The Molecular Diagnosis of Invasive Fungal Diseases with a Focus on PCR
Abstract
1. Introduction
Nucleic Acid Extraction/General Considerations
2. Molecular Diagnosis of Invasive Fungal Diseases
2.1. Aspergillus PCR
2.2. Candida PCR
2.3. Mucorales PCR
2.4. Pneumocystis jirovecii PCR
2.5. PCR Detection of Endemic and Rare Fungi
3. Pan-Fungal Approach
4. Multiplex PCR Panels
5. Novel and Emerging Molecular Techniques
5.1. Proximity Ligation Assay (PLA)
5.2. Isothermal Amplification Techniques
5.3. Microfluidics
5.4. Digital Droplet PCR
5.5. Next Generation Sequencing
5.6. Clinical Algorithms and Artificial Intelligence
6. Expert Opinion/Conclusions
6.1. What Is the Optimal Approach to Fungal PCR?
- The type of infection dictates the most appropriate specimen type for PCR analysis. When using specimens with low fungal burdens such as blood, high sample volumes and low elution volumes can maximise recovery of DNA.
- Nucleic acid extraction is critical to optimal PCR performance and should focus on the disease manifestation and specimen type that will dictate the available DNA sources.
- By targeting human DNA, PCR can also be useful for determining the quality of sampling (e.g., respiratory samples), which can then be applied other tests performed on the sample to avoid the reporting of false results.
- qPCR is preferred over conventional PCR due to the technical benefits associated with qPCR including quantification of fungal burden and reduced opportunity for contamination.
6.2. How Should We Interpret a Positive or Negative Fungal PCR Test?
- As with any diagnostic test, an understanding of the pre-test probability (determined by patient population, host, clinical and risk factors, and subsequent incidence of disease) is critical to the interpretation of fungal PCR.
- Utilising sensitive molecular tests for screening of patients with low to moderate pre-test probability excludes IFD when all tests are negative and obviates the need for empirical antifungal therapy. Conversely, in patients with clinical features of IFD and high pre-test probability, PCR testing on invasive specimens from the focus of infection (i.e., tissue, BALF) can confirm disease.
- PCR testing of minimally invasive specimens (i.e., sputum) should ideally be combined with additional positive mycology (serology, culture, and microscopy) to enhance the specificity of testing.
- PCR screening of easily obtained blood specimens from high-risk patients can help anticipate a diagnosis of IFD and trigger early targeted antifungal therapy [118].
- Follow-up PCR may also be helpful as a prognostic marker in response to treatment [80].
6.3. How Can We Combine Fungal qPCR and Biomarkers to Improve the Diagnosis of IFDs?
- qPCR for the diagnosis of IFD has developed into a test that complements biomarker testing and overcomes the diagnostic limitations of these tests. The potential to identify markers of resistance, determine sample quality and further quantify fungal burden support the combined use of molecular and antigen testing for a range of IFD.
- The low limit of detection of qPCR does lead to some false positives but rates of false positivity are not significantly different to those of antigen testing and, given the sources of false positivity typically differ between molecular and antigen tests, it is unlikely that both will be concordantly falsely positive.
- Combining molecular and antigen testing in diagnostic algorithms has the potential to improve the diagnosis of many IFDs.
6.4. Is NGS the Future of Molecular Fungal Diagnostics?
- Although less sensitive than qPCR, NGS complements qPCR by providing broader diagnostic capabilities, including the simultaneous detection and identification of a wide array of fungal species, quantification of pathogen loads, and identification of co-infections and resistance markers.
- NGS’s ability to detect rare and atypical pathogens, often missed by traditional methods, further enhances its clinical value, particularly in complex cases.
- Combining NGS testing with qPCR and other diagnostics will improve our capacity to interpret NGS results and can significantly improve the accuracy of IFD diagnosis, guide targeted antifungal therapy, and optimise patient outcomes. However, significant procedural optimisation and standardisation is required before we can fully interpret results and improved access to rapid testing is critical to providing clinical utility.
- Clinical algorithms, with AI-driven machine learning, could enable the integration of multiple diverse sources of clinical, radiological and laboratory data to improve our confidence to diagnose or rule out IFD.
Funding
Conflicts of Interest
References
- Denning, D.W. Global incidence and mortality of severe fungal disease. Lancet Infect. Dis. 2024, 24, e428–e438. [Google Scholar] [CrossRef]
- Hoenigl, M.; Seidel, D.; Sprute, R.; Cunha, C.; Oliverio, M.; Goldman, G.H.; Ibrahim, A.S.; Carvalho, A. COVID-19-associated fungal infections. Nat. Microbiol. 2022, 7, 1127–1140. [Google Scholar] [CrossRef]
- Seidel, D.; Wurster, S.; Jenks, J.D.; Sati, H.; Gangneux, J.-P.; Egger, M.; Alastruey-Izquierdo, A.; Ford, N.P.; Chowdhary, A.; Sprute, R.; et al. Impact of climate change and natural disasters on fungal infections. Lancet Microbe 2024, 5, e594–e605. [Google Scholar] [CrossRef]
- van Rhijn, N.; Arikan-Akdagli, S.; Beardsley, J.; Bongomin, F.; Chakrabarti, A.; Chen, S.C.; Chiller, T.; Colombo, A.L.; Govender, N.P.; Alastruey-Izquierdo, A.; et al. Beyond bacteria: The growing threat of antifungal resistance. Lancet 2024, 404, 1017–1018. [Google Scholar] [CrossRef]
- Baker, J.; Denning, D.W. The SSS revolution in fungal diagnostics: Speed, simplicity and sensitivity. Br. Med. Bull. 2023, 147, 62–78. [Google Scholar] [CrossRef] [PubMed]
