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Abstract: The increase in stroke incidence with the aging of the Korean population will rapidly impose
an economic burden on society. Timely treatment can improve stroke prognosis. Awareness of stroke
warning signs and appropriate actions in the event of a stroke improve outcomes. Medical service
use and health behavior data are easier to collect than medical imaging data. Here, we used a deep
neural network to detect stroke using medical service use and health behavior data; we identified
15,099 patients with stroke. Principal component analysis (PCA) featuring quantile scaling was
used to extract relevant background features from medical records; we used these to predict stroke.
We compared our method (a scaled PCA/deep neural network [DNN] approach) to five other
machine-learning methods. The area under the curve (AUC) value of our method was 83.48%; hence;
it can be used by both patients and doctors to prescreen for possible stroke.
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1. Introduction

Stroke is one of the leading causes of death and disability worldwide [1]. In Korea, stroke is
the second-leading cause of death [2]. The Korean population is aging very rapidly; the percentage
aged ≥ 60 years is predicted to increase from 13.7% in 2015 to 28.6% by 2050 [3]. Incidence of stroke
increases with age. Stroke patients have longer hospital stays and higher re-admission rates and
medical costs than patients with other chronic diseases [4,5]. In the U.S., the total annual direct
medical costs of stroke in 2008 were USD 18.8 billion; in the same year, the per-person expenditure
was USD 7657 [6]. Length of hospital stay, medical expenditure, readmission rate, and accompanying
comorbidities greatly affect medical resource use [7–10]. Studies on stroke patients are very important
for efficient utilization of medical resources.

The concept of artificial intelligence (AI) has recently permeated various sectors of
life, including rapidly evolving healthcare systems [11]. As electronic diagnoses, therapies,
and record-keeping expand, it is essential to leverage, integrate, and optimize these advances [12].
In the field of medicine, patient data are amassed in distributed electronic health record (EHR) databases
and voluminous clinical, imaging, and laboratory datasets, among others [13]. Such data can be
utilized to predict disease incidence and prognosis.

Recent nationwide efforts seek to use big data to expand precision medicine to many other medical
areas [14,15]. Precision medicine is broadly defined as patient-specific diagnosis and therapy [16].
EHRs and health insurance claims data can aid precision medicine by improving prognostic models [11].
Deep learning using big data has been employed to predict disease [17–19]. Deep learning is actively
used in many fields, yielding satisfactory results when conventional analyses are not appropriate [20,21].
The deep-learning model of Xu et al. afforded better predictive performance than a generalized linear
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model (GLM), a least absolute shrinkage and selection operator (LASSO) model, and an autoregressive
integrated moving average (ARIMA) model [22]. Therefore, deep learning can predict disease.
However, few studies have sought to predict stroke mortality using big data.

To date, there have not been deep learning-based, but heuristic or nature-inspired methods for
detecting stroke or cardiovascular diseases. Teoh [23] applied the neural network using different sources
of temporal data from the electronic health record through a dual-input topology. Although this study
used statistical data to predict stroke, major risk factors related to stroke were missed. Pereira et al. [24]
provide stroke detection system using convolutional neural network with computed tomography.
Although overall detection accuracy of this study is relatively high, it needs detailed medical images to
diagnose the occurrence of stroke. Beriteli et al. [25] proposed a training technique to diagnose the
ECG signals using the neural network. Wu et al. [26] applied the neural network to assess the risk
levels of hypertension with health examination data.

Here, we identify factors affecting stroke mortality, and derive a predictive model based on deep
learning, employing 2013–2016 Korean National Hospital Discharge In-depth Injury Survey (KNHDS)
data. This will allow healthcare policymakers to improve the quality of medical care, evaluate its
appropriateness, and employ diagnostic resources efficiently. Our research was performed to predict
stroke mortality using large-scale electronic health records. This study is expected to expand the
research that can prescreen diverse diseases the in e-health field in future.

