Developing a Personalized Approach to Follow-Up Blood Cultures in Gram-Negative Bloodstream Infections: A Narrative Review
Abstract
:1. Introduction
2. Utility of FUBCs in Uncomplicated GN-BSIs
3. FUBCs in Immunocompromised Patients
4. Studies Favoring the Use of FUBCs in GNBs
- Frequency of obtaining FUBCs
- 2.
- Timing of obtaining FUBC
- 3.
- Did they receive appropriate antimicrobial treatment?
5. Studies with Patient Stratification
6. Do We Say No to FUBCs in All Patients with GNB?
7. Conclusions
8. Future Perspectives and Recommendations
- Prospective, Randomized Controlled Trials (RCTs): Well-designed RCTs that stratify patients based on clinical severity, the source of infection, and initial treatment adequacy are needed to provide stronger evidence on the impact of FUBCs on patient outcomes.
- Standardization of FUBC Collection Protocols: Developing universally accepted guidelines for when and how to obtain FUBCs will help reduce variability and selection bias, leading to clearer data and more uniform clinical practices.
- Integration of Rapid Diagnostic Methods: Future studies should explore combining rapid molecular diagnostics with traditional culture-based techniques. This integration could expedite appropriate treatment modifications and potentially obviate the need for routine repeat cultures.
- Development of Predictive Models and Cost-Effectiveness Studies: Incorporating clinical and laboratory data into predictive models can assist in identifying patients who would benefit most from repeat cultures. Simultaneously, comprehensive cost-effectiveness analyses are crucial to justify the use of FUBCs from both a clinical and economic standpoint.
- Personalized Medicine Approaches: Tailoring the decision to obtain FUBCs based on individualized risk—considering genetic predispositions, comorbidities, and specific pathogen characteristics—may optimize outcomes while minimizing unnecessary interventions.
Author Contributions
Funding
Conflicts of Interest
Abbreviations
FUBC | Follow-up blood culture |
GN-BSIs | Gram-negative bloodstream infections |
PBS | Pitt Bacteremia Score |
XDR | Extensive drug resistance |
CCI | Charlson Comorbidity Index |
BC | Blood culture |
LOS | Length of stay |
ICU | Intensive care unit |
CVC | Central venous catheter |
References
- Gaynes, R.; Edwards, J.R. National Nosocomial Infections Surveillance System Overview of Nosocomial Infections Caused by Gram-Negative Bacilli. Clin. Infect. Dis. 2005, 41, 848–854. [Google Scholar] [CrossRef]
- Greenberg, B.M.; Atmar, R.L.; Stager, C.E.; Greenberg, S.B. Bacteraemia in the Elderly: Predictors of Outcome in an Urban Teaching Hospital. J. Infect. 2005, 50, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Santoro, A.; Franceschini, E.; Meschiari, M.; Menozzi, M.; Zona, S.; Venturelli, C.; Digaetano, M.; Rogati, C.; Guaraldi, G.; Paul, M.; et al. Epidemiology and Risk Factors Associated with Mortality in Consecutive Patients with Bacterial Bloodstream Infection: Impact of MDR and XDR Bacteria. Open Forum Infect. Dis. 2020, 7, ofaa461. [Google Scholar] [CrossRef] [PubMed]
- Holmes, C.L.; Albin, O.R.; Mobley, H.L.T.; Bachman, M.A. Bloodstream Infections: Mechanisms of Pathogenesis and Opportunities for Intervention. Nat. Rev. Microbiol. 2024, 23, 210–224. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.; Mirrett, S.; Reller, L.B.; Weinstein, M.P. Detection of Bloodstream Infections in Adults: How Many Blood Cultures Are Needed? J. Clin. Microbiol. 2007, 45, 3546–3548. [Google Scholar] [CrossRef]
