Unveiling Extramedullary Myeloma Immune Microenvironment: A Systematic Review
Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Search Strategy
2.2. Study Selection and Eligibility Criteria
2.3. Data Extraction
2.4. Quality Assessment (Study Risk-of-Bias Assessment)
2.5. Primary and Secondary Outcomes
3. Results
3.1. Database Search Results
3.2. Study Characteristics
3.3. Methodology Used for MM and EPM
3.4. Comparisons Between the Medullary and Extramedullary Disease from a Genetic Perspective
3.5. Associations of EPM with Specific Immune Microenvironment
3.6. Associations of Immune Microenvironment with Therapy and Prognosis
4. Discussion
5. Study Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kumar, S.; Baughn, L.B.; Cowan, A.J.; Gujral, S.; Gupta, R.; Karadimitris, A.; Lim, M.S.; Malhotra, P.; Maruyama, D.; Medeiros, L.J.; et al. Plasma cell myeloma/multiple myeloma. In Haematolymphoid Tumours: Who Classification of Tumours, 5th ed.; The WHO Classification of Tumours Editorial Board, Ed.; International Agency for Research on Cancer: Lyon, France, 2024; pp. 625–630. ISBN 978-92-832-4520-9. [Google Scholar]
- Bladé, J.; Beksac, M.; Caers, J.; Jurczyszyn, A.; Von Lilienfeld-Toal, M.; Moreau, P.; Rasche, L.; Rosiñol, L.; Usmani, S.Z.; Zamagni, E.; et al. Extramedullary Disease in Multiple Myeloma: A Systematic Literature Review. Blood Cancer J. 2022, 12, 45. [Google Scholar] [CrossRef] [PubMed]
- Forster, S.; Radpour, R. Molecular Impact of the Tumor Microenvironment on Multiple Myeloma Dissemination and Extramedullary Disease. Front. Oncol. 2022, 12, 941437. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Yang, D.; Li, H.; Niu, T.; Tong, A. Multiple Myeloma: Signaling Pathways and Targeted Therapy. Mol. Biomed. 2024, 5, 25. [Google Scholar] [CrossRef]
- Cheng, Y.; Sun, F.; Alapat, D.V.; Wanchai, V.; Mery, D.; Siegel, E.R.; Xu, H.; Johnson, S.; Guo, W.; Bailey, C.; et al. Multi-Omics Reveal Immune Microenvironment Alterations in Multiple Myeloma and Its Precursor Stages. Blood Cancer J. 2024, 14, 194. [Google Scholar] [CrossRef]
- García-Ortiz, A.; Rodríguez-García, Y.; Encinas, J.; Maroto-Martín, E.; Castellano, E.; Teixidó, J.; Martínez-López, J. The Role of Tumor Microenvironment in Multiple Myeloma Development and Progression. Cancers 2021, 13, 217. [Google Scholar] [CrossRef]
- Zihala, D.; Anilkumar Sithara, A.; Kapustova, V.; Venglar, O.; Radova, E.; Broskevicova, L.; Vrana, J.; Nenarokov, S.; Bilek, D.; Muronova, L.; et al. Composition and Fitness of T and NK Cells in Extramedullary Myeloma Tumor Microenvironment. Blood 2024, 144, 1887. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. PRISMA Group Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 Explanation and Elaboration: Updated Guidance and Exemplars for Reporting Systematic Reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef]
- McGuinness, L.A.; Higgins, J.P.T. Risk-of-bias VISualization (Robvis): An R Package and Shiny Web App for Visualizing Risk-of-bias Assessments. Res. Synth. Methods 2021, 12, 55–61. [Google Scholar] [CrossRef]
- Jelinek, T.; Zihala, D.; Sevcikova, T.; Anilkumar Sithara, A.; Kapustova, V.; Sahinbegovic, H.; Venglar, O.; Muronova, L.; Broskevicova, L.; Nenarokov, S.; et al. Beyond the Marrow: Insights from Comprehensive next-Generation Sequencing of Extramedullary Multiple Myeloma Tumors. Leukemia 2024, 38, 1323–1333. [Google Scholar] [CrossRef]
