Postural Strategy in Elderly, Middle-Aged, and Young People during Local Vibratory Stimulation for Proprioceptive Inputs
Abstract
1. Introduction
2. Material and Methods
2.1. Participants
2.2. Measurements
Postural Stability Assessment
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brumagne, S.; Cordo, P.; Verschueren, S. Proprioceptive weighting changes in persons with low back pain and elderly persons during upright standing. Neurosci. Lett. 2004, 366, 63–66. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Sakai, Y.; Nakamura, E.; Yamazaki, K.; Yamada, A.; Sato, N.; Morita, Y. Relationship between paraspinal muscle cross-sectional area and relative proprioceptive weighting ratio of older persons with lumbar spondylosis. J. Phys. Ther. Sci. 2015, 27, 2247–2251. [Google Scholar] [CrossRef] [PubMed]
- Claeys, K.; Brumagne, S.; Dankaerts, W.; Kiers, H.; Janssens, L. Decreased variability in postural control strategies in young people with non-specific low back pain is associated with altered proprioceptive reweighting. Eur. J. Appl. Physiol. 2011, 111, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Pyykkö, I.; Jantti, P.; Aalto, H. Postural control in elderly subjects. Age Ageing 1990, 19, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Craig, C.E.; Goble, D.J.; Doumas, M. Proprioceptive acuity predicts muscle co-contraction of the tibialis anterior and gastrocnemius medialis in older adults’ dynamic postural control. Neuroscience 2016, 322, 251–261. [Google Scholar] [CrossRef]
- Toosizadeh, N.; Ehsani, H.; Miramonte, M.; Mohler, J. Proprioceptive impairments in high fall risk older adults: The effect of mechanical calf vibration on postural balance. Biomed. Eng. Online 2018, 17, 51. [Google Scholar] [CrossRef] [PubMed]
- Ehsani, H.; Mohler, J.; Marlinski, V.; Rashedi, E.; Toosizadeh, N. The influence of mechanical vibration on local and central balance control. J. Biomech. 2018, 71, 59–66. [Google Scholar] [CrossRef]
- Ito, T.; Sakai, Y.; Yamazaki, K.; Igarashi, K.; Sato, N.; Yokoyama, K.; Morita, Y. Proprioceptive change impairs balance control in older patients with low back pain. J. Phys. Ther. Sci. 2017, 29, 1788–1792. [Google Scholar] [CrossRef]
- Abrahámová, D.; Mancini, M.; Hlavacka, F.; Chiari, L. The age-related changes of trunk responses to Achilles tendon vibration. Neurosci. Lett. 2009, 467, 220–224. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.A.; Bryant, A.L.; Pua, Y.; McCrory, P.; Bennell, K.; Hunt, M. Validity and reliability of the Nintendo Wii Balance Board for assessment of standing balance. Gait Posture 2010, 31, 307–310. [Google Scholar] [CrossRef]
- Bacciu, D.; Chessa, S.; Gallicchio, C.; Micheli, A.; Pedrelli, L.; Ferro, E.; Fortunati, L.; La Rosa, D.; Palumbo, F.; Vozzi, F.; et al. A learning system for automatic Berg Balance Scale score estimation. Eng. Appl. Artif. Intell. 2017, 66, 60–74. [Google Scholar] [CrossRef]
- De Souza, N.S.; Martins, A.C.G.; Ferreira, C.L.; Motizuki, Y.S.; Machado, C.B.; Orsini, M.; Leite, M.A.A.; Bastos, V.H. Effect of cervical kinesthetic motor imagery on postural control of healthy young adults with fear of falling. J. Funct. Morphol. Kinesiol. 2017, 2, 21. [Google Scholar] [CrossRef]
- Ito, T.; Sakai, Y.; Morita, Y.; Yamazaki, K.; Igarashi, K.; Nishio, R.; Sato, N. Proprioceptive weighting ratio for balance control in static standing is reduced in elderly patients with non-specific low back pain. Spine (Phila Pa 1976) 2018, 43, 1704–1709. [Google Scholar] [CrossRef] [PubMed]
- Bolton, C.F.; Winkelmann, R.K.; Dyck, P.J. A quantitative study of Meissner’s corpuscles in man. Neurology 1966, 16, 1–9. [Google Scholar] [CrossRef]
