The Use of Deep Learning to Predict Stroke Patient Mortality
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
3.1. Subjects
3.2. Principal Variables
3.3. Methods
3.4. Preprocessing
3.5. DNN Architecture
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pastore, D.; Pacifici, F.; Capuani, B.; Palmirotta, R.; Dong, C.; Coppola, A.; Abete, P.; Roselli, M.; Sbraccia, P.; Guadagni, F.; et al. Sex-genetic interaction in the risk for cerebrovascular disease. Curr. Med. Chem. 2017, 24, 2687–2699. [Google Scholar] [CrossRef]
- Kim, H.C.; Choi, D.P.; Ahn, S.V.; Nam, C.M.; Suh, I. Six-year survival and causes of death among stroke patients in Korea. Neuroepidemiology 2009, 32, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Oh, S.H.; Cho, H.; Cho, H.J.; Kang, H.Y. Prevalence and socio-economic burden of heart failure in an aging society of South Korea. BMC Cardiovasc. Disord. 2016, 16, 215. [Google Scholar]
- Lee, A.H.; Yau, K.K.; Wang, K. Recurrent ischaemic stroke hospitalisations: A retrospective cohort study using Western Australia linked patient records. Eur. J. Epidemiol. 2004, 19, 999–1003. [Google Scholar] [CrossRef] [PubMed]
- Chuang, K.Y.; Wu, S.C.; Ma, A.H.; Chen, Y.H.; Wu, C.L. Identifying factors associated with hospital readmissions among stroke patients in Taipei. J. Nurs. Res. 2005, 13, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Joo, H.; George, M.G.; Fang, J.; Wang, G. A literature review of indirect costs associated with stroke. J. Stroke Cerebrovasc. Dis. 2014, 23, 1753–1763. [Google Scholar] [CrossRef]
- Andersen, H.E.; Schultz-Larsen, K.; Kreiner, S.; Forchhammer, B.H.; Eriksen, K.; Brown, A. Can readmission after stroke be prevented? Results of a randomized clinical study: A postdischarge follow-up service for stroke survivors. Stroke 2000, 31, 1038–1045. [Google Scholar] [CrossRef] [PubMed]
- Brainin, M.; Bornstein, N.; Boysen, G.; Demarin, V. Acute neurological stroke care in Europe: Results of the European Stroke Care Inventory. Eur. J. Neurol. 2000, 7, 5–10. [Google Scholar] [CrossRef]
- Bushnell, C.D.; Lee, J.; Duncan, P.W.; Newby, L.K.; Goldstein, L.B. Impact of comorbidities on ischemic stroke outcomes in women. Stroke 2008, 39, 2138–2140. [Google Scholar] [CrossRef]
- Rundek, T.; Nielsen, K.; Phillips, S.; Johnston, K.C.; Hux, M.; Watson, D. Health care resource use after acute stroke in the Glycine Antagonist in Neuroprotection (GAIN) Americas trial. Stroke 2004, 35, 1368–1374. [Google Scholar] [CrossRef]
- Hinman, J.D.; Rost, N.S.; Leung, T.W.; Montaner, J.; Muir, K.W.; Brown, S.; Arenillas, J.F.; Feldmann, E.; Liebeskind, D.S. Principles of precision medicine in stroke. J. Neurol. Neurosurg. Psychiatry 2017, 88, 54–61. [Google Scholar] [CrossRef]
- Liebeskind, D.S. Artificial intelligence in stroke care: Deep learning or superficial insight? EBioMedicine 2018, 35, 14–15. [Google Scholar] [CrossRef] [Green Version]
- Liebeskind, D.S.; Albers, G.W.; Crawford, K.; Derdeyn, C.P.; George, M.S.; Palesch, Y.Y.; Toga, A.W.; Warach, S.; Zhao, W.; Brott, T.G.; et al. Imaging in StrokeNet: Realizing the potential of Big Data. Stroke 2015, 46, 2000–2006. [Google Scholar] [CrossRef] [PubMed]
- Rostanski, S.K.; Marshall, R.S. Precision medicine for ischemic stroke. JAMA Neurol. 2016, 73, 773–774. [Google Scholar] [CrossRef] [PubMed]
- Feldmann, E.; Liebeskind, D.S. Developing precision stroke imaging. Front. Neurol. 2014, 5, 29. [Google Scholar] [CrossRef] [PubMed]
- Hamburg, M.A.; Collins, F.S. The path to personalized medicine. N. Engl. J. Med. 2010, 363, 301–304. [Google Scholar] [CrossRef]
- Allen, C.; Tsou, M.H.; Aslam, A.; Nagel, A.; Gawron, J.M. Applying GIS and machine learning methods to Twitter data for multiscale surveillance of influenza. PLoS ONE 2016, 11, e0157734. [Google Scholar] [CrossRef]