- Mermel, L.A.; Maki, D.G. Detection of Bacteremia in Adults: Consequences of Culturing an Inadequate Volume of Blood. Ann. Intern. Med. 1993, 119, 270–272. [Google Scholar] [CrossRef]
- Seigel, T.A.; Cocchi, M.N.; Salciccioli, J.; Shapiro, N.I.; Howell, M.; Tang, A.; Donnino, M.W. Inadequacy of Temperature and White Blood Cell Count in Predicting Bacteremia in Patients with Suspected Infection. J. Emerg. Med. 2012, 42, 254–259. [Google Scholar] [CrossRef]
- Yildiz, M.; Habibi, H.; Altin, F.B.; Corbacioglu, S.K.; Ozger, H.S. The Effect of Follow-up Blood Cultures on Mortality and Antibiotic Use in Gram-Negative Bloodstream Infections. BMC Infect. Dis. 2023, 23, 564. [Google Scholar] [CrossRef]
- Fabre, V.; Sharara, S.L.; Salinas, A.B.; Carroll, K.C.; Desai, S.; Cosgrove, S.E. Does This Patient Need Blood Cultures? A Scoping Review of Indications for Blood Cultures in Adult Nonneutropenic Inpatients. Clin. Infect. Dis. 2020, 71, 1339–1347. [Google Scholar] [CrossRef]
- Coburn, B.; Morris, A.M.; Tomlinson, G.; Detsky, A.S. Does This Adult Patient with Suspected Bacteremia Require Blood Cultures? JAMA 2012, 308, 502–511. [Google Scholar] [CrossRef]
- Wilson, M.L. Detection of Bacteremia: Blood Cultures and Other Diagnostic Tests; UpToDate, Connor RF; Wolters Kluwer: Alphen aan den Rijn, The Netherlands, 2024. [Google Scholar]
- Weinstein, M.P. Current Blood Culture Methods and Systems: Clinical Concepts, Technology, and Interpretation of Results. Clin. Infect. Dis. 1996, 23, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Pien, B.C.; Sundaram, P.; Raoof, N.; Costa, S.F.; Mirrett, S.; Woods, C.W.; Reller, L.B.; Weinstein, M.P. The Clinical and Prognostic Importance of Positive Blood Cultures in Adults. Am. J. Med. 2010, 123, 819–828. [Google Scholar] [CrossRef] [PubMed]
- Mirrett, S.; Weinstein, M.P.; Reimer, L.G.; Wilson, M.L.; Reller, L.B. Relevance of the Number of Positive Bottles in Determining Clinical Significance of Coagulase-Negative Staphylococci in Blood Cultures. J. Clin. Microbiol. 2001, 39, 3279–3281. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Kang, C.-I.; Cho, S.Y.; Huh, K.; Chung, D.R.; Peck, K.R. Follow-up Blood Cultures Add Little Value in the Management of Bacteremic Urinary Tract Infections. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 695–702. [Google Scholar] [CrossRef]
- Thaden, J.T.; Cantrell, S.; Dagher, M.; Tao, Y.; Ruffin, F.; Maskarinec, S.A.; Goins, S.; Sinclair, M.; Parsons, J.B.; Eichenberger, E.; et al. Association of Follow-up Blood Cultures with Mortality in Patients with Gram-Negative Bloodstream Infections: A Systematic Review and Meta-Analysis. JAMA Netw. Open 2022, 5, e2232576. [Google Scholar] [CrossRef]
- Liu, C.; Bayer, A.; Cosgrove, S.E.; Daum, R.S.; Fridkin, S.K.; Gorwitz, R.J.; Kaplan, S.L.; Karchmer, A.W.; Levine, D.P.; Murray, B.E.; et al. Clinical Practice Guidelines by the Infectious Diseases Society of America for the Treatment of Methicillin-Resistant Staphylococcus Aureus Infections in Adults and Children. Clin. Infect. Dis. 2011, 52, e18–e55. [Google Scholar] [CrossRef]
- Chan, J.D.; Ta, A.; Lynch, J.B.; Bryson-Cahn, C. Follow-up Blood Cultures in E. Coli and Klebsiella Spp. Bacteremia—Opportunities for Diagnostic and Antimicrobial Stewardship. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 1107–1111. [Google Scholar] [CrossRef]
