Acute Effects of High-Frequency Insular Stimulation on Interictal Epileptiform Discharge Rates in Patients with Refractory Epilepsy
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants and Surgical Implantation
2.2. Stimulation Parameters
2.3. Data Acquisition and Spike Detection
2.4. Statistical Analysis
3. Results
- Group 1: HF-DBS-aINS in Patients with an Anterior Insular Epileptic Focus
- Group 2: HFS-pINS in Patients with a Posterior Insular Epileptic Focus
- Group 3: HFS-pINS in Patients with an Anterior Insular Epileptic Focus
- Group 4: HFS-pINS in Patients without an Insular Epileptic Focus
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, M.C.H.; Cook, M.J. Deep brain stimulation for drug-resistant epilepsy. Epilepsia 2018, 59, 273–290. [Google Scholar] [CrossRef]
- Filipescu, C.; Lagarde, S.; Lambert, I.; Pizzo, F.; Trébuchon, A.; McGonigal, A.; Scavarda, D.; Carron, R.; Bartolomei, F. The effect of medial pulvinar stimulation on temporal lobe seizures. Epilepsia 2019, 60, e25–e30. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.; Salanova, V.; Witt, T.; Worth, R.; Henry, T.; Gross, R.; Oommen, K.; Osorio, I.; Nazzaro, J.; Labar, D.; et al. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia 2010, 51, 899–908. [Google Scholar] [CrossRef] [PubMed]
- Salanova, V.; Witt, T.; Worth, R.; Henry, T.R.; Gross, R.E.; Nazzaro, J.M.; Labar, D.; Sperling, M.R.; Sharan, A.; Sandok, E.; et al. Long-term efficacy and safety of thalamic stimulation for drug-resistant partial epilepsy. Neurology 2015, 84, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Dalic, L.J.; Warren, A.E.L.; Bulluss, K.J.; Thevathasan, W.; Roten, A.; Churilov, L.; Archer, J.S. DBS of Thalamic Centromedian Nucleus for Lennox-Gastaut Syndrome (ESTEL Trial). Ann. Neurol. 2022, 91, 253–267. [Google Scholar] [CrossRef]
- Hodaie, M.; Wennberg, R.A.; Dostrovsky, J.O.; Lozano, A.M. Chronic anterior thalamus stimulation for intractable epilepsy. Epilepsia 2002, 43, 603–608. [Google Scholar] [CrossRef]
- Lee, K.J.; Shon, Y.M.; Cho, C.B. Long-term outcome of anterior thalamic nucleus stimulation for intractable epilepsy. Stereotact. Funct. Neurosurg. 2012, 90, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.-N.; Lee, S.-T.; Tsai, Y.-T.; Chen, I.-A.; Tu, P.-H.; Chen, J.-L.; Chang, H.-W.; Su, Y.-C.; Wu, T. Electrical stimulation of the anterior nucleus of the thalamus for intractable epilepsy: A long-term follow-up study. Epilepsia 2007, 48, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.-S.; Kim, H.J.; Lee, K.J.; Kim, Y.I.; Lim, S.-C.; Shon, Y.-M. Cognitive improvement after long-term electrical stimulation of bilateral anterior thalamic nucleus in refractory epilepsy patients. Seizure 2012, 21, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Molnar, G.F.; Sailer, A.; Gunraj, C.A.; Cunic, D.I.; Wennberg, R.A.; Lozano, A.M.; Chen, R. Changes in motor cortex excitability with stimulation of anterior thalamus in epilepsy. Neurology 2006, 66, 566–571. [Google Scholar] [CrossRef] [PubMed]
- Gimenes, C.; Malheiros, J.M.; Battapady, H.; Tannus, A.; Hamani, C.; Covolan, L. The neural response to deep brain stimulation of the anterior nucleus of the thalamus: A MEMRI and c-Fos study. Brain Res. Bull. 2019, 147, 133–139. [Google Scholar] [CrossRef] [PubMed]