- Osaigbovo, I.I.; Rajasingham, R. The urgent need to scale-up fungal diagnostics in Africa. Lancet Infect. Infect. Dis. 2023, 23, 517–519. [Google Scholar] [CrossRef] [PubMed]
- Salmanton-García, J.; Hoenigl, M.; Gangneux, J.P.; Segal, E.; Alastruey-Izquierdo, A.; Akdagli, S.A.; Lagrou, K.; Özenci, V.; Vena, A.; Cornely, O.A. The current state of laboratory mycology and access to antifungal treatment in Europe: A European Confederation of Medical Mycology survey. Lancet Microbe 2023, 4, e47–e56. [Google Scholar] [CrossRef] [PubMed]
- Bongomin, F.; Ekeng, B.E.; Kwizera, R.; Salmanton-García, J.; Kibone, W.; van Rhijn, N.; Govender, N.P.; Meya, D.B.; Osaigbovo, I.I.; Hamer, D.H.; et al. Fungal diseases in Africa: Closing the gaps in diagnosis and treatment through implementation research and advocacy. J. Med. Mycol. 2023, 33, 101438. [Google Scholar] [CrossRef] [PubMed]
- White, P.L.; Bretagne, S.; Klingspor, L.; Melchers, W.J.; McCulloch, E.; Schulz, B.; Finnstrom, N.; Mengoli, C.; Barnes, R.A.; Donnelly, J.P.; et al. European Aspergillus PCR Initiative Aspergillus PCR: One step closer to standardization. J. Clin. Microbiol. 2010, 48, 1231–1240. [Google Scholar] [CrossRef]
- White, P.L.; Barnes, R.A.; Springer, J.; Klingspor, L.; Cuenca-Estrella, M.; Morton, C.O.; Lagrou, K.; Bretagne, S.; Melchers, W.J.; Mengoli, C.; et al. Clinical performance of Aspergillus PCR for testing serum and plasma: A study by the European Aspergillus PCR Initiative. J. Clin. Microbiol. 2015, 53, 2832–2837. [Google Scholar] [CrossRef]
- Pham, D.; Sivalingam, V.; Tang, H.M.; Montgomery, J.M.; Chen, S.C.-A.; Halliday, C.L. Molecular Diagnostics for Invasive Fungal Diseases: Current and Future Approaches. J. Fungi 2024, 10, 447. [Google Scholar] [CrossRef]
- White, P.L.; Alanio, A.; Brown, L.; Cruciani, M.; Hagen, F.; Gorton, R.; Lackner, M.; Millon, L.; Morton, C.O.; Rautemaa-Richardson, R.; et al. An overview of using fungal DNA for the diagnosis of invasive mycoses. Expert Rev. Mol. Diagn. 2022, 22, 169–184. [Google Scholar] [CrossRef] [PubMed]
- White, P.L.; Perry, M.D.; Loeffler, J.; Melchers, W.; Klingspor, L.; Bretagne, S.; McCulloch, E.; Cuenca-Estrella, M.; Finnstrom, N.; Donnelly, J.P.; et al. Critical stages of extracting DNA from Aspergillus fumigatus in whole-blood specimens. J. Clin. Microbiol. 2010, 48, 3753–3755. [Google Scholar] [CrossRef] [PubMed]
- Loeffler, J.; Mengoli, C.; Springer, J.; Bretagne, S.; Cuenca-Estrella, M.; Klingspor, L.; Lagrou, K.; Melchers, W.J.; Morton, C.O.; Barnes, R.A.; et al. Analytical comparison of in vitro-spiked human serum and plasma for PCR-based detection of Aspergillus fumigatus DNA: A study by the European Aspergillus PCR Initiative. J. Clin. Microbiol. 2015, 53, 2838–2845. [Google Scholar] [CrossRef]
- Price, J.S.; Fallon, M.; Posso, R.; Backx, M.; White, P.L. An Evaluation of the OLM CandID Real-Time PCR to Aid in the Diagnosis of Invasive Candidiasis When Testing Serum Samples. J. Fungi 2022, 8, 935. [Google Scholar] [CrossRef]
- Kushner, L.E.; Schwenk, H.T.; Qin, F.; Boothroyd, D.; Aftandilian, C. Application of cell-free DNA fungal polymerase chain reaction for invasive fungal disease evaluation in pediatric oncology and stem cell transplant patients. Pediatr. Blood Cancer 2024, 71, e31133. [Google Scholar] [CrossRef]
- Springer, J.; White, P.L.; Hamilton, S.; Michel, D.; Barnes, R.A.; Einsele, H.; Löffler, J. Comparison of Performance Characteristics of Aspergillus PCR in Testing a Range of Blood-Based Samples in Accordance with International Methodological Recommendations. J. Clin. Microbiol. 2016, 54, 705–711. [Google Scholar] [CrossRef] [PubMed]
- Rogers, T.R.; Morton, C.O.; Springer, J.; Conneally, E.; Heinz, W.; Kenny, C.; Frost, S.; Einsele, H.; Loeffler, J. Combined real-time PCR and galactomannan surveillance improves diagnosis of invasive aspergillosis in high risk patients with haematological malignancies. Br. J. Haematol. 2013, 161, 517–524. [Google Scholar] [CrossRef]
- Rocchi, S.; Scherer, E.; Mengoli, C.; Alanio, A.; Botterel, F.; Bougnoux, M.E.; Bretagne, S.; Cogliati, M.; Cornu, M.; Dalle, F.; et al. Interlaboratory evaluation of Mucorales PCR assays for testing serum specimens: A study by the fungal PCR Initiative and the Modimucor study group. Med. Mycol. 2021, 59, 126–138. [Google Scholar] [CrossRef]
- Millon, L.; Larosa, F.; Lepiller, Q.; Legrand, F.; Rocchi, S.; Daguindau, E.; Scherer, E.; Bellanger, A.P.; Leroy, J.; Grenouillet, F. Quantitative polymerase chain reaction detection of circulating DNA in serum for early diagnosis of mucormycosis in immunocompromised patients. Clin. Infect. Dis. 2013, 56, e95–e101. [Google Scholar] [CrossRef]
- Millon, L.; Herbrecht, R.; Grenouillet, F.; Morio, F.; Alanio, A.; Letscher-Bru, V.; Cassaing, S.; Chouaki, T.; Kauffmann-Lacroix, C.; Poirier, P.; et al. Early diagnosis and monitoring of mucormycosis by detection of circulating DNA in serum: Retrospective analysis of 44 cases collected through the French Surveillance Network of Invasive Fungal Infections [RESSIF]. Clin. Microbiol. Infect. 2016, 22, 810.e1–810.e8. [Google Scholar] [CrossRef]
- Springer, J.; Lackner, M.; Ensinger, C.; Risslegger, B.; Morton, C.O.; Nachbaur, D.; Lass-Flörl, C.; Einsele, H.; Heinz, W.J.; Loeffler, J. Clinical evaluation of a Mucorales-specific real-time PCR assay in tissue and serum samples. J. Med. Microbiol. 2016, 65, 1414–1421. [Google Scholar] [CrossRef] [PubMed]
- Maertens, J.; Maertens, V.; Theunissen, K.; Meersseman, W.; Meersseman, P.; Meers, S.; Verbeken, E.; Verhoef, G.; Eldere, J.V.; Lagrou, K. Bronchoalveolar lavage fluid galactomannan for the diagnosis of invasive pulmonary aspergillosis in patients with hematologic diseases. Clin. Infect. Dis. 2009, 49, 1688–1693. [Google Scholar] [CrossRef] [PubMed]
