High-Throughput Whole-Exome Sequencing and Large-Scale Computational Analysis to Identify the Genetic Biomarkers to Predict the Vedolizumab Response Status in Inflammatory Bowel Disease Patients from Saudi Arabia
Abstract
:1. Introduction
2. Materials and Methods
- Participant profile:
- 2.
- Exome sequence generation:
- 3.
3. Results
3.1. Participant Profile
3.2. WES Analysis
3.3. Stringent Variant Prioritization
3.3.1. Prioritization Candidate Genes for R (Responder) and NR (Non-Responder) Groups
Functional Enrichment
- Biological pathways: Four responder candidate genes (CARD9, NLRP1, IL-4, and TYK2) may enhance the action of VDZ. These genes play an important role in one or multiple functions and pathways. These include the anti-inflammatory effect, impairment of the activation of NFkB by decreased secretion of cytokines by innate immune cells, induction of Th-2 cells to produce anti-inflammatory and immunomodulatory factors, and activation of the JAK/STAT pathway. These are involved in the following pathways: (a) immune system, (b) NLRP1 inflammasome signaling, (c) nucleotide-binding domain leucine-rich repeat-containing receptor NLR signaling, and (d) interleukin-10 signaling. Table 6 lists the key biological functions of these key genes, which potentially enhance the response to VDZ.
- The five non-responder (NR) candidate genes (NOD2, TRAF1, IL10RA, IL-23R, and IL27) enhance the activation of pro-inflammatory cytokines through MAPK and NFkB pathways, modulate innate and acquired immunity, and activate Th-17 cells, leading to the production of pro-inflammatory cytokines. These functions might contribute to the poor response to VDZ in IBD patients through the following pathways: (a) NOD-NFkB signaling, (b) ulcerative colitis signaling, and (c) the PID-NFkB canonical pathway. Those genes were also found to be associated with the development of the other common autoimmune disease, rheumatoid arthritis. Table 7 highlights the main biological functions of NR genes possibly contributing to poor or non-responder status to VDZ. The activation of pro-inflammatory cytokines through NFκB pathways by NOD2 and TRAF and modulation of immunity by IL10RA and IL27 genes was found.
- Protein–protein Interaction: The STRING protein–protein interaction database search resulted in findings of critical gene networks for both R and NR sets of genes, Figure 5 and Figure 6. The R group gene network was enriched with the cytokine processes and pathways, which include IL13RA1 and IL-12RB2. They play a crucial role with IL-4 in the anti-inflammatory process. The strong interaction between the four responder group genes highlights their potential contribution to the positive response to VDZ.
- Figure 7 explains the role of CARD9 in inhibiting the NFkB pathway, which leads to the suppression of the Th-1 cell, which is responsible for producing pro-inflammatory cytokines. They inhibit cytokine secretion. Moreover, Th-1 cells inhibited by IL-4 and TYK2 suppress the production of cytokines.
Gene Name | Function |
---|---|
CARD9 | Impairs the activation of ReIB, a subunit of non-canonical NFkB, ↓cytokines and chemokines production by innate immune cells. |
IL4 | Anti-inflammatory and immunomodulatory factor, induces Th2 cell differentiation and expression. |
NLRP1 | Innate immune sensor to attenuate IL18, IL-1β levels. |
TYK2 | Activation of the Janus kinase/transcriptional signaling and activation factor (JAK/STAT) pathway. |
Gene Name | Function |
---|---|
NOD2 | Activation of pro-inflammatory cytokines and regulation of inflammation and cell apoptosis via the MAPK and NF-κB pathways. |
IL10RA | Regulates both innate and acquired immunity. |
IL23R | Activation and development of the Th17 lineage and its effect on dendritic cells and macrophages results in the production of a variety of pro-inflammatory molecules. |
IL27 | Th17 differentiation and immune regulation. |
TRAF1 | Canonical and non-canonical NFκB pathways activating MAP kinases. |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IBD | inflammatory bowel disease |
MACAM-1 | mucosal vascular addressin cell adhesion molecule |
KSA | Kingdom of Saudi Arabia |
VDZ | vedolizumab |
References
- Ghouri, Y.A.; Tahan, V.; Shen, B. Secondary causes of inflammatory bowel diseases. World J. Gastroenterol. 2020, 26, 3998–4017. [Google Scholar] [CrossRef] [PubMed]
- Malik, T.A. Inflammatory bowel disease: Historical perspective, epidemiology, and risk factors. Surg. Clin. 2015, 95, 1105–1122. [Google Scholar]
- Ananthakrishnan, A.N. Epidemiology and risk factors for IBD. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 205–217. [Google Scholar] [CrossRef] [PubMed]