- McLachlan, R.S.; Pigott, S.; Tellez-Zenteno, J.F.; Wiebe, S.; Parrent, A. Bilateral hippocampal stimulation for intractable temporal lobe epilepsy: Impact on seizures and memory. Epilepsia 2010, 51, 304–307. [Google Scholar] [CrossRef] [PubMed]
- Tellez-Zenteno, J.F.; McLachlan, R.S.; Parrent, A.; Kubu, C.S.; Wiebe, S. Hippocampal electrical stimulation in mesial temporal lobe epilepsy. Neurology 2006, 66, 1490–1494. [Google Scholar] [CrossRef]
- Vázquez-Barrón, D.; Cuéllar-Herrera, M.; Velasco, F.; Velasco, A.L. Electrical Stimulation of Subiculum for the Treatment of Refractory Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis: A 2-Year Follow-Up Study. Stereotact. Funct. Neurosurg. 2021, 99, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Velasco, A.L.; Velasco, F.; Velasco, M.; Jiménez, F.; Carrillo-Ruiz, J.D.; Castro, G. The role of neuromodulation of the hippocampus in the treatment of intractable complex partial seizures of the temporal lobe. Acta Neurochir. Suppl. 2007, 97, 329–332. [Google Scholar] [CrossRef]
- Velasco, M.; Velasco, F.; Velasco, A.L.; Boleaga, B.; Jimenez, F.; Brito, F.; Marquez, I. Subacute electrical stimulation of the hippocampus blocks intractable temporal lobe seizures and paroxysmal EEG activities. Epilepsia 2000, 41, 158–169. [Google Scholar] [CrossRef]
- Vonck, K.; Sprengers, M.; Carrette, E.; Dauwe, I.; Miatton, M.; Meurs, A.; Goossens, L.; DE Herdt, V.; Achten, R.; Thiery, E.; et al. A decade of experience with deep brain stimulation for patients with refractory medial temporal lobe epilepsy. Int. J. Neural Syst. 2013, 23, 1250034. [Google Scholar] [CrossRef]
- Ghaziri, J.; Tucholka, A.; Girard, G.; Boucher, O.; Houde, J.-C.; Descoteaux, M.; Obaid, S.; Gilbert, G.; Rouleau, I.; Nguyen, D.K. Subcortical structural connectivity of insular subregions. Sci. Rep. 2018, 8, 8596. [Google Scholar] [CrossRef] [PubMed]
- Bergeron, D.; Obaid, S.; Fournier-Gosselin, M.-P.; Bouthillier, A.; Nguyen, D.K. Deep Brain Stimulation of the Posterior Insula in Chronic Pain: A Theoretical Framework. Brain Sci. 2021, 11, 639. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Hollunder, B.; Baldermann, J.C.; Kibleur, A.; Treu, S.; Akram, H.; Al-Fatly, B.; Strange, B.A.; Barcia, J.A.; Zrinzo, L.; et al. A Unified Functional Network Target for Deep Brain Stimulation in Obsessive-Compulsive Disorder. Biol. Psychiatry 2021, 90, 701–713. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, C.; Rubin-Kahana, D.S.; Pushparaj, A.; Musiol, M.; Blumberger, D.M.; Daskalakis, Z.J.; Zangen, A.; Le Foll, B. The Insula: A Brain Stimulation Target for the Treatment of Addiction. Front. Pharmacol. 2019, 10, 720. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhao, M.; Li, T.; Zhang, C.; Zhou, J.; Wang, M.; Wang, X.; Ma, K.; Luan, G.; Guan, Y. Long-term efficacy and cognitive effects of bilateral hippocampal deep brain stimulation in patients with drug-resistant temporal lobe epilepsy. Neurol. Sci. 2021, 42, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Wang, Z.; Guo, Z.; Zhou, W.; Cai, Z.; Durand, D.M. High frequency stimulation of afferent fibers generates asynchronous firing in the downstream neurons in hippocampus through partial block of axonal conduction. Brain Res. 2017, 1661, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Mohan, U.R.; Watrous, A.J.; Miller, J.F.; Lega, B.C.; Sperling, M.R.; Worrell, G.A.; Gross, R.E.; Zaghloul, K.A.; Jobst, B.C.; Davis, K.A.; et al. The effects of direct brain stimulation in humans depend on frequency, amplitude, and white-matter proximity. Brain Stimul. 2020, 13, 1183–1195. [Google Scholar] [CrossRef]