- John, M.; Helal, M.; Duell, J.; Mattavelli, G.; Stanojkovska, E.; Afrin, N.; Leipold, A.M.; Steinhardt, M.J.; Zhou, X.; Žihala, D.; et al. Spatial Transcriptomics Reveals Profound Subclonal Heterogeneity and T-Cell Dysfunction in Extramedullary Myeloma. Blood 2024, 144, 2121–2135. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Li, H.; Qi, K.; Zhu, F.; Cheng, H.; Chen, W.; Yan, Z.; Li, D.; Sang, W.; Fei, X.; et al. Clinical Outcomes and Microenvironment Profiling in Relapsed/Refractory Multiple Myeloma Patients with Extramedullary Disease Receiving Anti- BCMA CAR T-cell-based Therapy. Am. J. Hematol. 2024, 99, 2286–2295. [Google Scholar] [CrossRef]
- Ryu, D.; Kim, S.J.; Hong, Y.; Jo, A.; Kim, N.; Kim, H.-J.; Lee, H.-O.; Kim, K.; Park, W.-Y. Alterations in the Transcriptional Programs of Myeloma Cells and the Microenvironment during Extramedullary Progression Affect Proliferation and Immune Evasion. Clin. Cancer Res. 2020, 26, 935–944. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhou, Z.; Wang, J.; Han, M.; Liu, H.; Zang, M.; Liu, J.; Lu, J.; Zhang, J.; Zhang, G.; et al. Immune Checkpoint Receptors and Their Ligands on CD8 T Cells and Myeloma Cells in Extramedullary Multiple Myeloma. Biocell 2024, 48, 303–311. [Google Scholar] [CrossRef]
- Merz, M.; Hu, Q.; Merz, A.M.A.; Wang, J.; Hutson, N.; Rondeau, C.; Celotto, K.; Belal, A.; Alberico, R.; Block, A.W.; et al. Spatiotemporal Assessment of Immunogenomic Heterogeneity in Multiple Myeloma. Blood Adv. 2023, 7, 718–733. [Google Scholar] [CrossRef]
- Vendramin, R.; Litchfield, K.; Swanton, C. Cancer Evolution: Darwin and Beyond. EMBO J. 2021, 40, e108389. [Google Scholar] [CrossRef]
- Bahlis, N.J. Darwinian Evolution and Tiding Clones in Multiple Myeloma. Blood 2012, 120, 927–928. [Google Scholar] [CrossRef]
- Besse, L.; Sedlarikova, L.; Greslikova, H.; Kupska, R.; Almasi, M.; Penka, M.; Jelinek, T.; Pour, L.; Adam, Z.; Kuglik, P.; et al. Cytogenetics in Multiple Myeloma Patients Progressing into Extramedullary Disease. Eur. J. Haematol. 2016, 97, 93–100. [Google Scholar] [CrossRef]
- McAvera, R.; Quinn, J.; Murphy, P.; Glavey, S. Genetic Abnormalities in Extramedullary Multiple Myeloma. Int. J. Mol. Sci. 2023, 24, 11259. [Google Scholar] [CrossRef]
- Xia, Y.; Shi, Y.; Chen, Z.; Zhang, J.; Zhu, Y.; Guo, R.; Zhang, R.; Shi, Q.; Li, J.; Chen, L. Characteristics and Prognostic Value of Extramedullary Chromosomal Abnormalities in Extramedullary Myeloma. Chin. Med. J. 2022, 135, 2500–2502. [Google Scholar] [CrossRef]
- Kriegova, E.; Fillerova, R.; Minarik, J.; Savara, J.; Manakova, J.; Petrackova, A.; Dihel, M.; Balcarkova, J.; Krhovska, P.; Pika, T.; et al. Whole-Genome Optical Mapping of Bone-Marrow Myeloma Cells Reveals Association of Extramedullary Multiple Myeloma with Chromosome 1 Abnormalities. Sci. Rep. 2021, 11, 14671. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Jelloul, F.; Zhang, Y.; Bhavsar, T.; Ho, C.; Rao, M.; Lewis, N.E.; Cimera, R.; Baik, J.; Sigler, A.; et al. Genetic Basis of Extramedullary Plasmablastic Transformation of Multiple Myeloma. Am. J. Surg. Pathol. 2020, 44, 838–848. [Google Scholar] [CrossRef] [PubMed]