2. Related Work

Several studies have used deep learning methods to solve various problems [27–31]. In particular,
there have been many computer-aided diagnosis systems using deep learning for detecting diverse
diseases [32–41]. Machine-learning/deep learning has been employed to detect or predict certain
diseases using various approaches and datasets. Kim et al. [42] developed and validated several
machine-learning models (i.e., support vector machine—SVM, random forest—RF, artificial neural
network—ANN, and linear regression—LR) to identify the risk of osteoporosis in postmenopausal
women; the cited authors used medical records such as those of the Korean National Health and
Nutrition Surveys. Although its accuracy was acceptable, only relatively small datasets were used
(1000 patients for training and 674 for testing). Wang et al. [43] sought to detect heart failure earlier
using structured and unstructured data from EHRs and an RF classifier. Arandjelović et al. [44]
applied a Markov process to predict various health outcomes using electronic medical records (EMRs).
Putin et al. [45] sought to predict human chronological age using deep neural networks (DNNs);
60,600 common blood biochemistry and cell count test results were evaluated. Yoo et al. [46] developed
a self-assessment system identifying adults at high risk of knee osteoarthritis using an ANN and various
datasets. Hung et al. [19] used several classifiers (i.e., DNN, gradient-boosting decision tree—GBDT, LR,
and SVM) to explore an EMC database of about 800,000 patients; the aim was to predict five-year stroke
occurrence. Rajkomar et al. [47] used deep learning to predict several medical events by analyzing
EMR data (216,221 adult patients). All of these previous studies used machine-learning/deep learning
to detect diverse diseases. However, to the best of our knowledge, there have been few efforts to
predict stroke with these methods.

3. Materials and Methods

3.1. Subjects

We used data from the KNHDS, collected from 2013 to 2016 by the Korea Centers for Disease
Control and Prevention (KCDC) (Figure 1). The KNHDS collected data from about 150 hospitals
nationwide, all with more than 100 beds [48]. The subjects were 15,099 stroke patients with primary
International Classification of Diseases diagnostic codes corresponding to hemorrhagic stroke (I60–I62)
and ischemic stroke (I63). Table 1 shows general statistical information about patients. The mean age of
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the subjects was 66 years. Of the patients, 54.7% were male, 45.3% were female; and 6.9% (1038 people)
were patients who died.
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The dependent variable was mortality rate of stroke patients. Independent variables reflecting 
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mode of admission, length of hospital stay, hospital region, total number of hospital beds, stroke 
type, brain surgery status, and Charlson Comorbidity Index (CCI) score. The CCI is widely used to 
adjust for comorbidities, and is given by the sum of weighted scores based on the presence/absence 
of 19 different medical conditions [49]. However, we excluded cerebrovascular diseases because 
they may overlap with the primary disease. Brain surgery was defined as microvascular 
decompression, craniotomy, cranioplasty, ventriculostomy with shunting, removal of a 
subdural/epidural hematoma, and endarterectomy. Type of insurance was defined as national 
health insurance, medicare, industrial accident, and car insurance. Admission mode was defined as 
emergency, ambulatory, and others. Stroke type was categorized as ischemic stroke and 
hemorrhagic stroke. The hospital regions were Seoul, metropolitan Seoul, Gyeonggi, and other. The 
total number of hospital beds per region was 100–299, 300–499, 500–999, or ≥ 1000. 

Figure 1. The patient selection process. KNHDS = Korean National Hospital Discharge In-depth Injury
Survey. ICD = International Classification of Diseases.

Table 1. Distribution of subjects by general characteristics.

Variables N (%)

Mean age 66.1 years

Gender
Male 8252 (54.7)
Female 6847 (45.3)

Mortality Yes 1038 (6.9)
No 14,061 (93.1)

Stroke type ischemic 10,668 (70.7)
hemorrhagic 4431 (29.3)

3.2. Principal Variables

The dependent variable was mortality rate of stroke patients. Independent variables reflecting
social demographic status included gender, age, and type of insurance. Medical variables included
mode of admission, length of hospital stay, hospital region, total number of hospital beds, stroke type,
brain surgery status, and Charlson Comorbidity Index (CCI) score. The CCI is widely used to adjust
for comorbidities, and is given by the sum of weighted scores based on the presence/absence of
19 different medical conditions [49]. However, we excluded cerebrovascular diseases because they
may overlap with the primary disease. Brain surgery was defined as microvascular decompression,
craniotomy, cranioplasty, ventriculostomy with shunting, removal of a subdural/epidural hematoma,
and endarterectomy. Type of insurance was defined as national health insurance, medicare,
industrial accident, and car insurance. Admission mode was defined as emergency, ambulatory,
and others. Stroke type was categorized as ischemic stroke and hemorrhagic stroke. The hospital
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regions were Seoul, metropolitan Seoul, Gyeonggi, and other. The total number of hospital beds per
region was 100–299, 300–499, 500–999, or ≥ 1000.