- de Heer, K.; Gerritsen, M.G.; Visser, C.E.; Leeflang, M.M. Galactomannan detection in broncho-alveolar lavage fluid for invasive aspergillosis in immunocompromised patients. Cochrane Database Syst. Rev. 2019, 5, CD012399. [Google Scholar] [CrossRef]
- Spreadbury, C.; Holden, D.; Aufauvre-Brown, A.; Bainbridge, B.; Cohen, J. Detection of Aspergillus fumigatus by polymerase chain reaction. J. Clin. Microbiol. 1993, 31, 615–621. [Google Scholar] [CrossRef]
- Imbert, S.; Meyer, I.; Palous, M.; Brossas, J.Y.; Uzunov, M.; Touafek, F.; Gay, F.; Trosini-Desert, V.; Fekkar, A. Aspergillus PCR in bronchoalveolar lavage fluid for the diagnosis and prognosis of aspergillosis in patients with hematological and non-hematological conditions. Front. Microbiol. 2018, 9, 1877. [Google Scholar] [CrossRef]
- Scherer, E.; Iriart, X.; Bellanger, A.P.; Dupont, D.; Guitard, J.; Gabriel, F.; Cassaing, S.; Charpentier, E.; Guenounou, S.; Cornet, M.; et al. Quantitative PCR [qPCR] detection of Mucorales DNA in bronchoalveolar lavage fluid to diagnose pulmonary mucormycosis. J. Clin. Microbiol. 2018, 56, e00289-18. [Google Scholar] [CrossRef] [PubMed]
- Robert-Gangneux, F.; Belaz, S.; Revest, M.; Tattevin, P.; Jouneau, S.; Decaux, O.; Chevrier, S.; Le Tulzo, Y.; Gangneux, J.P. Diagnosis of Pneumocystis jirovecii pneumonia in immunocompromised patients by real-time PCR: A 4-year prospective study. J. Clin. Microbiol. 2014, 52, 3370–3376. [Google Scholar] [CrossRef]
- Doyle, L.; Vogel, S.; Procop, G.W. Pneumocystis PCR: It Is Time to Make PCR the Test of Choice. Open Forum. Infect. Dis. 2017, 4, ofx193. [Google Scholar] [CrossRef]
- Hoenigl, M.; Egger, M.; Price, J.; Krause, R.; Prattes, J.; White, P.L. Metagenomic next-generation sequencing of plasma for diagnosis of COVID-19-associated pulmonary aspergillosis. J. Clin. Microbiol. 2023, 61, e0185922. [Google Scholar] [CrossRef]
- Donnelly, J.P.; Chen, S.C.; Kauffman, C.A.; Steinbach, W.J.; Baddley, J.W.; Verweij, P.E.; Clancy, C.J.; Wingard, J.R.; Lockhart, S.R.; Groll, A.H.; et al. Revision and update of the consensus definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium. Clin. Infect. Dis. 2020, 71, 1367–1376. [Google Scholar] [CrossRef]
- Bassetti, M.; Giacobbe, D.R.; Agvald-Ohman, C.; Akova, M.; Alastruey-Izquierdo, A.; Arikan-Akdagli, S.; Azoulay, E.; Blot, S.; Cornely, O.A.; Cuenca-Estrella, M.; et al. Invasive Fungal Diseases in Adult Patients in Intensive Care Unit [FUNDICU]: 2024 consensus definitions from ESGCIP, EFISG, ESICM, ECMM, MSGERC, ISAC, and ISHAM. Intensive Care Med. 2024, 50, 502–515. [Google Scholar] [CrossRef]
- Verweij, P.E.; Rijnders, B.J.; Brüggemann, R.J.; Azoulay, E.; Bassetti, M.; Blot, S.; Calandra, T.; Clancy, C.J.; Cornely, O.A.; Chiller, T.; et al. Review of influenza-associated pulmonary aspergillosis in ICU patients and proposal for a case definition: An expert opinion. Intensive Care Med. 2020, 46, 1524–1535. [Google Scholar] [CrossRef]
- Koehler, P.; Bassetti, M.; Chakrabarti, A.; Chen, S.C.; Colombo, A.L.; Hoenigl, M.; Klimko, N.; Lass-Flörl, C.; Oladele, R.O.; Vinh, D.C.; et al. Defining and managing COVID-19-associated pulmonary aspergillosis: The 2020 ECMM/ISHAM consensus criteria for research and clinical guidance. Lancet Infect. Dis. 2021, 21, e149–e162. [Google Scholar] [CrossRef] [PubMed]
- Hamam, J.; Navellou, J.C.; Bellanger, A.P.; Bretagne, S.; Winiszewski, H.; Scherer, E.; Piton, G.; Millon, L.; Collaborative RESSIF Group. New clinical algorithm including fungal biomarkers to better diagnose probable invasive pulmonary aspergillosis in ICU. Ann. Intensive Care 2021, 11, 41. [Google Scholar] [CrossRef]
- Kariyawasam, R.M.; Dingle, T.C.; Kula, B.E.; Vandermeer, B.; Sligl, W.I.; Schwartz, I.S. Defining COVID-19–associated pulmonary aspergillosis: Systematic review and meta-analysis. Clin. Microbiol. Infection. 2022, 28, 920–927. [Google Scholar] [CrossRef] [PubMed]
- Feys, S.; Almyroudi, M.P.; Braspenning, R.; Lagrou, K.; Spriet, I.; Dimopoulos, G.; Wauters, J. A visual and comprehensive review on COVID-19-associated pulmonary aspergillosis [CAPA]. J. Fungi 2021, 7, 1067. [Google Scholar] [CrossRef]
- Rogers, T.R.; Verweij, P.E.; Castanheira, M.; Dannaoui, E.; White, P.L.; Arendrup, M.C. Molecular mechanisms of acquired antifungal drug resistance in principal fungal pathogens and EUCAST guidance for their laboratory detection and clinical implications. J. Antimicrob. Chemother. 2022, 77, 2053–2073. [Google Scholar] [CrossRef] [PubMed]
- Siopi, M.; Antonopoulou, S.; Mantzana, P.; Georgiou, P.C.; Vourli, S.; Protonotariou, E.; Vagiakou, E.; Skoura, L.; Pournaras, S.; Meletiadis, J. Can bronchial secretion cultures identify the etiologic agent of COVID-19-associated pulmonary aspergillosis in ICU patients? Comparison with a species-specific Aspergillus PCR in serum. Med. Mycol. 2023, 61, myac094. [Google Scholar] [CrossRef]
- Acet-Öztürk, N.A.; Ömer-Topçu, D.; Vurat-Acar, K.; Aydın-Güçlü, Ö.; Pınar, İ.E.; Demirdöğen, E.; Görek-Dilektaşlı, A.; Kazak, E.; Özkocaman, V.; Ursavas, A.; et al. Impact of revised EORTC/MSGERC 2020 criteria on diagnosis and prognosis of invasive pulmonary aspergillosis in patients with hematological malignancies undergoing bronchoscopy. J. Med. Mycol. 2022, 32, 101304. [Google Scholar] [CrossRef]
- Lamberink, H.; Wagemakers, A.; Sigaloff, K.C.; van Houdt, R.; de Jonge, N.A.; van Dijk, K. The impact of the updated EORTC/MSG criteria on the classification of hematological patients with suspected invasive pulmonary aspergillosis. Clin. Microbiol. Infect. 2022, 28, 1120–1125. [Google Scholar] [CrossRef]