- He, F.; Hu, Z.J.; Zhang, W.C.; Cai, L.; Cai, G.X.; Aoyagi, K. Construction and evaluation of two computational models for predicting the incidence of influenza in Nagasaki Prefecture, Japan. Sci. Rep. 2017, 7, 7192. [Google Scholar] [CrossRef]
- Chen-Ying, H.; Wei-Chen, C.; Po-Tsun, L.; Ching-Heng, L.; Chi-Chun, L. Comparing deep neural network and other machine learning algorithms for stroke prediction in a large-scale population-based electronic medical claims database. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2017, 2017, 3110–3113. [Google Scholar]
- Janowczyk, A.; Madabhushi, A. Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases. J. Pathol. Inform. 2016, 7, 29. [Google Scholar] [CrossRef] [PubMed]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef]
- Xu, Q.; Gel, Y.R.; Ramirez Ramirez, L.L.; Nezafati, K.; Zhang, Q.; Tsui, K.L. Forecasting influenza in Hong Kong with Google search queries and statistical model fusion. PLoS ONE 2017, 12, e0176690. [Google Scholar] [CrossRef] [PubMed]
- Teoh, D. Towards stroke prediction using electronic health records. BMC Med. Inform. Decis. Mak. 2018, 18, 127. [Google Scholar] [CrossRef]
- Pereira, D.R.; Reboucas Filho, P.P.; de Rosa, G.H.; Papa, J.P.; de Albuquerque, V.H.C. Stroke lesion detection using convolutional neural networks. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio, Brazil, 8–13 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6. [Google Scholar]
- Beritelli, F.; Capizzi, G.; Sciuto, G.L.; Napoli, C.; Woźniak, M. A novel training method to preserve generalization of RBPNN classifiers applied to ECG signals diagnosis. Neural Netw. 2018, 108, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.H.; Wei, W.; Zhang, L.; Wang, J.; Damaševičius, R.; Li, J.; Wang, H.D.; Wang, G.L.; Zhang, X.; Yuan, J.X.; et al. Risk Assessment of Hypertension in Steel Workers Based on LVQ and Fisher-SVM Deep Excavation. IEEE Access 2019, 7, 23109–23119. [Google Scholar] [CrossRef]
- Ma, X.; Dai, Z.; He, Z.; Ma, J.; Wang, Y.; Wang, Y. Learning traffic as images: A deep convolutional neural network for large-scale transportation network speed prediction. Sensors 2017, 17, 818. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Feng, D.; Mi, H. Deep convolutional neural network-based early automated detection of diabetic retinopathy using fundus image. Molecules 2017, 22, 2054. [Google Scholar] [CrossRef]
- Izadpanahkakhk, M.; Razavi, S.; Taghipour-Gorjikolaie, M.; Zahiri, S.; Uncini, A. Deep region of interest and feature extraction models for palmprint verification using convolutional neural networks transfer learning. Appl. Sci. 2018, 8, 1210. [Google Scholar] [CrossRef]
- Steven Eyobu, O.; Han, D. Feature representation and data augmentation for human activity classification based on wearable IMU sensor data using a deep LSTM neural network. Sensors 2018, 18, 2892. [Google Scholar] [CrossRef]
- Jing, L.; Wang, T.; Zhao, M.; Wang, P. An adaptive multi-sensor data fusion method based on deep convolutional neural networks for fault diagnosis of planetary gearbox. Sensors 2017, 17, 414. [Google Scholar] [CrossRef]
- Jiao, Z.; Gao, X.; Wang, Y.; Li, J. A parasitic metric learning net for breast mass classification based on mammography. Pattern Recognit. 2018, 75, 292–301. [Google Scholar] [CrossRef]
- Hu, Y.; Li, J.; Jiao, Z. Mammographic Mass Detection Based on Saliency with Deep Features. In Proceedings of the International Conference on Internet Multimedia Computing and Service, Xi’an, China, 19–21 August 2016; ACM: New York, NY, USA, 2016; pp. 292–297. [Google Scholar]
- Yang, D.; Wang, Y.; Jiao, Z. Asymmetry Analysis with Sparse Autoencoder in Mammography. In Proceedings of the International Conference on Internet Multimedia Computing and Service, Xi’an, China, 19–21 August 2016; ACM: New York, NY, USA, 2016; pp. 287–291. [Google Scholar]