- Iremonger, K.J.; Anderson, T.R.; Hu, B.; Kiss, Z.H.T. Cellular mechanisms preventing sustained activation of cortex during subcortical high-frequency stimulation. J. Neurophysiol. 2006, 96, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Jensen, A.L.; Durand, D.M. High frequency stimulation can block axonal conduction. Exp. Neurol. 2009, 220, 57–70. [Google Scholar] [CrossRef]
- Surbeck, W.; Bouthillier, A.; Weil, A.G.; Crevier, L.; Carmant, L.; Lortie, A.; Major, P.; Nguyen, D.K. The combination of subdural and depth electrodes for intracranial EEG investigation of suspected insular (perisylvian) epilepsy. Epilepsia 2011, 52, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Bouthillier, A.; Surbeck, W.; Weil, A.G.; Tayah, T.; Nguyen, D.K. The hybrid operculo-insular electrode: A new electrode for intracranial investigation of perisylvian/insular refractory epilepsy. Neurosurgery 2012, 70, 1574–1580, discussion 1580. [Google Scholar] [CrossRef] [PubMed]
- Ghaziri, J.; Tucholka, A.; Girard, G.; Houde, J.-C.; Boucher, O.; Gilbert, G.; Descoteaux, M.; Lippé, S.; Rainville, P.; Nguyen, D.K. The Corticocortical Structural Connectivity of the Human Insula. Cereb. Cortex 2017, 27, 1216–1228. [Google Scholar] [CrossRef]
- Rønborg, S.N.; Esteller, R.; Tcheng, T.K.; Greene, D.A.; Morrell, M.J.; Wesenberg Kjaer, T.; Desai, S.A. Acute effects of brain-responsive neurostimulation in drug-resistant partial onset epilepsy. Clin. Neurophysiol. 2021, 132, 1209–1220. [Google Scholar] [CrossRef] [PubMed]
Patient | Age at Onset of Epilepsy/Age at Invasive EEG | Gender/Dominance | Side and Location of Epileptic Focus | Stimulation Intensity (mA) | Location of Stimulated Insular Contacts |
---|---|---|---|---|---|
1 | 9/25 | Fe/R | R, junction between OF and ant INS | 3.3 | R aINS |
2 | 16/47 | M/R | L, P operculum, pINS | 0.4 | L pINS |
3 | 5/38 | Fe/R | L, F operculum + mid-INS and aINS | 1.5 | L pINS |
4 | 22/32 | Fe/R | R, pINS | 7 | R INS |
5 | unknown/25 | M/R | L, FT | 7 | L pINS |
6 | 6 months/41 | M/R | R, OF | 6 | R pINS |
Patient 1 | IED rate (IED/minute); median (IQR) | ||||||
IED localizations | B | S1 | PS1 | S2 | PS2 | ||
1st 10 min | 2nd 10 min | 1st 10 min | 2nd 10 min | ||||
OF | 9 (15.75) | 0 (2.25) ↓ (p = 0.004) | 15.50 (9.75) | 20.50 (16) ↑ (p = 0.023) | 17 (19.17) | 22 (18) ↑ (p = 0.013) | 16.50 (18.50) |
aINS | 1 (3.75) | 0 (0.25) ↓ (p = 0.042) | 0 (0) ↓ (p = 0.003) | 0 (0) ↓ (p = 0.003) | 0 (0) ↓ (p = 0.003) | 0 (0) ↓ (p = 0.003) | 0 (0) ↓ (p = 0.003) |
OF-aINS | 31 (37.75) | 7 (21.75) ↓ (p = 0.025) | 35 (38.75) | 12.50 (60) | 22.5 (7.0) | 32.5 (17) | 36 (27.25) |
Patient 2 | IED rate (IED/minute); median (IQR) | ||||||
IED localizations | B | S1 | PS1 | S2 | PS2 | ||
1st 10 min | 2nd 10 min | 1st 10 min | 2nd 10 min | ||||
T-P operculo-pINS | 46 (13.75) | 24 (15.75) ↓ (p = 0.006) | 45 (20.5) | 51 (7.50) ↑ (p = 0.007) | 49 (8.25) | 37 (14) | 41.50 (6.5) |
lateral T | 0 (1) | 0 (0) | 0 (0) | 0 (0) | 0 (2) | 0 (1) | 0 (0) |