- Sevcikova, S.; Paszekova, H.; Besse, L.; Sedlarikova, L.; Kubaczkova, V.; Almasi, M.; Pour, L.; Hajek, R. Extramedullary Relapse of Multiple Myeloma Defined as the Highest Risk Group Based on Deregulated Gene Expression Data. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2015, 159, 288–293. [Google Scholar] [CrossRef]
- Chen, T.; Sun, Z.; Cui, Y.; Ji, J.; Li, Y.; Qu, X. Identification of Long Noncoding RNA NEAT1 as a Key Gene Involved in the Extramedullary Disease of Multiple Myeloma by Bioinformatics Analysis. Hematology 2023, 28, 2164449. [Google Scholar] [CrossRef]
- Long, X.; Xu, Q.; Lou, Y.; Li, C.; Gu, J.; Cai, H.; Wang, D.; Xu, J.; Li, T.; Zhou, X.; et al. The Utility of Non-invasive Liquid Biopsy for Mutational Analysis and Minimal Residual Disease Assessment in Extramedullary Multiple Myeloma. Br. J. Haematol. 2020, 189, e45–e48. [Google Scholar] [CrossRef]
- Sun, Z.; Ji, J.; Li, Y.; Cui, Y.; Fan, L.; Li, J.; Qu, X. Identification of Evolutionary Mechanisms of Myelomatous Effusion by Single-Cell RNA Sequencing. Blood Adv. 2023, 7, 4148–4159. [Google Scholar] [CrossRef]
- Egan, J.B.; Kortuem, K.M.; Kurdoglu, A.; Izatt, T.; Aldrich, J.; Reiman, R.; Phillips, L.; Baker, A.; Shi, C.; Schmidt, J.; et al. Extramedullary Myeloma Whole Genome Sequencing Reveals Novel Mutations in C Ereblon, Proteasome Subunit G 2 and the Glucocorticoid Receptor in Multi Drug Resistant Disease. Br. J. Haematol. 2013, 161, 748–751. [Google Scholar] [CrossRef]
- Mithraprabhu, S.; Sirdesai, S.; Chen, M.; Khong, T.; Spencer, A. Circulating Tumour DNA Analysis for Tumour Genome Characterisation and Monitoring Disease Burden in Extramedullary Multiple Myeloma. Int. J. Mol. Sci. 2018, 19, 1858. [Google Scholar] [CrossRef]
- Galon, J.; Bruni, D. Approaches to Treat Immune Hot, Altered and Cold Tumours with Combination Immunotherapies. Nat. Rev. Drug Discov. 2019, 18, 197–218. [Google Scholar] [CrossRef]
- Gupta, S.; Master, S.; Graham, C. Extramedullary Multiple Myeloma: A Patient-Focused Review of the Pathogenesis of Bone Marrow Escape. World J. Oncol. 2022, 13, 311–319. [Google Scholar] [CrossRef]
- Miriyala, L.K.V.; Avasthi, D. Cutaneous Multiple Myeloma. Cureus 2021, 13, e17779. [Google Scholar] [CrossRef]
- Beldi-Ferchiou, A.; Skouri, N.; Ben Ali, C.; Safra, I.; Abdelkefi, A.; Ladeb, S.; Mrad, K.; Ben Othman, T.; Ben Ahmed, M. Abnormal Repression of SHP-1, SHP-2 and SOCS-1 Transcription Sustains the Activation of the JAK/STAT3 Pathway and the Progression of the Disease in Multiple Myeloma. PLoS ONE 2017, 12, e0174835. [Google Scholar] [CrossRef] [PubMed]
- Chim, C.-S.; Fung, T.-K.; Cheung, W.-C.; Liang, R.; Kwong, Y.-L. SOCS1 and SHP1 Hypermethylation in Multiple Myeloma: Implications for Epigenetic Activation of the Jak/STAT Pathway. Blood 2004, 103, 4630–4635. [Google Scholar] [CrossRef] [PubMed]
- Yao, Q.; Morgan, G.J.; Chim, C.S. Distinct Promoter Methylation Profile Reveals Spatial Epigenetic Heterogeneity in 2 Myeloma Patients with Multifocal Extramedullary Relapses. Clin. Epigenet. 2018, 10, 158. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Du, J.; Jin, X.; Li, H.; Jia, C.; Liu, Y.; Li, K.; Zhou, D.; Zhuang, J. MYC Translocation Is a Valuable Marker for the Development and Relapse of Extramedullary Disease in Multiple Myeloma. Eur. J. Haematol. 2024, 113, 824–832. [Google Scholar] [CrossRef]