- Lee, K.H.; Won, D.; Kim, J.; Lee, J.A.; Kim, C.H.; Kim, J.H.; Jeong, S.J.; Ku, N.S.; Choi, J.Y.; Yeom, J.S.; et al. Utility of Plasma Microbial Cell-Free DNA Whole-Genome Sequencing for Diagnosis of Invasive Aspergillosis in Patients with Hematologic Malignancy or COVID-19. J. Infect. Dis. 2023, 228, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Mah, J.; Nicholas, V.; Tayyar, R.; Moreno, A.; Murugesan, K.; Budvytiene, I.; Banaei, N. Superior accuracy of Aspergillus plasma cell-free DNA PCR over serum galactomannan for the diagnosis of invasive aspergillosis. Clin. Infect. Dis. 2023, 77, 1282–1290. [Google Scholar] [CrossRef]
- Huygens, S.; Schauwvlieghe, A.; Wlazlo, N.; Moors, I.; Boelens, J.; Reynders, M.; Chong, G.L.; Klaassen, C.H.; Rijnders, B.J. Diagnostic value of microbial cell-free DNA sequencing for suspected invasive fungal infections: A retrospective multicenter cohort study. Open Forum Infect. Dis. 2024, 11, ofae252. [Google Scholar] [CrossRef] [PubMed]
- White, P.L.; Donnelly, J.P. Polymerase Chain Reaction of Plasma and Bronchoalveolar Lavage Fluid for Diagnosing Invasive Aspergillosis. Clin. Infect. Dis. 2023, 11, 1291–1293. [Google Scholar] [CrossRef] [PubMed]
- Cruciani, M.; White, P.L.; Barnes, R.A.; Loeffler, J.; Donnelly, J.P.; Rogers, T.R.; Heinz, W.J.; Warris, A.; Morton, C.O.; Lengerova, M.; et al. An overview of systematic reviews of polymerase chain reaction [PCR] for the diagnosis of invasive aspergillosis in immunocompromised people: A report of the fungal PCR initiative [FPCRI]—An Isham Working Group. J. Fungi 2023, 9, 967. [Google Scholar] [CrossRef]
- Cruciani, M.; White, P.L.; Mengoli, C.; Löffler, J.; Morton, C.O.; Klingspor, L.; Buchheidt, D.; Maertens, J.; Heinz, W.J.; Rogers, T.R.; et al. The impact of anti-mould prophylaxis on Aspergillus PCR blood testing for the diagnosis of invasive aspergillosis. J. Antimicrob. Chemother. 2021, 76, 635–638. [Google Scholar] [CrossRef]
- Pappas, P.G.; Lionakis, M.S.; Arendrup, M.C.; Ostrosky-Zeichner, L.; Kullberg, B.J. Invasive candidiasis. Nat. Rev. Dis. Primers 2018, 4, 18026. [Google Scholar] [CrossRef]
- Clancy, C.J.; Nguyen, M.H. Finding the “Missing 50%” of Invasive Candidiasis: How Nonculture Diagnostics Will Improve Understanding of Disease Spectrum and Transform Patient Care. Clin. Infect. Dis. 2013, 56, 1284–1292. [Google Scholar] [CrossRef]
- Zhang, S.X.; Carroll, K.C.; Lewis, S.; Totten, M.; Mead, P.; Samuel, L.; Steed, L.L.; Nolte, F.S.; Thornberg, A.; Reid, J.L.; et al. Multicenter evaluation of a PCR-based digital microfluidics and electrochemical detection system for the rapid identification of 15 fungal pathogens directly from positive blood cultures. J. Clin. Microbiol. 2020, 58, e02096-19. [Google Scholar] [CrossRef]
- Caméléna, F.; Péan de Ponfilly, G.; Pailhoriès, H.; Bonzon, L.; Alanio, A.; Poncin, T.; Lafaurie, M.; Dépret, F.; Cambau, E.; Godreuil, S.; et al. Multicenter evaluation of the filmarray blood culture identification 2 panel for pathogen detection in bloodstream infections. Microbiol. Spectr. 2023, 11, e02547-22. [Google Scholar] [CrossRef] [PubMed]
- Avni, T.; Leibovici, L.; Paul, M. PCR diagnosis of invasive candidiasis: Systematic review and meta-analysis. J. Clin. Microbiol. 2011, 49, 665–670. [Google Scholar] [CrossRef] [PubMed]
- Neofytos, D.; Steinbach, W.J.; Hanson, K.; Carpenter, P.A.; Papanicolaou, G.A.; Slavin, M.A. American Society for Transplantation and Cellular Therapy Series, #6: Management of Invasive Candidiasis in Hematopoietic Cell Transplantation Recipients. Transplant. Cell. Ther. 2023, 29, 222–227. [Google Scholar]
- Martin-Loeches, I.; Antonelli, M.; Cuenca-Estrella, M.; Dimopoulos, G.; Einav, S.; De Waele, J.J.; Garnacho-Montero, J.; Kanj, S.S.; Machado, F.R.; Montravers, P.; et al. ESICM/ESCMID task force on practical management of invasive candidiasis in critically ill patients. Intensive Care Med. 2019, 45, 789–805. [Google Scholar] [CrossRef]
- Keighley, C.; Cooley, L.; Morris, A.J.; Ritchie, D.; Clark, J.E.; Boan, P.; Worth, L.J.; Australasian Antifungal Guidelines Steering Committee. Consensus guidelines for the diagnosis and management of invasive candidiasis in haematology, oncology and intensive care settings, 2021. Intern. Med. J. 2021, 51 (Suppl. 7), 89–117. [Google Scholar] [CrossRef]
- Chowdhary, A.; Sharma, C.; Meis, J.F. Candida auris: A rapidly emerging cause of hospital-acquired multidrug-resistant fungal infections globally. PLoS Pathog. 2017, 13, e1006290. [Google Scholar] [CrossRef]
- Mylonakis, E.; Clancy, C.J.; Ostrosky-Zeichner, L.; Garey, K.W.; Alangaden, G.J.; Vazquez, J.A.; Groeger, J.S.; Judson, M.A.; Vinagre, Y.M.; Heard, S.O.; et al. T2 Magnetic Resonance Assay for the Rapid Diagnosis of Candidemia in Whole Blood: A Clinical Trial. Clin. Infect. Dis. 2015, 60, 892–899. [Google Scholar] [CrossRef]
- Clancy, C.J.; Pappas, P.G.; Vazquez, J.; Judson, M.A.; Kontoyiannis, D.P.; Thompson, G.R., III; Garey, K.W.; Reboli, A.; Greenberg, R.N.; Apewokin, S.; et al. Detecting Infections Rapidly and Easily for Candidemia Trial, Part 2 [DIRECT2]: A Prospective, Multicenter Study of the T2Candida Panel. Clin. Infect. Dis. 2018, 66, 1678–1686. [Google Scholar] [CrossRef]
- Tang, D.-L.; Chen, X.; Zhu, C.-G.; Li, Z.-w.; Xia, Y.; Guo, X.-G. Pooled analysis of T2 Candida for rapid diagnosis of candidiasis. BMC Infect. Dis. 2019, 19, 798. [Google Scholar] [CrossRef]
- Neely, L.A.; Audeh, M.; Phung, N.A.; Min, M.; Suchocki, A.; Plourde, D.; Blanco, M.; Demas, V.; Skewis, L.R.; Anagnostou, T.; et al. T2 magnetic resonance enables nanoparticle-mediated rapid detection of candidemia in whole blood. Sci. Transl. Med. 2013, 5, 182ra54. [Google Scholar] [CrossRef] [PubMed]
- Munoz, P.; Vena, A.; Machado, M.; Martínez-Jiménez, M.C.; Gioia, F.; Gómez, E.; Origüen, J.; Orellana, M.Á.; López-Medrano, F.; Pérez-Granda, M.J.; et al. T2MR contributes to the very early diagnosis of complicated candidaemia. A prospective study. J. Antimicrob. Chemother. 2018, 73 (Suppl. S4), iv13–iv19. [Google Scholar] [CrossRef]