- Giannella, M.; Pascale, R.; Pancaldi, L.; Monari, C.; Ianniruberto, S.; Malosso, P.; Bussini, L.; Bartoletti, M.; Tedeschi, S.; Ambretti, S.; et al. Follow-up Blood Cultures Are Associated with Improved Outcome of Patients with Gram-Negative Bloodstream Infections: Retrospective Observational Cohort Study. Clin. Microbiol. Infect. 2020, 26, 897–903. [Google Scholar] [CrossRef]
- Robinson, E.D.; Cox, H.; Mathers, A.J. 89. Follow-Up Blood Cultures (FUBC) in the Management of Gram-Negative Bacilli (GNB) Bloodstream Infections (BSIs): Frequently Obtained and Rarely Helpful. Open Forum Infect. Dis. 2021, 8, S160. [Google Scholar] [CrossRef]
- Canzoneri, C.N.; Akhavan, B.J.; Tosur, Z.; Andrade, P.E.A.; Aisenberg, G.M. Follow-up Blood Cultures in Gram-Negative Bacteremia: Are They Needed? Clin. Infect. Dis. 2017, 65, 1776–1779. [Google Scholar] [CrossRef]
- Shinohara, J.; Hanai, S.; Jung, J.; Song, K.-H.; Iwata, M.; Terasawa, T. Association of Repeated Blood Cultures with Mortality in Adult Patients with Gram-Negative Bacilli Bacteremia: A Systematic Review and Meta-Analysis. Open Forum Infect. Dis. 2022, 9, ofac568. [Google Scholar] [CrossRef]
- Kang, C.K.; Kim, E.S.; Song, K.-H.; Kim, H.B.; Kim, T.S.; Kim, N.-H.; Kim, C.-J.; Choe, P.G.; Bang, J.-H.; Park, W.B.; et al. Can a Routine Follow-up Blood Culture Be Justified in Klebsiella Pneumoniaebacteremia? A Retrospective Case–Control Study. BMC Infect. Dis. 2013, 13, 365. [Google Scholar] [CrossRef]
- Green, A.L.; Liang, Y.; O’Hara, L.M.; Pineles, L.; Sorongon, S.; Harris, A.D.; Baghdadi, J.D. Follow-up Blood Cultures in Pseudomonas Aeruginosa Bacteremia: A Potential Target for Diagnostic Stewardship. Antimicrob. Steward. Healthc. Epidemiol. 2021, 1, e23. [Google Scholar] [CrossRef]
- Elamin, A.; Khan, F.; Jagarlamudi, R. Follow-up Blood Cultures in Gram-Negative Bacteremia: How Do They Impact Outcomes? J. Community Hosp. Intern. Med. Perspect. 2022, 12, 35–42. [Google Scholar] [CrossRef]
- Clemmons, A.B.; Young, H.N.; Bland, C.M.; Jackson, B.; Hayashi, M.; Folsom, C.; Chastain, D.B. Incidence and Utility of Follow-up Blood Cultures in Cancer Patients with Gram-Negative Bacteremia. Diagn. Microbiol. Infect. Dis. 2021, 101, 115444. [Google Scholar] [CrossRef]
- Buzzalino, L.G.; Mease, J.; Bernhardi, C.L.; Bork, J.T.; Johnson, J.K.; Claeys, K.C. Follow-up Blood Culture Practices for Gram-Negative Bloodstream Infections in Immunocompromised Hosts at a Large Academic Medical Center. Open Forum Infect. Dis. 2022, 9, ofac173. [Google Scholar] [CrossRef]
- Mitaka, H.; Fujitani, S.; Kuno, T.; Perlman, D.C. Association between Follow-up Blood Cultures for Gram-Negative Bacilli Bacteremia and Length of Hospital Stay and Duration of Antibiotic Treatment: A Propensity Score-Matched Cohort Study. Infect. Control. Hosp. Epidemiol. 2023, 44, 474–479. [Google Scholar] [CrossRef]
- Jung, J.; Song, K.-H.; Jun, K.I.; Kang, C.K.; Kim, N.-H.; Choe, P.G.; Park, W.B.; Bang, J.H.; Kim, E.S.; Park, S.-W.; et al. Predictive Scoring Models for Persistent Gram-Negative Bacteremia That Reduce the Need for Follow-up Blood Cultures: A Retrospective Observational Cohort Study. BMC Infect. Dis. 2020, 20, 680. [Google Scholar] [CrossRef]
- Maskarinec, S.A.; Park, L.P.; Ruffin, F.; Turner, N.A.; Patel, N.; Eichenberger, E.M.; Van Duin, D.; Lodise, T.; Fowler, V.G.; Thaden, J.T. Positive Follow-up Blood Cultures Identify High Mortality Risk among Patients with Gram-Negative Bacteraemia. Clin. Microbiol. Infect. 2020, 26, 904–910. [Google Scholar] [CrossRef]