Synchronous | 2 (3.75) | 0 (1) ↓ (p = 0.03) | 0 (1) ↓ (p = 0.03) | 0 (2.25) | 0 (1) ↓ (p = 0.03) | 5 (9.25) ↑ (p = 0.038) | 2 (3.25) |
Patient 3 | IED rate (IED/minute); median (IQR) | ||||||
IED localizations | B | S1 | PS1 | S2 | PS2 | ||
1st 10 min | 2nd 10 min | 1st 10 min | 2nd 10 min | ||||
aINS | 113 (54.75) | 126 (92.25) | 106.50 (8.25) | 123.5 (67.26) | 67 (86.5) | 94 (52.5) | 81.5 (60.6) |
IFG-aINS | 32 (36.5) | 60 (40) | 20 (20.75) | 29.5 (34.75) | 29.5 (19) | 18 (14.25) ↓ (p = 0.022) | 22 (21.25) |
STG-aINS | 0 (4.25) | 0 (2) | 0 (4.25) | 0 (1.75) | 0 (1.25) | 0 (0) | 0 (2.0) |
synchronous | 1 (11.75) | 13 (41) | 0 (1) | 0 (2) | 0 (5.25) | 0.5 (3.25) | 0 (1.25) |
Patient 4 | IED rate (IED/minute); median (IQR) | ||||||
IED localizations | B | S1 | PS1 | S2 | PS2 | ||
1st 10 min | 2nd 10 min | 1st 10 min | 2nd 10 min | ||||
T-P opercula-pINS | 1.6 (2.75) | 0 (0) ↓ (p < 0.001) | 0 (0) ↓ (p < 0.001) | 2 (3.0) | 0 (0) ↓ (p < 0.001) | 0 (1.25) | 0.5 (1.0) ↓ (p = 0.040) |
Synchronous | 0 (0) | 0 (0) | 0 (0) | 0 (0.25) | 0 (0) | 0 (0) | 0 (0) |
Patient 5 | IED rate (IED/minute); median (IQR) | ||||||
IED localizations | B | S1 | PS1 | S2 | PS2 | ||
1st 10 min | 2nd 10 min | 1st 10 min | 2nd 10 min | ||||
lateral T | 2.5 (4.5) | 1.5 (7.25) | 0 (1.25) ↓ (p = 0.010) | 3 (5.5) | 2.5 (5.75) | 2 (4.25) | 4.5 (5.0) |
lateral prefrontal | 0 (1) | 0 (0.25) | 1.5 (2.25) ↑ (p = 0.005) | 0.5 (2.25) | 0 (1.0) | 0.5 (2.0) | 0.5 (2.0) |
Synchronous | 1 (6.5) | 0 (1.25) | 0 (1.25) | 3 (5.5) | 0 (0.75) ↓ (p = 0.044) | 2 (4.25) | 1 (4) |
Patient 6 | IED rate (IED/minute); median (IQR) | ||||||
IED localizations | B | S1 | PS1 | S2 | PS2 | ||
1st 10 min | 2nd 10 min | 1st 10 min | 2nd 10 min | ||||
OF | 6.50 (4.50) | 16 (7.0) ↑ (p = 0.001) | 8 (6.50) | 9 (10.75) | 21 (11.25) ↑ (p < 0.001) | 8 (8.25) | 5 (5) |
pINS | 0 (1) | 0 (0) | 0 (1) | 0 (0) | 0 (0) | 0 (0.25) | 0 (0) |
Posterior T | 1.5 (3) | 0 (3) | 3.5 (4.25) | 1.5 (3.25) | 0 (0.75) | 0.5 (3.5) | 0 (2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, T.P.Y.; Dionne, A.; Toffa, D.; Bergeron, D.; Obaid, S.; Robert, M.; Bouthillier, A.; Assi, E.B.; Nguyen, D.K. Acute Effects of High-Frequency Insular Stimulation on Interictal Epileptiform Discharge Rates in Patients with Refractory Epilepsy. Brain Sci. 2022, 12, 1616. https://doi.org/10.3390/brainsci12121616
Tran TPY, Dionne A, Toffa D, Bergeron D, Obaid S, Robert M, Bouthillier A, Assi EB, Nguyen DK. Acute Effects of High-Frequency Insular Stimulation on Interictal Epileptiform Discharge Rates in Patients with Refractory Epilepsy. Brain Sciences. 2022; 12(12):1616. https://doi.org/10.3390/brainsci12121616
Chicago/Turabian StyleTran, Thi Phuoc Yen, Antoine Dionne, Denahin Toffa, David Bergeron, Sami Obaid, Manon Robert, Alain Bouthillier, Elie Bou Assi, and Dang Khoa Nguyen. 2022. "Acute Effects of High-Frequency Insular Stimulation on Interictal Epileptiform Discharge Rates in Patients with Refractory Epilepsy" Brain Sciences 12, no. 12: 1616. https://doi.org/10.3390/brainsci12121616
APA StyleTran, T. P. Y., Dionne, A., Toffa, D., Bergeron, D., Obaid, S., Robert, M., Bouthillier, A., Assi, E. B., & Nguyen, D. K. (2022). Acute Effects of High-Frequency Insular Stimulation on Interictal Epileptiform Discharge Rates in Patients with Refractory Epilepsy. Brain Sciences, 12(12), 1616. https://doi.org/10.3390/brainsci12121616