- Shen, D.; Wu, G.; Suk, H.I. Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 2017, 19, 221–248. [Google Scholar] [CrossRef] [PubMed]
- Suk, H.I.; Shen, D. Deep learning-based feature representation for AD/MCI classification. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Nagoya, Japan, 22–26 September 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 583–590. [Google Scholar]
- Hua, K.L.; Hsu, C.H.; Hidayati, S.C.; Cheng, W.H.; Chen, Y.J. Computer-aided classification of lung nodules on computed tomography images via deep learning technique. OncoTargets Ther. 2015, 8, 2015–2022. [Google Scholar]
- Anthimopoulos, M.; Christodoulidis, S.; Ebner, L.; Christe, A.; Mougiakakou, S. Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans. Med. Imaging 2016, 35, 1207–1216. [Google Scholar] [CrossRef]
- Kumar, D.; Wong, A.; Clausi, D.A. Lung nodule classification using deep features in CT images. In Proceedings of the 2015 12th Conference on Computer and Robot Vision, Halifax, NS, Canada, 3–5 June 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 133–138. [Google Scholar]
- Jiao, Z.; Gao, X.; Wang, Y.; Li, J. A deep feature based framework for breast masses classification. Neurocomputing 2016, 197, 221–231. [Google Scholar] [CrossRef]
- Jiao, Z.; Gao, X.; Wang, Y.; Li, J.; Xu, H. Deep Convolutional Neural Networks for mental load classification based on EEG data. Pattern Recognit. 2018, 76, 582–595. [Google Scholar] [CrossRef]
- Kim, S.K.; Yoo, T.K.; Kim, D.W. Osteoporosis risk prediction using machine learning and conventional methods. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 188–191. [Google Scholar]
- Wang, Y.; Ng, K.; Byrd, R.J.; Hu, J.; Ebadollahi, S.; Daar, Z.; Steinhubl, S.R.; Stewart, W.F. Early detection of heart failure with varying prediction windows by structured and unstructured data in electronic health records. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 2530–2533. [Google Scholar]
- Arandjelović, O. Prediction of health outcomes using big (health) data. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 2543–2546. [Google Scholar]
- Putin, E.; Mamoshina, P.; Aliper, A.; Korzinkin, M.; Moskalev, A.; Kolosov, A.; Ostrovskiy, A.; Cantor, C.; Vijg, J.; Zhavoronkov, A. Deep biomarkers of human aging: Application of deep neural networks to biomarker development. Aging (Albany N. Y.) 2016, 8, 1021. [Google Scholar] [CrossRef] [PubMed]
- Yoo, T.K.; Kim, D.W.; Choi, S.B.; Park, J.S. Simple scoring system and artificial neural network for knee osteoarthritis risk prediction: A cross-sectional study. PLoS ONE 2016, 11, e0148724. [Google Scholar] [CrossRef]
- Rajkomar, A.; Oren, E.; Chen, K.; Dai, A.M.; Hajaj, N.; Hardt, M.; Liu, P.J.; Liu, X.; Marcus, J.; Sun, M. Scalable and accurate deep learning with electronic health records. NPJ Digit. Med. 2018, 1, 18. [Google Scholar] [CrossRef]
- Lee, W.K.; Lim, D.; Park, H. Disability-adjusted life years (DALYs) for injuries using death certificates and hospital discharge survey by the Korean Burden of Disease Study 2012. J. Korean Med. Sci. 2016, 31 (Suppl. 2), S200–S207. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Shlens, J. A tutorial on principal component analysis. arXiv 2014, arXiv:1404.1100. [Google Scholar]
- He, K.; Kaiming, H.; Xiangyu, Z.; Shaoqing, R.; Jian, S. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV) Internet, Santiago, Chile, 7–13 December 2015. [Google Scholar] [CrossRef]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015, arXiv:1502.03167. [Google Scholar]
- Chollet, F. Keras: The Python Deep Learning Library; Astrophysics Source Code Library, 2018; Available online: http://adsabs.harvard.edu/abs/2018ascl.soft06022C.