- O’Donnell, M.; Shields, R.K.; Marini, R.V.; Groetzinger, L.M.; Potoski, B.A.; Falcione, B.A.; Shah, S.; McCreary, E.K.; Clarke, L.; Brant, E.; et al. Stewardship-guided T2Candida testing shortens time to antifungal treatment and reduces antifungal usage among medical intensive care unit patients with septic shock. Open Forum Infect. Dis. 2023, 10, ofad538. [Google Scholar] [CrossRef]
- Patrocínio de Jesus, R.; Houston, H.; Schutte, A.H.; Morris-Jones, S.; Stone, N.; Gorton, R.; Pollara, G. T2Candida assay: Diagnostic performance and impact on antifungal prescribing. JAC-Antimicrob. Resist. 2023, 5, dlad035. [Google Scholar] [CrossRef] [PubMed]
- Helweg-Larsen, J.; Steensen, M.; Møller Pedersen, F.; Bredahl Jensen, P.; Perch, M.; Møller, K.; Riis Olesen, B.; Søderlund, M.; Cavling Arendrup, M. Intensive Care Antifungal Stewardship Programme Based on T2Candida PCR and Candida Mannan Antigen: A Prospective Study. J. Fungi 2021, 7, 1044. [Google Scholar] [CrossRef] [PubMed]
- Arendrup, M.C.; Andersen, J.S.; Holten, M.K.; Krarup, K.B.; Reiter, N.; Schierbeck, J.; Helleberg, M. Diagnostic performance of T2Candida among ICU patients with risk factors for invasive candidiasis. Open Forum Infect. Dis. 2019, 25, ofz136. [Google Scholar] [CrossRef]
- Lamoth, F.; Clancy, C.J.; Tissot, F.; Squires, K.; Eggimann, P.; Flückiger, U.; Siegemund, M.; Orasch, C.; Zimmerli, S.; Calandra, T.; et al. Performance of the T2Candida Panel for the Diagnosis of Intra-abdominal Candidiasis. Open Forum Infect. Dis. 2020, 27, ofaa075. [Google Scholar] [CrossRef] [PubMed]
- Zacharioudakis, I.M.; Zervou, F.N.; Mylonakis, E. Use of T2MR in invasive candidiasis with and without candidemia. Future Microbiol. 2018, 13, 1165–1173. [Google Scholar] [CrossRef] [PubMed]
- White, P.L.; Price, J.S.; Cordey, A.; Backx, M. Molecular Diagnosis of Yeast Infections. Curr. Fungal Infect. Rep. 2021, 15, 67–80. [Google Scholar] [CrossRef]
- Fortún, J.; Buitrago, M.J.; Gioia, F.; de la Gómez-Gª Pedrosa, E.; Alvarez, M.E.; Martín-Dávila, P.; Pintado, V.; Cobeta, P.; Martinez-Castro, N.; Soriano, C.; et al. Roles of the multiplex real-time PCR assay and β-D-glucan in a high-risk population for intra-abdominal candidiasis [IAC]. Med. Mycol. 2019, 58, 789–796. [Google Scholar] [CrossRef]
- Fuchs, S.; Lass-Flörl, C.; Posch, W. Diagnostic performance of a novel multiplex PCR assay for candidemia among ICU patients. J. Fungi 2019, 5, 86. [Google Scholar] [CrossRef]
- Xie, M.; Shao, J.; Wan, Z.; Yan, T.; Zhu, S.; Li, S.; Yu, J. Detection of Candida DNA in peritoneal fluids by PCR assay optimizing the diagnosis and treatment for intra-abdominal candidiasis in high-risk ICU patients: A prospective cohort study. Front. Microbiol. 2023, 13, 1070688. [Google Scholar] [CrossRef]
- Ashrafi, M.; Nabili, M.; Shokohi, T.; Janbabaie, G.; Hedayati, M.T.; Ali-Moghaddam, K. A real time PCR assay on blood for diagnosis of invasive candidiasis in immunocompromised patient. Curr. Med. Mycol. 2015, 1, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Jeong, W.; Keighley, C.; Wolfe, R.; Lee, W.L.; Slavin, M.A.; Kong, D.C.M.; Chen, S.A. The epidemiology and clinical manifestations of mucormycosis: A systematic review and meta-analysis of case reports. Clin. Microbiol. Infect. 2019, 25, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Hoenigl, M.; Seidel, D.; Carvalho, A.; Rudramurthy, S.M.; Arastehfar, A.; Gangneux, J.P.; Nasir, N.; Bonifaz, A.; Araiza, J.; Klimko, N.; et al. The emergence of COVID-19 associated mucormycosis: A review of cases from 18 countries. Lancet Microbe 2022, 3, e543–e552. [Google Scholar] [CrossRef] [PubMed]
- Walsh, T.J.; Gamaletsou, M.N.; McGinnis, M.R.; Hayden, R.T.; Kontoyiannis, D.P. Early clinical and laboratory diagnosis of invasive pulmonary, extrapulmonary, and disseminated mucormycosis [zygomycosis]. Clin. Infect. Dis. 2012, 54 (Suppl. 1), S55–S60. [Google Scholar] [CrossRef]
- Koehler, P.; Mellinghoff, S.C.; Lagrou, K.; Alanio, A.; Arenz, D.; Hoenigl, M.; Koehler, F.C.; Lass-Flörl, C.; Meis, J.F.; Richardson, M.; et al. Development and validation of the European QUALity [EQUAL] score for mucormycosis management in haematology. J. Antimicrob. Chemother. 2019, 74, 1704–1712. [Google Scholar] [CrossRef]
- Cornely, O.A.; Alastruey-Izquierdo, A.; Arenz, D.; Chen, S.C.; Dannaoui, E.; Hochhegger, B.; Hoenigl, M.; Jensen, H.E.; Lagrou, K.; Lewis, R.E.; et al. Global guideline for the diagnosis and management of mucormycosis: An initiative of the European Confederation of Medical Mycology in cooperation with the Mycoses Study Group Education and Research Consortium. Lancet Infect Dis. 2019, 19, e405–e421. [Google Scholar] [CrossRef]
- Millon, L.; Scherer, E.; Rocchi, S.; Bellanger, A.-P. Molecular Strategies to Diagnose Mucormycosis. J. Fungi 2019, 5, 24. [Google Scholar] [CrossRef]
- Brousse, X.; Imbert, S.; Issa, N.; Forcade, E.; Faure, M.; Chambord, J.; Ramaroson, H.; Kaminski, H.; Dumas, P.Y.; Blanchard, E. Performance of Mucorales spp. qPCR in bronchoalveolar lavage fluid for the diagnosis of pulmonary mucormycosis. Med. Mycol. 2024, 62, myae006. [Google Scholar] [CrossRef]
- Millon, L.; Caillot, D.; Berceanu, A.; Bretagne, S.; Lanternier, F.; Morio, F.; Letscher-Bru, V.; Dalle, F.; Denis, B.; Alanio, A.; et al. Evaluation of Serum Mucorales Polymerase Chain Reaction [PCR] for the Diagnosis of Mucormycoses: The MODIMUCOR Prospective Trial. Clin. Infect. Dis. 2022, 75, 777–785. [Google Scholar] [CrossRef]
- Legrand, M.; Gits-Muselli, M.; Boutin, L.; Garcia-Hermoso, D.; Maurel, V.; Soussi, S.; Benyamina, M.; Ferry, A.; Chaussard, M.; Hamane, S.; et al. Detection of circulating Mucorales DNA in critically ill burn patients: Preliminary report of a screening strategy for early diagnosis and treatment. Clin. Infect. Dis. 2016, 63, 1312–1317. [Google Scholar] [CrossRef]