- Gatti, M.; Bonazzetti, C.; Tazza, B.; Pascale, R.; Miani, B.; Malosso, M.; Beci, G.; Marzolla, D.; Rinaldi, M.; Viale, P.; et al. Impact on Clinical Outcome of Follow-up Blood Cultures and Risk Factors for Persistent Bacteraemia in Patients with Gram-Negative Bloodstream Infections: A Systematic Review with Meta-Analysis. Clin. Microbiol. Infect. 2023, 29, 1150–1158. [Google Scholar] [CrossRef]
- Heil, E.L.; Bork, J.T.; Abbo, L.M.; Barlam, T.F.; Cosgrove, S.E.; Davis, A.; Ha, D.R.; Jenkins, T.C.; Kaye, K.S.; Lewis, J.S.; et al. Optimizing the Management of Uncomplicated Gram-Negative Bloodstream Infections: Consensus Guidance Using a Modified Delphi Process. Open Forum Infect. Dis. 2021, 8, ofab434. [Google Scholar] [CrossRef]
Low Probability | Moderate Probability | High Probability |
---|---|---|
Cellulits | Pyelonephritis | Discitis |
VAP | Cholangitis | Epidural abscesses |
Lower urinary tract infection | Pyogenic liver abscess | Acute nontraumatic native septic joints |
CAP | Severe CAP | Ventriculoatrial shunt infections |
Isolated fever | Nonvascular shunt infections | Septic shock |
Fever within 48 h of surgery | Severe sepsis | Catheter-related bloodstream infections |
Shaking and chills in febrile patients |
Ref | Type of Study | No of Patients with FUBCs vs. No FUBCs | Pathogens (%) | Source of Infection (%) | Positivity Rate of FUBCs (%) | Timing of FUBCs | Mortality Benefit | LOS | Antibiotic Days |
---|---|---|---|---|---|---|---|---|---|
8 | Retrospective study | 564 vs. 268 | Enterobacterales (65.5) S. maltophilia (7.6) A. baumanii (10.1) P. Aeruginosa (7.5) | CVC (23.9) UTI (15.4) IAI (7.3) | 3.9 | Median 3 days | No | No data | Increased |
Comment: Risk factors for positive FUBCs: high SOFA, CVC, nosocomial origin, carbapenem resistance, and inappropriate antibiotic use | |||||||||
16 | Metanalysis | 1962 vs. 2411 | All GN | No data | No data | 24 h–7 d | Yes | No data | No data |
Comment: No patient stratification and moderate risk of bias | |||||||||
18 | Retrospective | 299 vs. 36 | E. coli K. pneumoniae | UTI (54) IAI (17.9) CVC (8.7) | 12.4 | No data | No | Increased | No data |
Comment: No need for FUBCs in E.coli and K. pneumoniae bacteremia | |||||||||
19 | Retrospective | 278 vs. 1298 | E. coli (59.7) K. pneumoniae (20.7) Enterobacter spp. (4.9) P. Aeruginosa (8.2) | UTI (37.6) Primary (18.9) Biliary tract (14.2) IAI (12.4) | 38.5 | 24 h–7 d | Yes * | Increased | Increased |
Comment: * Mortality benefit found only in the critically ill, non-UTIs, difficult pathogens, and inappropriate antibiotics | |||||||||
21 | Retrospective | 383 with FUBC | All Gram-negative | UTI (26) SSI (25.6) CVC (22.3) Pneumonia (12.5) IAI (7.6) | 2 | >24 h | No | No data | No data |
Comment: Fever, mortality, and ICU admission are not associated with positive FUBCs | |||||||||
22 | Systematic Review and Metanalysis | 4196 vs. 3582 | E. coli-Klebsiella spp. (17–60) | UTI (11–60) IAI (7–18) | 3–38 | 24 h–7 d | Yes | Increased | Increased |
Comment: A high risk of bias | |||||||||
23 | Retrospective | 862 with FUBC | K. pneumoniae (100) | Biliary tract (42.3) Primary (17.3) UTI (10.9) IAI (13.7) | 7.2 | >48 h | Yes * | No data | No data |
Comment: * The scoring system for the prediction of positive FUBCs included the following: IAI, nosocomial origin, and no improvement. A mortality benefit was found in persistent positive bacteremias using this score | |||||||||
24 | Retrospective | 127 vs. 32 | P. Aeruginosa (100) | IAI (17) CVC (14.5) Pneumonia (13.8) UTI (10.7) | 7 | 24 h–7 d | Yes * | No data | No data |