- Shi, X.; Wu, Y.; Yao, X.; Du, B.; Du, X. Case Report: Dual-Targeted BCMA and CS1 CAR-T-Cell Immunotherapy in Recurrent and Refractory Extramedullary Multiple Myeloma. Front. Immunol. 2024, 15, 1422478. [Google Scholar] [CrossRef]
- Elia, I.; Haigis, M.C. Metabolites and the Tumour Microenvironment: From Cellular Mechanisms to Systemic Metabolism. Nat. Metab. 2021, 3, 21–32. [Google Scholar] [CrossRef]
- Kim, G.B.; Riley, J.L.; Levine, B.L. Engineering T Cells to Survive and Thrive in the Hostile Tumor Microenvironment. Curr. Opin. Biomed. Eng. 2022, 21, 100360. [Google Scholar] [CrossRef]
- Leblay, N.; Maity, R.; Hasan, F.; Neri, P. Deregulation of Adaptive T Cell Immunity in Multiple Myeloma: Insights Into Mechanisms and Therapeutic Opportunities. Front. Oncol. 2020, 10, 636. [Google Scholar] [CrossRef]
- Chen, D.; Zhan, Y.; Yan, H.; Liang, H.; Yao, F.; Xu, H. Reduced CXCR4 Expression in Associated with Extramedullary and Predicts Poor Survival in Newly Diagnosed Multiple Myeloma. Expert. Rev. Hematol. 2022, 15, 1017–1021. [Google Scholar] [CrossRef]
- Salle, V.; Attencourt, C.; Chevalier, M.; Semeria, L.; Boulu, X.; Karam, J.; Smail, A.; Schmidt, J.; Duhaut, P.; Dernoncourt, A. Cutaneous Involvement in Relapsed Multiple Myeloma. Clin. Case Rep. 2022, 10, e6282. [Google Scholar] [CrossRef] [PubMed]
- Bhutani, M.; Foureau, D.M.; Atrash, S.; Voorhees, P.M.; Usmani, S.Z. Extramedullary Multiple Myeloma. Leukemia 2020, 34, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.; Shen, W. Isatuximab in the Treatment of Multiple Myeloma: A Review and Comparison With Daratumumab. Technol. Cancer Res. Treat. 2022, 21, 15330338221106563. [Google Scholar] [CrossRef]
- Beksac, M.; Spicka, I.; Hajek, R.; Bringhen, S.; Jelínek, T.; Martin, T.; Mikala, G.; Moreau, P.; Symeonidis, A.; Rawlings, A.M.; et al. Evaluation of Isatuximab in Patients with Soft-Tissue Plasmacytomas: An Analysis from ICARIA-MM and IKEMA. Leuk. Res. 2022, 122, 106948. [Google Scholar] [CrossRef] [PubMed]
- van de Donk, N.W.C.J.; Usmani, S.Z. CD38 Antibodies in Multiple Myeloma: Mechanisms of Action and Modes of Resistance. Front. Immunol. 2018, 9, 2134. [Google Scholar] [CrossRef]
- Van De Donk, N.W.C.J.; Pawlyn, C.; Yong, K.L. Multiple Myeloma. Lancet 2021, 397, 410–427. [Google Scholar] [CrossRef]
- Mateos, M.-V.; Cavo, M.; Blade, J.; Dimopoulos, M.A.; Suzuki, K.; Jakubowiak, A.; Knop, S.; Doyen, C.; Lucio, P.; Nagy, Z.; et al. Overall Survival with Daratumumab, Bortezomib, Melphalan, and Prednisone in Newly Diagnosed Multiple Myeloma (ALCYONE): A Randomised, Open-Label, Phase 3 Trial. Lancet 2020, 395, 132–141. [Google Scholar] [CrossRef]
- Jelinek, T.; Sevcikova, T.; Zihala, D.; Popkova, T.; Kapustova, V.; Broskevicova, L.; Capkova, L.; Rihova, L.; Bezdekova, R.; Sevcikova, S.; et al. Limited Efficacy of Daratumumab in Multiple Myeloma with Extramedullary Disease. Leukemia 2022, 36, 288–291. [Google Scholar] [CrossRef]
- Zhu, C.; Song, Z.; Wang, A.; Srinivasan, S.; Yang, G.; Greco, R.; Theilhaber, J.; Shehu, E.; Wu, L.; Yang, Z.-Y.; et al. Isatuximab Acts Through Fc-Dependent, Independent, and Direct Pathways to Kill Multiple Myeloma Cells. Front. Immunol. 2020, 11, 1771. [Google Scholar] [CrossRef]