- Lagrou, K.; Chen, S.; Masur, H.; Viscoli, C.; Decker, C.F.; Pagano, L.; Groll, A.H. Pneumocystis jirovecii disease: Basis for the revised EORTC/MSGERC invasive fungal disease definitions in individuals without human immunodeficiency virus. Clin. Infect. Dis. 2021, 72 (Suppl. 2), S114–S120. [Google Scholar] [CrossRef]
- Cordonnier, C.; Cesaro, S.; Maschmeyer, G.; Einsele, H.; Donnelly, J.P.; Alanio, A.; Hauser, P.M.; Lagrou, K.; Melchers, W.J.; Helweg-Larsen, J.; et al. Pneumocystis jirovecii pneumonia: Still a concern in patients with haematological malignancies and stem cell transplant recipients. J. Antimicrob. Chemother. 2016, 71, 2379–2385. [Google Scholar] [CrossRef]
- Gits-Muselli, M.; White, P.L.; Mengoli, C.; Chen, S.; Crowley, B.; Dingemans, G.; Fréalle, E.; Gorton, R.L.; Guiver, M.; Hagen, F.; et al. The Fungal PCR Initiative’s evaluation of in-house and commercial Pneumocystis jirovecii qPCR assays: Toward a standard for a diagnostics assay. Med. Mycol. 2020, 58, 779–788. [Google Scholar] [CrossRef] [PubMed]
- Dellière, S.; Gits-Muselli, M.; White, P.L.; Mengoli, C.; Bretagne, S.; Alanio, A. Quantification of Pneumocystis jirovecii: Cross-Platform Comparison of One qPCR Assay with Leading Platforms and Six Master Mixes. J. Fungi 2020, 6, 9. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.; Rautemaa-Richardson, R.; Mengoli, C.; Alanio, A.; Barnes, R.A.; Bretagne, S.; Chen, S.C.; Cordonnier, C.; Donnelly, J.P.; Heinz, W.J.; et al. Polymerase Chain Reaction on Respiratory Tract Specimens of Immunocompromised Patients to Diagnose Pneumocystis Pneumonia: A Systematic Review and Meta-analysis. Clin. Infect. Dis. 2024, 79, 161–168. [Google Scholar] [CrossRef]
- Senécal, J.; Smyth, E.; Del Corpo, O.; Hsu, J.M.; Amar-Zifkin, A.; Bergeron, A.; Cheng, M.P.; Butler-Laporte, G.; McDonald, E.G.; Lee, T.C. Non-invasive diagnosis of Pneumocystis jirovecii pneumonia: A systematic review and meta-analysis. Clin. Microbiol. Infect 2022, 28, 23–30. [Google Scholar] [CrossRef]
- Khodavaisy, S.; Mortaz, E.; Mohammadi, F.; Aliyali, M.; Fakhim, H.; Badali, H. Pneumocystis jirovecii colonization in Chronic Obstructive Pulmonary Disease [COPD]. Curr. Med. Mycol. 2015, 1, 42–48. [Google Scholar] [CrossRef]
- Morjaria, S.; Frame, J.; Franco-Garcia, A.; Geyer, A.; Kamboj, M.; Babady, N.E. Clinical Performance of [1,3] Beta-D Glucan for the Diagnosis of Pneumocystis Pneumonia [PCP] in Cancer Patients Tested with PCP Polymerase Chain Reaction. Clin. Infect. Dis. 2018, 69, 1303–1309. [Google Scholar] [CrossRef] [PubMed]
- Saubolle, M.A.; Wojack, B.R.; Wertheimer, A.M.; Fuayagem, A.Z.; Young, S.; Koeneman, B.A. Multicenter clinical validation of a cartridge-based real-time PCR system for detection of Coccidioides spp. in lower respiratory specimens. J. Clin. Microbiol. 2018, 56, e01277-17. [Google Scholar] [CrossRef]
- Wilmes, D.; Hagen, F.; Verissimo, C.; Alanio, A.; Rickerts, V.; Buitrago, M.J. A multicentre external quality assessment: A first step to standardise PCR protocols for the diagnosis of histoplasmosis and coccidioidomycosis. Mycoses 2023, 66, 774–786. [Google Scholar] [CrossRef]
- Caceres, D.H.; Knuth, M.; Derado, G.; Lindsley, M.D. Diagnosis of Progressive Disseminated Histoplasmosis in Advanced HIV: A Meta-Analysis of Assay Analytical Performance. J. Fungi 2019, 5, 76. [Google Scholar] [CrossRef]
- Alanio, A.; Gits-Muselli, M.; Lanternier, F.; Sturny-Leclère, A.; Benazra, M.; Hamane, S.; Rodrigues, A.M.; Garcia-Hermoso, D.; Lortholary, O.; Dromer, F.; et al. Evaluation of a New Histoplasma spp. Quantitative RT-PCR Assay. J. Mol. Diagn. 2021, 23, 698–709. [Google Scholar] [CrossRef]
- Buitrago, M.J.; Canteros, C.E.; De León, G.F.; González, Á.; De Oliveira, M.M.E.; Muñoz, C.O.; Ramirez, J.A.; Toranzo, A.I.; Zancope-Oliveira, R.; Cuenca-Estrella, M. Comparison of PCR protocols for detecting Histoplasma capsulatum DNA through a multicenter study. Rev. Iberoam. Micol. 2013, 30, 256–260. [Google Scholar] [CrossRef] [PubMed]
- Babady, N.E.; Buckwalter Seanne, P.; Hall, L.; Le Febre Kara, M.; Binnicker Matthew, J.; Wengenack Nancy, L. Detection of Blastomyces dermatitidis and Histoplasma capsulatum from Culture Isolates and Clinical Specimens by Use of Real-Time PCR. J. Clin. Microbiol. 2020, 49, 3204–3208. [Google Scholar] [CrossRef] [PubMed]
- Sidamonidze, K.; Peck, M.K.; Perez, M.; Baumgardner, D.; Smith, G.; Chaturvedi, V.; Chaturvedi, S. Real-time PCR assay for identification of Blastomyces dermatitidis in culture and in tissue. J. Clin. Microbiol. 2012, 50, 1783–1786. [Google Scholar] [CrossRef]
- Kaplan, M.; Zhu, Y.; Kus Julianne, V.; McTaggart, L.; Chaturvedi, V.; Chaturvedi, S. Development of a Duplex Real-Time PCR Assay for the Differentiation of Blastomyces dermatitidis and Blastomyces gilchristii and a Retrospective Analysis of Culture and Primary Specimens from Blastomycosis Cases from New York [2005 to 2019]. J. Clin. Microbiol. 2021, 59, e02078-20. [Google Scholar] [CrossRef] [PubMed]
- Dizon, D.; Mitchell, M.; Dizon, B.; Libke, R.; Peterson, M.W. The utility of real-time polymerase chain reaction in detecting Coccidioides immitis among clinical specimens in the Central California San Joaquin Valley. Med. Mycol. 2019, 57, 688–693. [Google Scholar] [CrossRef]
- Gomes, G.M.; Cisalpino, P.c.S.; Taborda, C.P.; de Camargo, Z.P. PCR for diagnosis of paracoccidioidomycosis. J. Clin. Microbiol. 2000, 38, 3478–3480. [Google Scholar] [CrossRef]
- Pinheiro, B.G.; Possa, A.P.; Della Terra, P.P.; de Carvalho, J.A.; Ricci, G.; Nishikaku, A.S.; Hahn, R.C.; Camargo, Z.P.D.; Rodrigues, A.M. A new duplex PCR-assay for the detection and identification of Paracoccidioides species. J. Fungi 2021, 7, 169. [Google Scholar] [CrossRef]