3.3. Methods

Our deep learning model included 11 variables: gender, age, type of insurance, mode of admission,
brain surgery required, region, length of hospital stay, hospital location, the number of hospital beds,
stroke type, and the CCI. We used a DNN/scaled principal component analysis (PCA) to automatically
generate features from the data and identify risk factors for stroke. We enrolled 15,099 subjects with
a history of stroke. Figure 2 shows the system architecture: (1) We used Korea National Health and
Nutrition Examination Survey (KNHANES) data for the 11 included variables, where these data were
divided into training (66%) and testing sets (34%); in the training set, we used 30% of the samples
for validation; (2) we preprocessed data using both PCA and a scaler to convert categorical variables
into continuous variables, and to generate models for testing; (3) we then trained the DNN using the
scaled PCA variables and (4) compared the predicted results to “ground truth” data (clinician labels).
The training and test data did not overlap.
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Figure 2. The architecture of the deep neural network (DNN)/scaled principal component analysis
(PCA) approach.

Traditionally, detection performance is measured by evaluating accuracy (Acc).
However, an imbalance was evident in the stroke datasets; more survival (n = 13,971) than non-survival
(n = 1038) data were present. Thus, we used three additional metrics: sensitivity (Sn), specificity (Sp),
and positive predictive value (PPV). The Sn reflects the probability of detecting non-survival; Sp reflects
the probability of detecting survival; and PPV is the probability that non-survival status was corrected
for appropriately. We used four parameters, true-positive (TP), true-negative (TN), false-positive (FP)
and false-negative (FN), to evaluate model performance. The TP is the correctly predicted stroke rate
and the TN is the correctly predicted non-stroke rate. The FP and FN are the incorrectly predicted
stroke and non-stroke rates, respectively. The Sn, Sp, PPV, and Acc were calculated as follows:

Sn = TP/(TP + FN) (1)

Sp = TN/(TN + FP) (2)

PPV = TP/(TP + FP) (3)

Acc = (TP + TN)/(TP + FN + FP + TN) (4)

3.4. Preprocessing

PCA is a simple non-parametric method used to extract useful information from elaborate datasets.
In general, PCA preprocessing efficiently defines new features, reducing dimensions to find hidden
or simplified structures for inclusion in classification algorithms [50]. However, the dataset that
we used featured major categorical/binary and minor continuous variables. The former variables
should not be input into a DNN classifier because they lack detailed information. We used the PCA
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maximum-attribute filter to convert all 11 binary or categorical variables into 11 continuous variables
to minimize data discretization. Figure 3 shows the first and second principal components of four
different PCAs: (a) a normal PCA; (b) a PCA with a standard scaler; (c) a PCA with a min/max scaler;
and (d), a PCA with a quantile transformer scaler. A DNN/PCA-quantile-transformer scaler afforded
the best performance.
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3.5. DNN Architecture

We employed simple feed-forward neural networks, trained using a standard backpropagation
algorithm, in our deep (four hidden layers) learning models. For each DNN, we adjusted several
hyperparameters, including the number of hidden layers, the number of neurons in each layer,
the activation function, the optimization method, and the regularization technique. The best DNN
featured four hidden layers with 22, 10, 10, and 10 neurons, respectively. The last layer, with one
neuron, yielded a regression output. Accuracy served as the optimization loss function (we applied
regularization terms). The DNN featured ReLU activation [51] in each layer; the dropout [52]
probability was 0.2 for each layer. We used Adam optimization [53] with 0.001 for learning rate and
L2 regularization during training; this optimizer is robust in terms of hyperparameter choice and,
empirically, has shown very good performance. We applied batch normalization [54] after the first two
layers to counter overfitting and ensure stable convergence. Figure 4 shows the architecture of the
proposed DNN.
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Figure 4. The architecture of the proposed DNN.

All models were implemented using Keras [55] with a TensorFlow [56] backend. Binary cross
entropy served as the loss function when evaluating stroke development in Figure 5. As the dataset
classes were not balanced, we applied class weighting; this rendered minority classes more significant.
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4. Results and Discussion

Of the various settings tested, the best DNN architecture featured four hidden layers, each with
22 or 10 neurons, 50 training epochs, and a batch size of 5. Table 2 shows the confusion matrix resulting
from scaled PCA preprocessing.

Table 2. Confusion matrix for our method.