- Della Volpe, R.; Popa, T.; Ginanneschi, F.; Spidalieri, R.; Mazzocchio, R.; Rossi, A. Changes in coordination of postural control during dynamic stance in chronic low back pain patients. Gait Posture 2006, 24, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Mientjes, M.I.; Frank, J.S. Balance in chronic low back pain patients compared to healthy people under various conditions in upright standing. Clin. Biomech. 1999, 14, 710–716. [Google Scholar] [CrossRef]
- Brumagne, S.; Janssens, L.; Knapen, S.; Claeys, K.; Suuden-Johanson, E. Persons with recurrent low back pain exhibit a rigid postural control strategy. Eur. Spine J. 2008, 17, 1177–1184. [Google Scholar] [CrossRef] [PubMed]
- Morasso, P.G.; Schieppati, M. Can muscle stiffness alone stabilize upright standing? J. Neurophysiol. 1999, 82, 1622–1626. [Google Scholar] [CrossRef] [PubMed]
- Allum, J.H.; Bloem, B.R.; Carpenter, M.G.; Hulliger, M.; Hadders-Algra, M. Proprioceptive control of posture: Review of new concepts. Gait Posture 1998, 8, 214–242. [Google Scholar] [CrossRef]
- Eklund, G. General features of vibration-induced effects on balance. Ups. J. Med. Sci. 1972, 77, 112–124. [Google Scholar] [CrossRef]
- Menz, H.B.; Morris, M.E.; Lord, S.R. Foot and ankle characteristics associated with impaired balance and functional ability in older people. J. Gerontol. A Biol. Sci. Med. Sci. 2005, 60, 1546–1552. [Google Scholar] [CrossRef] [PubMed]
Variables | Young (n = 23) | Middle-Aged (n = 23) | Elderly (n = 23) |
---|---|---|---|
Age (years) | 21.7 ± 1.3 | 46.0 ± 3.1 | 72.1 ± 4.8 |
Male/female | 11/12 | 11/12 | 14/9 |
Height (cm) | 165.5 ± 6.4 | 164.9 ± 8.1 | 159.0 ± 9.1 |
Weight (kg) | 55.8 ± 8.1 | 60.1 ± 11.0 | 63.6 ± 12.3 |
BMI (kg/m2) | 20.3 ± 2.5 | 22.0 ± 2.8 | 22.5 ± 3.7 |
Variables | Sum of Squares | Degrees of Freedom | Mean Squares | F-Value | p-Value |
---|---|---|---|---|---|
GS at 30 Hz | 0.683 | 2 | 0.342 | 9.413 | 0.001 |
GS at 60 Hz | 0.189 | 2 | 0.094 | 0.806 | 0.451 |
GS at 240 Hz | 0.448 | 2 | 0.224 | 3.128 | 0.05 |
LM at 30 Hz | 0.209 | 2 | 0.104 | 2.36 | 0.102 |
LM at 60 Hz | 0.346 | 2 | 0.173 | 2.359 | 0.102 |
LM at 240 Hz | 0.391 | 2 | 0.195 | 4.144 | 0.02 |
Variables | Young (n = 23) | Middle-aged (n = 23) | Elderly (n = 23) | p-Value |
---|---|---|---|---|
GS at 30 Hz | 0.65 ± 0.21 | 0.55 ± 0.17 | 0.80 ± 0.19 | Young and middle-aged: 0.284 Young and elderly: 0.033 Middle-aged and elderly: 0.001 |
GS at 240 Hz | 0.64 ± 0.30 | 0.61 ± 0.23 | 0.79 ± 0.27 | Young and middle-aged: 1.00 Young and elderly: 0.162 Middle-aged and elderly: 0.07 |
LM at 240 Hz | 0.56 ± 0.15 | 0.65 ± 0.21 | 0.75 ± 0.27 | Young and middle-aged: 0.051 Young and elderly: 0.016 Middle-aged and elderly: 0.422 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ito, T.; Sakai, Y.; Yamazaki, K.; Nishio, R.; Ito, Y.; Morita, Y. Postural Strategy in Elderly, Middle-Aged, and Young People during Local Vibratory Stimulation for Proprioceptive Inputs. Geriatrics 2018, 3, 93. https://doi.org/10.3390/geriatrics3040093
Ito T, Sakai Y, Yamazaki K, Nishio R, Ito Y, Morita Y. Postural Strategy in Elderly, Middle-Aged, and Young People during Local Vibratory Stimulation for Proprioceptive Inputs. Geriatrics. 2018; 3(4):93. https://doi.org/10.3390/geriatrics3040093
Chicago/Turabian StyleIto, Tadashi, Yoshihito Sakai, Kazunori Yamazaki, Reiya Nishio, Yohei Ito, and Yoshifumi Morita. 2018. "Postural Strategy in Elderly, Middle-Aged, and Young People during Local Vibratory Stimulation for Proprioceptive Inputs" Geriatrics 3, no. 4: 93. https://doi.org/10.3390/geriatrics3040093
APA StyleIto, T., Sakai, Y., Yamazaki, K., Nishio, R., Ito, Y., & Morita, Y. (2018). Postural Strategy in Elderly, Middle-Aged, and Young People during Local Vibratory Stimulation for Proprioceptive Inputs. Geriatrics, 3(4), 93. https://doi.org/10.3390/geriatrics3040093