- Hien, H.T.A.; Thanh, T.T.; Thu, N.T.M.; Nguyen, A.; Thanh, N.T.; Lan, N.P.H.; Simmons, C.; Shikuma, C.; Chau, N.V.V.; Thwaites, G.; et al. Development and evaluation of a real-time polymerase chain reaction assay for the rapid detection of Talaromyces marneffei MP1 gene in human plasma. Mycoses 2016, 59, 773–780. [Google Scholar] [CrossRef]
- Li, X.; Zheng, Y.; Wu, F.; Mo, D.; Liang, G.; Yan, R.; Khader, J.A.; Wu, N.; Cao, C. Evaluation of quantitative real-time PCR and Platelia galactomannan assays for the diagnosis of disseminated Talaromyces marneffei infection. Med. Mycol. 2020, 58, 181–186. [Google Scholar] [CrossRef]
- Thompson, G.R.; Le, T.; Chindamporn, A.; Kauffman, C.A.; Alastruey-Izquierdo, A.; Ampel, N.M.; Andes, D.R.; Armstrong-James, D.; Ayanlowo, O.; Baddley, J.W.; et al. Global guideline for the diagnosis and management of the endemic mycoses: An initiative of the European Confederation of Medical Mycology in cooperation with the International Society for Human and Animal Mycology. Lancet Infect. Dis. 2021, 21, e364–e374. [Google Scholar] [CrossRef]
- Sparks, R.; Halliday, C.L.; Green, W.; Chen, S.C.A. Panfungal PCR on formalin-fixed, paraffin-embedded tissue: To proceed or not proceed? Pathology 2023, 55, 669–672. [Google Scholar] [CrossRef]
- Alam, M.S. Proximity ligation assay (PLA). Curr. Protoc. Immunol. 2018, 123, e58. [Google Scholar] [CrossRef]
- Johnson, G.; Shannon, M.; Thornton, C.; Agrawal, S.; Lass-Floerl, C.; Mutschlechner, W. Proximity ligation assay for the early detection of invasive aspergillosis. In Proceedings of the 25th European Congress of Clinical Microbriology and Infectious Diseases, Copenhagen, Denmark, 25–28 April 2015. [Google Scholar]
- Gudisa, R.; Harchand, R.; Rudramurthy, S.M. Nucleic-Acid-Based Molecular Fungal Diagnostics: A Way to a Better Future. Diagnostics 2024, 14, 520. [Google Scholar] [CrossRef] [PubMed]
- Asghar, W.; Sher, M.; Khan, N.S.; Vyas, J.M.; Demirci, U. Microfluidic chip for detection of fungal infections. ACS Omega 2019, 4, 7474–7481. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, M.; Dizon, D.; Libke, R.; Peterson, M.; Slater, D.; Dhillon, A. Development of a real-time PCR Assay for identification of Coccidioides immitis by use of the BD Max system. J. Clin. Microbiol. 2015, 53, 926–929. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dalpke, A.H.; Hofko, M.; Zimmermann, S. Development and evaluation of a real-time PCR assay for detection of Pneumocystis jirovecii on the fully automated BD MAX platform. J. Clin. Microbiol. 2013, 51, 2337–2343, Erratum in: J. Clin. Microbiol. 2014, 52, 1809. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shao, Z.; Zhu, J.; Wei, Y.; Jin, J.; Zheng, Y.; Liu, J.; Zhang, R.; Sun, R.; Hu, B. Pathogen load and species monitored by droplet digital PCR in patients with bloodstream infections: A prospective case series study. BMC Infect. Dis. 2022, 22, 771. [Google Scholar] [CrossRef]
- Wu, J.; Tang, B.; Qiu, Y.; Tan, R.; Liu, J.; Xia, J.; Zhang, J.; Huang, J.; Qu, J.; Sun, J.; et al. Clinical validation of a multiplex droplet digital PCR for diagnosing suspected bloodstream infections in ICU practice: A promising diagnostic tool. Crit. Care 2022, 26, 243. [Google Scholar] [CrossRef]
- Hu, B.; Tao, Y.; Shao, Z.; Zheng, Y.; Zhang, R.; Yang, X.; Liu, J.; Li, X.I.; Sun, R. A comparison of blood pathogen detection among droplet digital PCR, metagenomic next-generation sequencing, and blood culture in critically ill patients with suspected bloodstream infections. Front. Microbiol. 2021, 12, 641202. [Google Scholar] [CrossRef]
- Chen, B.; Xie, Y.; Zhang, N.; Li, W.; Liu, C.; Li, D.; Bian, S.; Jiang, Y.; Yang, Z.; Li, R.; et al. Evaluation of droplet digital PCR assay for the diagnosis of candidemia in blood samples. Front. Microbiol. 2021, 12, 700008. [Google Scholar] [CrossRef] [PubMed]
- Naik, S.; Kashyap, D.; Deep, J.; Darwish, S.; Cross, J.; Mansoor, E.; Garg, V.K.; Honnavar, P. Utilizing Next-Generation Sequencing: Advancements in the Diagnosis of Fungal Infections. Diagnostics 2024, 14, 1664. [Google Scholar] [CrossRef]
- Heldman, M.R.; Ahmed, A.A.; Liu, W.; Vo, A.; Keane-Candib, J.; Stevens-Ayers, T.; Boeckh, M.; Blauwkamp, T.A.; Fisher, C.E.; Hill, J.A. Serial quantitation of plasma microbial cell-free DNA before and after diagnosis of pulmonary invasive mold infections after hematopoietic cell transplant. J. Infect. Dis. 2024, 229, 576–587. [Google Scholar] [CrossRef] [PubMed]
- Hill, J.A.; Dalai, S.C.; Hong, D.K.; Ahmed, A.A.; Ho, C.; Hollemon, D.; Blair, L.; Maalouf, J.; Keane-Candib, J.; Stevens-Ayers, T.; et al. Liquid biopsy for invasive mold infections in hematopoietic cell transplant recipients with pneumonia through next-generation sequencing of microbial cell-free DNA in plasma. Clin. Infect. Dis. 2021, 73, e3876–e3883. [Google Scholar] [CrossRef] [PubMed]
- Bellanger, A.P.; Gbaguidi-Haore, H.; Berceanu, A.; Gouzien, L.; El Machhour, C.; Bichard, D.; Lanternier, F.; Scherer, E.; Millon, L. Use of the Mucorales qPCR on blood to screen high-risk hematology patients is associated with better survival. Med. Mycol. 2024, 62, myae030. [Google Scholar] [CrossRef]
Sample Type | ||||
---|---|---|---|---|
Whole Blood | Serum/Plasma | BALF | Sterile Fluid | |
Methodological standardisation | Yes | Yes | Yes | No |
Automation | Semi-automated | Automated | Semi-automated | Semi-automated |
Sample specifics | EDTA * | EDTA *, SST | Sterile container | Sterile container |
Minimum sample volume | 3 mL | 0.5 mL | 0.5 mL | 0.5 mL |
Elution volume | <100 µL | <100 µL | <100 µL | <100 µL |
Considerations |
|
Sensitivity (95% CI) | Specificity (95% CI) | DOR (95% CI) | LR+ (95% CI) | LR− (95% CI) | |
---|---|---|---|---|---|
Tissue | 86.4% | 90.6% | 61 | 9.2 | 0.15 |
(n = 832) | (78.9–91.5%) | (78.1–96.3%) | (22–168) | (3.8–22.1) | (0.10–0.23) |
Serum | 87.5% | 94.9% | 130 | 17.1 | 0.13 |
(n = 984) | (74.9–94.3%) | (67.1–99.4%) | (8.5–1984) | (2.0–145.8) | (0.06–0.30) |