Confusion Matrix Predicted (T) Predicted (F)

Actual (T) 238 132

Actual (F) 688 4076

Table 3 summarizes the computational results yielded by the classification algorithms; we list
thresholds, confusion matrix values, and five performance parameters; the AUCs of the top two
classifiers are highlighted in bold. Considering all model parameters, the optimal stroke probability
threshold was 0.13, with a model Acc of 84.03%, Sn of 64.32%, Sp of 85.56%, and PPV of 25.7%.
We determined the thresholds of each classifier to make the balance between the sensitivity and
specificity empirically. Compared to the commonly used performance metrics (Sn, Sp, PPV, and Acc),
the area under the curve (AUC; a single value) better reflects algorithm performance [57]. Our method
afforded an AUC of 83.48%; a comparison of the receiver operating characteristic (ROC) curve
(indicating the predictive performance of our DNN/scaled PCA model) and the ROC curves of other
classifiers is shown in Figure 6. The DNN/scaled PCA algorithm was optimal, followed by the AdaBoost
classifier. Table 4 shows the comparison of the performance using 10-fold cross validation in order to
verify the results from Figure 6 and Table 3. The AUCs of the top two classifiers are highlighted in
bold, such as DNN and ADB. These results clearly support the conclusion that the DNN/scaled PCA
algorithm outperforms the other five algorithms.

Table 3. Comparison of the confusion matrix values and performance for six classifiers (testing data).

TH TP FP FN TN SN
(%) SP PP ACC AUC

RFC 0.077 223 960 147 3804 60.27 79.85 18.85 78.44 77.59

ADB 0.487 234 928 136 3836 63.24 80.52 20.14 79.28 79.25

GNB 0.065 258 1396 112 3368 69.73 70.7 15.6 70.63 78.08

KNNC 0.065 219 892 151 3872 59.19 81.28 19.71 79.68 72.11

SVC 0.065 221 1380 149 3384 59.73 71.03 13.8 70.22 71.51

DNN 0.13 238 688 132 4076 64.32 85.56 25.7 84.03 83.48

TH, threshold; RFC, random forest classifier; ADB, AdaBoost classifier: GNB, Gaussian naive Bayes; KNNC,
K-nearest neighbor classifier; SVC, support vector machine; DNN, deep neural network.
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Table 4. Comparison of the performance for six classifiers (10-fold cross-validation).

Classifier AUC Classifier AUC

RFC 79.4 ADB 80.5

GNB 80.0 KNNC 72.2

SVC 69.7 DNN 83.5

We used the DNN/scaled PCA classifier to estimate stroke occurrence, and derived correlation
coefficients between various patient variables and stroke. However, these did not clearly reveal the
relationships between principal components and stroke. Table 5 lists the four correlation coefficients
(r-values; over +/− 0.09) among the 11 variables; the best correlation (+0.2) is highlighted in bold and
other informative results (over +/− 0.09) are in italics and shown in red.

Table 5. Correlation coefficients of the variables (over 0.09) among 11 variables.

Variable Corr. Coff. Variable Corr. Coff.

Brain surgery required 0.124062 Admission mode −0.093137

Stroke type 0.203716 Mortality 1

We considered tuning hyperparameters, such as the number of nodes and depth of the DNN,
to improve stroke detection. Although tuning can be valuable, no general rule is available; we would
have had to train 2–8 layers with 10–40 nodes based on trial-and-error. We used two methods to
prevent overfitting, dropout and batch normalization; the latter prevents loss of feed-forward data in
a manner similar to appropriate weighting on initialization, and dropout uses weighting to minimize
the effects of certain hidden nodes.

Our method predicts stroke using indirect or limited data, such as medical service use history and
health behavior. This will reduce future medical costs and facilitate diagnosis. The limitations of our
work included a lack of input data separation and the lack of longitudinal data. Also, we employed
survey data, which has drawbacks which include the binary format. Although we used scaled PCA
to improve the data resolution, additional input variables may be required. In addition, our results
apply only to subjects who may suffer from stroke in the future; we excluded those currently receiving
treatment for stroke. This may reduce the overall accuracy of our predictive model.
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5. Conclusions

Based on the data of 15,099 subjects, we developed a deep learning model featuring scaled PCA to
automatically predict stroke based on medical utilization history and health behaviors. No subjective
variables were included in the model. Our work allows early detection of patients at high risk of stroke
who need additional checkups and appropriate treatment prior to disease exacerbation. Our method
renders it unnecessary to select variables manually. As the input data are simple (albeit of low
resolution, that is, binary or with a limited number of choices), we used a DNN to study the variables
of interest and scaled PCA to generate improved continuous inputs for the DNN. The sensitivity,
specificity and AUC value of our method were 64.32%, 85.56% and 83.48%, respectively. Our method
can be used not only to predict stroke using limited data, but also other diseases.

In future, we will modify and apply our method for the analysis of other medical service use
and health behavior datasets on conditions such as dementia. We will also use detailed indices and
physiological signals as input data to achieve more meaningful DNN results. Finally, we will employ
auto-fine-tuning methods to reduce training time and improve performance.
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