Comment: * Only in patients with a Pitt Bacteremia Score >0 | |||||||||
25 | Retrospective | 321 vs. 161 | E. coli (52) K. pneumoniae (12.5) P. Aeruginosa (5) | UTI (52.8) IAI (17) | 4 | No data | No | Increased | Increased |
Comment: No difference in mortality or readmissions | |||||||||
26 | Retrospective | 35 vs. 17 | E. coli (47) K. pneumoniae (29) | UTI (47) | 8.2 | 1 h–24 h | No | Increased | Increased |
Comment: Immunocompromised patients with hematologic or solid organ malignancies | |||||||||
27 | Retrospective | 22 vs. 117 | E. coli (31) Klebsiella spp. (27) P. Aeruginosa (25) E. cloacae (5) | IAI (55.9) UTI (22.2) CVC (7.4) LRTI (5.7) | 2.6 | <24 h | No | Increased | Increased |
Comment: Immunocompromised patients | |||||||||
28 | Retrospective | 87 vs. 87 | E. coli (44.9) K. pneumoniae (18.5) P. mirabilis (8.9) E. cloacae (4.8) P. Aeruginosa (3.2) | UTI (47.3) Biliary tract (12.8) IAI (6.9) LRTI (4.8) SSTI (4) | 10 | 24 h–7 d | No | Increased | Increased |
Comment: Pair-matched and well-balanced patients for severity and demographics | |||||||||
29 | Retrospective | 1276 vs. 205 | E. coli (56.6) K. pneumoniae (19.6) P. Aeruginosa (4.9) | UTI (39.3) IAI (38.7) | 9.6 | 48 h–7 d | No | No data | No data |
Comment: Independent factors for positive FUBCs in eradicable sources of infection: ESBL, CRBSI, unfavorable response, qSOFA ≥ 2 for the day of FUBC, and the ineffectiveness of antibiotics | |||||||||
30 | Prospective study | 1164 vs. 538 | E. coli (34.7) Klebsiella spp. (20.8) Enterobacter spp. (9.6) Pseudomonas spp. (9.3) | UTI (32.4) Unknown (20.3) CVC (19.2) IAI (14.5) Endovascular (21.1) | 20 | 24 h–7 d | Yes * | No data | Increased |
Comment: * A mortality benefit was found only in patients with a high-risk scoring system to estimate the probability of persistent GNB, including antibiotics, infection source, comorbidities, and species. | |||||||||
31 | Metanalysis | 2094 vs. 2537 | E. coli (36–59.7) Klebsiella spp. (17–29.3) | UTI (10.1–60) | No data | 24 h–7 d | Yes | Increased | Increased |
Comment: Risk factors for positive blood cultures: SOT, end-stage renal disease, ESBL, CVC, unfavorable response, and inappropriate treatment |
Possible Factors Associated with High Likelihood of Positive FUBCs |
---|
Presence of CVC |
Unfavorable response to treatment |
Multidrug-resistant pathogens |
Administration of inappropriate antibiotics |
Inadequate source control |
Endovascular infections |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tziolos, R.-N.; Kofteridis, D.P. Developing a Personalized Approach to Follow-Up Blood Cultures in Gram-Negative Bloodstream Infections: A Narrative Review. Diseases 2025, 13, 156. https://doi.org/10.3390/diseases13050156
Tziolos R-N, Kofteridis DP. Developing a Personalized Approach to Follow-Up Blood Cultures in Gram-Negative Bloodstream Infections: A Narrative Review. Diseases. 2025; 13(5):156. https://doi.org/10.3390/diseases13050156
Chicago/Turabian StyleTziolos, Renatos-Nikolaos, and Diamantis P. Kofteridis. 2025. "Developing a Personalized Approach to Follow-Up Blood Cultures in Gram-Negative Bloodstream Infections: A Narrative Review" Diseases 13, no. 5: 156. https://doi.org/10.3390/diseases13050156
APA StyleTziolos, R.-N., & Kofteridis, D. P. (2025). Developing a Personalized Approach to Follow-Up Blood Cultures in Gram-Negative Bloodstream Infections: A Narrative Review. Diseases, 13(5), 156. https://doi.org/10.3390/diseases13050156