Plasma | 74.2% | 97.8% | 126 | 33.3 | 0.26 |
(n = 323) | (56.3–86.5%) | (76.6–99.8%) | (5.6–2834) | (2.3–473.1) | (0.14–0.50) |
FFPE specimens | 73.0% | 96.4% | 72 | 20.2 | 0.28 |
(n = 593) | (61.0–82.3%) | (87.5–99.0%) | (19–272) | (5.7–71.8) | (0.19–0.41) |
BALF | 97.5% | 95.8% | 915 | 23.5 | 0.03 |
(n = 2316) | (83.7–99.7%) | (89.6–98.4%) | (100–8394) | (9.1–60.5) | (0.00–0.19) |
Sensitivity (95% CI) | Specificity (95% CI) | DOR (95% CI) | LR+ (95% CI) | LR− (95% CI) | |
---|---|---|---|---|---|
BALF | 98.7% | 89.3% | 635 | 9.2 | 0.014 |
(n = 2673) | (96.8–99.5%) | (84.4–92.7%) | (269–1498) | (5.7–12.7) | (0.001–0.027) |
IS | 98.0% | 81.5% | 217 | 5.3 | 0.024 |
(n = 491) | (94.4–99.3%) | (72.1–88.3%) | (78–601) | (3.0–7.6) | (0.000–0.049) |
URT specimen | 89.2% | 90.5% | 78 | 9.3 | 0.12 |
(n = 352) | (71.0–96.5%) | (80.9–95.5%) | (26–238) | (3.00–15.7) | (NE–0.25) |
Endemic Fungal Disease | Sample Type | PCR Target | PCR Performance (Ref) | Considerations (Ref) |
---|---|---|---|---|
Histoplasmosis | Tissue, blood, respiratory specimens, urine and other body fluids | Multi-copy 18S, ITS1 and ITS2 regions of rDNA or single copy genes encoding PPK, CFP4, 100 kDa-like protein or M antigen | Se: 95–98% Sp: 99% [92,93] | Performance derived from a meta-analysis of five clinical evaluations in advanced HIV (n = 238) and a large clinical evaluation of ~900 suspected cases. Further studies are needed to confirm diagnostic performance in healthy individuals and those with a range of other immunocompromising conditions. Two inter-laboratory quality assessments of reference laboratories in Latin America and Spain and more recently in Europe represent an important step towards standardisation of Histoplasma PCR [91,94]. |
Blastomycosis | BAL, Sputum, tissue, blood and other body fluids | Highly conserved DRK1 or BAD1 genes (virulence factors) | Se: 86% Sp: 99% [95] | Performance derived from the largest clinical evaluation of Blastomyces PCR to date using an in-house qPCR assay specific to DRK1 on a range of clinical specimens, compared to the reference standard of culture (n = 797) [95]. Similar sensitivity and specificity are reported for BAD1 qPCR, though validation is limited to a small number of clinical specimens [96,97]. |
Coccidioidomycosis | BAL, bronchial wash, sputum, pleural fluid, CSF | Multi-copy regions of rRNA (18s, 28s, 5.8s, ITS) and transposon gene or single-copy genes like PRA and F-box | Se: 33–100% Sp: 75–100% [90,91,98] | The GeneSTAT qPCR assay is FDA approved for use on a GeneSTAT cartridge-based device. A multicentre study of 100 retrospective and 232 prospective specimens demonstrated sensitivity of 100% and specificity ranging between 94 and 100% [90]. A recent interlaboratory external quality study evaluated five in-house PCR protocols for detection of Coccidioides and identified large variability in diagnostic performance (33–100% sensitivity and 75–100% specificity) when testing a panel of Coccidioides strains [91]. A larger retrospective analysis of an in-house qPCR on suspected cases of coccidioidomycosis (n = 1160) generated superior sensitivity compared to culture (74% vs. 46%, respectively), with highest sensitivity in BALF and sputum from patients with pneumonia [98]. |
Paracoccidioidomycosis | BALF, tissue biopsy, FFPE, sputum, serum | Membrane protein gp43, ITS1 region of rRNA | Se: 100% Sp: 100% [99,100] | Evaluation of paracoccidiodomycosis PCR is limited to small retrospective cohorts, with <25 proven cases. Though early results are promising, further work is needed to determine diagnostic performance on larger cohorts of suspected cases [99,100]. |
Talaromycosis | Whole blood, serum, plasma | 5.8s or 18s region of ribosomal RNA (rRNA) or the MP1 gene encoding the fungal cell wall glycomannoprotein Mp1p | Se: 60–100% Sp: 97–100% [101,102,103] | Performance derived from small retrospective studies. In the presence of fungemia, sensitivity of PCR approaches 100% when compared to blood culture. However, in individuals without fungemia, where a diagnosis is made on culture of other clinical specimens (including skin or lymph node biopsy), PCR sensitivity drops to 55–69%, but is still superior to blood culture and may reduce the need for invasive biopsy [101,102]. Where Mp1p antigen testing is not available, the ECMM Global Guidelines for diagnosis and management of endemic mycoses recommend qPCR testing of whole blood or plasma with a validated in-house assay [103]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brown, L.; Cruciani, M.; Morton, C.O.; Alanio, A.; Barnes, R.A.; Donnelly, J.P.; Hagen, F.; Gorton, R.; Lackner, M.; Loeffler, J.; et al. The Molecular Diagnosis of Invasive Fungal Diseases with a Focus on PCR. Diagnostics 2025, 15, 1909. https://doi.org/10.3390/diagnostics15151909
Brown L, Cruciani M, Morton CO, Alanio A, Barnes RA, Donnelly JP, Hagen F, Gorton R, Lackner M, Loeffler J, et al. The Molecular Diagnosis of Invasive Fungal Diseases with a Focus on PCR. Diagnostics. 2025; 15(15):1909. https://doi.org/10.3390/diagnostics15151909
Chicago/Turabian StyleBrown, Lottie, Mario Cruciani, Charles Oliver Morton, Alexandre Alanio, Rosemary A. Barnes, J. Peter Donnelly, Ferry Hagen, Rebecca Gorton, Michaela Lackner, Juergen Loeffler, and et al. 2025. "The Molecular Diagnosis of Invasive Fungal Diseases with a Focus on PCR" Diagnostics 15, no. 15: 1909. https://doi.org/10.3390/diagnostics15151909
APA StyleBrown, L., Cruciani, M., Morton, C. O., Alanio, A., Barnes, R. A., Donnelly, J. P., Hagen, F., Gorton, R., Lackner, M., Loeffler, J., Millon, L., Rautemaa-Richardson, R., & White, P. L. (2025). The Molecular Diagnosis of Invasive Fungal Diseases with a Focus on PCR. Diagnostics, 15(15), 1909. https://doi.org/10.3390/diagnostics15151909