13 | adult | 67 | adult | 0.103 | prospective | 0.026 |
14 | physical | 12 | support | 64 | support | 0.103 | experience (33) | 0.025 |
15 | woman | 11 | systematic | 63 | systematic | 0.103 | woman | 0.023 |
16 | follow | 11 | physical | 63 | physical | 0.099 | psychosocial | 0.022 |
17 | control | 11 | randomize | 63 | randomize | 0.099 | occupational | 0.022 |
18 | adult | 11 | diagnosis | 61 | diagnosis | 0.098 | survivorship (27) | 0.020 |
19 | psychosocial | 10 | health | 61 | health | 0.098 | year | 0.019 |
20 | need/exercise | 10 | psychosocial/year | 60 | psychosocial/year | 0.098 | control | 0.019 |
Level 0 | n 1 | Level 1 | n | Level 2 | n |
---|---|---|---|---|---|
treatment, patient, quality, life, year, | 219 | patient, intervention, breast, support, care | 103 | intervention, rehabilitation, trial, exercise, program | 42 |
employment, diagnosis, status, symptom, ci 2 | 19 | ||||
month, diagnosis, employment, status, job | 26 | ||||
pain, fcr 3, lymphedema, barrier, surgeon | 16 | ||||
need, support, breast, intervention, health | 116 | hr 4, ci, hrqol 5, oral, group | 22 | ||
exercise, lung, physical, patient, improve | 12 | ||||
adult, ayas 6, educational, service, young | 15 | ||||
self-employed, item, qwlqcs 7, module, job | 13 | ||||
literature, search, criterion, systematic, productivity | 22 | ||||
engagement, consequence, cost, stakeholder, provide | 18 | ||||
hsct 8, yoga, cognitive, transplantation, sc 9 | 14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.; Lee, K.-S. Identification of the Knowledge Structure of Cancer Survivors’ Return to Work and Quality of Life: A Text Network Analysis. Int. J. Environ. Res. Public Health 2020, 17, 9368. https://doi.org/10.3390/ijerph17249368
Kim K, Lee K-S. Identification of the Knowledge Structure of Cancer Survivors’ Return to Work and Quality of Life: A Text Network Analysis. International Journal of Environmental Research and Public Health. 2020; 17(24):9368. https://doi.org/10.3390/ijerph17249368
Chicago/Turabian StyleKim, Kisook, and Ki-Seong Lee. 2020. "Identification of the Knowledge Structure of Cancer Survivors’ Return to Work and Quality of Life: A Text Network Analysis" International Journal of Environmental Research and Public Health 17, no. 24: 9368. https://doi.org/10.3390/ijerph17249368
APA StyleKim, K., & Lee, K.-S. (2020). Identification of the Knowledge Structure of Cancer Survivors’ Return to Work and Quality of Life: A Text Network Analysis. International Journal of Environmental Research and Public Health, 17(24), 9368. https://doi.org/10.3390/ijerph17249368