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow: A system for large-scale machine learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’16), Savannah, GA, USA, 2–4 November 2016; pp. 265–283. [Google Scholar]
- Kim, J.; Chu, C.-H. ETD: An extended time delay algorithm for ventricular fibrillation detection. In Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 6479–6482. [Google Scholar]
Variables | N (%) | |
---|---|---|
Mean age | 66.1 years | |
Gender | Male | 8252 (54.7) |
Female | 6847 (45.3) | |
Mortality | Yes | 1038 (6.9) |
No | 14,061 (93.1) | |
Stroke type | ischemic | 10,668 (70.7) |
hemorrhagic | 4431 (29.3) |
Confusion Matrix | Predicted (T) | Predicted (F) |
---|---|---|
Actual (T) | 238 | 132 |
Actual (F) | 688 | 4076 |
TH | TP | FP | FN | TN | SN (%) | SP | PP | ACC | AUC | |
---|---|---|---|---|---|---|---|---|---|---|
RFC | 0.077 | 223 | 960 | 147 | 3804 | 60.27 | 79.85 | 18.85 | 78.44 | 77.59 |
ADB | 0.487 | 234 | 928 | 136 | 3836 | 63.24 | 80.52 | 20.14 | 79.28 | 79.25 |
GNB | 0.065 | 258 | 1396 | 112 | 3368 | 69.73 | 70.7 | 15.6 | 70.63 | 78.08 |
KNNC | 0.065 | 219 | 892 | 151 | 3872 | 59.19 | 81.28 | 19.71 | 79.68 | 72.11 |
SVC | 0.065 | 221 | 1380 | 149 | 3384 | 59.73 | 71.03 | 13.8 | 70.22 | 71.51 |
DNN | 0.13 | 238 | 688 | 132 | 4076 | 64.32 | 85.56 | 25.7 | 84.03 | 83.48 |
Classifier | AUC | Classifier | AUC |
---|---|---|---|
RFC | 79.4 | ADB | 80.5 |
GNB | 80.0 | KNNC | 72.2 |
SVC | 69.7 | DNN | 83.5 |
Variable | Corr. Coff. | Variable | Corr. Coff. |
---|---|---|---|
Brain surgery required | 0.124062 | Admission mode | −0.093137 |
Stroke type | 0.203716 | Mortality | 1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheon, S.; Kim, J.; Lim, J. The Use of Deep Learning to Predict Stroke Patient Mortality. Int. J. Environ. Res. Public Health 2019, 16, 1876. https://doi.org/10.3390/ijerph16111876
Cheon S, Kim J, Lim J. The Use of Deep Learning to Predict Stroke Patient Mortality. International Journal of Environmental Research and Public Health. 2019; 16(11):1876. https://doi.org/10.3390/ijerph16111876
Chicago/Turabian StyleCheon, Songhee, Jungyoon Kim, and Jihye Lim. 2019. "The Use of Deep Learning to Predict Stroke Patient Mortality" International Journal of Environmental Research and Public Health 16, no. 11: 1876. https://doi.org/10.3390/ijerph16111876
APA StyleCheon, S., Kim, J., & Lim, J. (2019). The Use of Deep Learning to Predict Stroke Patient Mortality. International Journal of Environmental Research and Public Health, 16(11), 1876. https://doi.org/10.3390/ijerph16111876