Authors, Year [Ref.] | Number of Patients with EMD | Sex Male: Female | Median Age (Years) | Number of Samples | Methodology for MM Cells | Methodology for IME | Main Results in Regard to EMD |
---|---|---|---|---|---|---|---|
Jelinek et al., 2024 [11] | 14 | 10:4 | 59 | 14 | FISH, WES | Bulk RNA-seq, scRNA-seq, FC | EMD cells have a higher frequency of 1q21 gain, mutations in the MAPK pathway, activation of proliferation-associated pathways and decreased homing to BM. EMD IME is mainly composed of CD8+ and NK cells. |
John et al., 2024 [12] | 11 | 7:4 | 61 | 14 | Spatial transcriptome analysis and scRNA-seq | Spatial transcriptome analysis and scRNA-seq | Intratumor heterogeneity and genetic instability of MM cells. Differences in spatial distribution between dysfunctional/exhausted and activated T-cells, as well as M1 and M2, DC1 and DC2. |
Qi et al., 2024 [13] | 31 | 17:14 | 55 | 16 | None | Multiplex IF | Differences in spatial distribution of exhausted CD8+ T-cell subsets and M2 macrophages. Immune suppressor cells may create a hostile IME and mitigate the CAR T-cell activity. |
Ryu et al., 2020 [14] | 5 | 3:2 | 51 | 5 | scRNA-seq | scRNA-seq | Distinct transcriptional characteristics of MM cells in EMD compared to BM. Immune evasion due to cytotoxic-exhausted phenotype in EMD. |
Zhang et al., 2024 [15] | 9 | 7:2 | 53 | 6 | Multicolored fluorescent FC | Multicolored fluorescent FC | No differences in Galectin-9 and CD155 expression on myeloma cells among PB, BM, and EMD tissue. Lower CD3+ cells and exhausted T-cell phenotype characterized among PB, BM, and EMD tissue. Lower CD3+ cells and exhausted T-cell phenotype characterized by higher TIGIT and TIM-3 expression levels on CD8+ cells in EMD. |
Merz et al., 2023 [16] | 4 | 3:1 | NA | 4 | FISH, WES, IF | TCR-seq, FISH, WES, IF | Significant differences in chromosomal aberrations and gene mutations between intra- and extramedulary disease. Immune evasion due to increased Tregs and MDSCs in EMD after induction therapy. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boulogeorgou, K.; Papaioannou, M.; Chatzileontiadou, S.; Georgiou, E.; Fola, A.; Tzorakoleftheraki, S.-E.; Hatjiharissi, E.; Koletsa, T. Unveiling Extramedullary Myeloma Immune Microenvironment: A Systematic Review. Cancers 2025, 17, 1081. https://doi.org/10.3390/cancers17071081
Boulogeorgou K, Papaioannou M, Chatzileontiadou S, Georgiou E, Fola A, Tzorakoleftheraki S-E, Hatjiharissi E, Koletsa T. Unveiling Extramedullary Myeloma Immune Microenvironment: A Systematic Review. Cancers. 2025; 17(7):1081. https://doi.org/10.3390/cancers17071081
Chicago/Turabian StyleBoulogeorgou, Kassiani, Maria Papaioannou, Sofia Chatzileontiadou, Elisavet Georgiou, Amalia Fola, Sofia-Eleni Tzorakoleftheraki, Evdoxia Hatjiharissi, and Triantafyllia Koletsa. 2025. "Unveiling Extramedullary Myeloma Immune Microenvironment: A Systematic Review" Cancers 17, no. 7: 1081. https://doi.org/10.3390/cancers17071081
APA StyleBoulogeorgou, K., Papaioannou, M., Chatzileontiadou, S., Georgiou, E., Fola, A., Tzorakoleftheraki, S.-E., Hatjiharissi, E., & Koletsa, T. (2025). Unveiling Extramedullary Myeloma Immune Microenvironment: A Systematic Review. Cancers, 17(7), 1081. https://doi.org/10.3390/cancers17071081