- Mosli, M.; Alawadhi, S.; Hasan, F.; Abou Rached, A.; Sanai, F.; Danese, S. Incidence, prevalence, and clinical epidemiology of inflammatory bowel disease in the Arab world: A systematic review and meta-analysis. Inflamm. Intest. Dis. 2021, 6, 123–131. [Google Scholar] [CrossRef]
- Al-Ghamdi, A.S.; A Al-Mofleh, I.; Al-Rashed, R.S.; Al-Amri, S.M.; Aljebreen, A.M.; Isnani, A.C.; El-Badawi, R. Epidemiology and outcome of Crohn’s disease in a teaching hospital in Riyadh. World J. Gastroenterol. 2004, 10, 1341. [Google Scholar] [CrossRef] [PubMed]
- Windsor, J.W.; Kaplan, G.G. Evolving epidemiology of IBD. Curr. Gastroenterol. Rep. 2019, 21, 40. [Google Scholar] [CrossRef]
- Kopylov, U.; Seidman, E. Predicting durable response or resistance to antitumor necrosis factor therapy in inflammatory bowel disease. Ther. Adv. Gastroenterol. 2016, 9, 513–526. [Google Scholar] [CrossRef]
- Adegbola, S.O.; Sahnan, K.; Warusavitarne, J.; Hart, A.; Tozer, P. Anti-TNF therapy in Crohn’s disease. Int. J. Mol. Sci. 2018, 19, 2244. [Google Scholar] [CrossRef]
- Billioud, V.; Sandborn, W.J.; Peyrin-Biroulet, L. Loss of response and need for adalimumab dose intensification in Crohn’s disease: A systematic review. Off. J. Am. Coll. Gastroenterol. 2011, 106, 674–684. [Google Scholar] [CrossRef]
- Rutgeerts, P.; D’Haens, G.; Targan, S.; Vasiliauskas, E.; Hanauer, S.B.; Present, D.H.; Mayer, L.; Van Hogezand, R.A.; Braakman, T.; DeWoody, K.L. Efficacy and safety of retreatment with anti–tumor necrosis factor antibody (infliximab) to maintain remission in Crohn’s disease. Gastroenterology 1999, 117, 761–769. [Google Scholar] [CrossRef]
- Sprakes, M.B.; Ford, A.C.; Warren, L.; Greer, D.; Hamlin, J. Efficacy, tolerability, and predictors of response to infliximab therapy for Crohn’s disease: A large single centre experience. J. Crohn’s Colitis 2012, 6, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Peyrin-Biroulet, L.; Danese, S.; Argollo, M.; Pouillon, L.; Peppas, S.; Gonzalez-Lorenzo, M.; Lytras, T.; Bonovas, S. Loss of response to vedolizumab and ability of dose intensification to restore response in patients with Crohn’s disease or ulcerative colitis: A systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 2019, 17, 838–846.e2. [Google Scholar] [CrossRef] [PubMed]
- Ungar, B.; Malickova, K.; Hanžel, J.; Abu Arisha, M.; Paul, S.; Rocha, C.; Ben Shatach, Z.; Abitbol, C.M.; Haj Natour, O.; Selinger, L. Dose optimisation for loss of response to Vedolizumab—Pharmacokinetics and immune mechanisms. J. Crohn’s Colitis 2021, 15, 1707–1719. [Google Scholar] [CrossRef] [PubMed]
- Anbarserry, D.; Mosli, M.; Qari, Y.; Saadah, O.; Bokhary, R.; Esmat, A.; Alsieni, M.; Shaker, A.; Elango, R.; Alharthi, S. The use of therapeutic drug monitoring for early identification of vedolizumab response in Saudi Arabian patients with inflammatory bowel disease. Sci. Rep. 2023, 13, 1771. [Google Scholar] [CrossRef]
- McDowell, C.; Farooq, U.; Haseeb, M. Inflammatory Bowel Disease; StatPearls: Treasure Island, FL, USA, 2023. [Google Scholar]
- Yang, S.-K.; Hong, M.; Choi, H.; Zhao, W.; Jung, Y.; Haritunians, T.; Ye, B.D.; Kim, K.-J.; Park, S.H.; Lee, I. Immunochip analysis identification of 6 additional susceptibility loci for Crohn’s disease in Koreans. Inflamm. Bowel Dis. 2015, 21, 1–7. [Google Scholar] [CrossRef]
- Jan, R.M.; Al-Numan, H.H.; Al-Twaty, N.H.; Alrayes, N.; Alsufyani, H.A.; Alaifan, M.A.; Alhussaini, B.H.; Shaik, N.A.; Awan, Z.; Qari, Y.; et al. Rare variant burden analysis from exomes of three consanguineous families reveals LILRB1 and PRSS3 as potential key proteins in inflammatory bowel disease pathogenesis. Front. Med. 2023, 10, 1164305. [Google Scholar] [CrossRef]
- Al-Numan, H.H.; Jan, R.M.; Al-Saud, N.b.S.; Rashidi, O.M.; Alrayes, N.M.; Alsufyani, H.A.; Mujalli, A.; Shaik, N.A.; Mosli, M.H.; Elango, R. Exome sequencing identifies the extremely rare ITGAV and FN1 variants in early onset inflammatory bowel disease patients. Front. Pediatr. 2022, 10, 895074. [Google Scholar] [CrossRef]
- Yacoub, W.; Williet, N.; Pouillon, L.; Di-Bernado, T.; De Carvalho Bittencourt, M.; Nancey, S.; Lopez, A.; Paul, S.; Zallot, C.; Roblin, X. Early vedolizumab trough levels predict mucosal healing in inflammatory bowel disease: A multicentre prospective observational study. Aliment. Pharmacol. Ther. 2018, 47, 906–912. [Google Scholar] [CrossRef]
- Ochoa, D.; Hercules, A.; Carmona, M.; Suveges, D.; Baker, J.; Malangone, C.; Lopez, I.; Miranda, A.; Cruz-Castillo, C.; Fumis, L.; et al. The next-generation Open Targets Platform: Reimagined, redesigned, rebuilt. Nucleic Acids Res. 2022, 51, D1353–D1359. [Google Scholar] [CrossRef]
- ToppGene. 2023. Available online: http://toppgene.cchmc.org (accessed on 1 January 2023).
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef]
- Westra, H.-J.; Peters, M.J.; Esko, T.; Yaghootkar, H.; Schurmann, C.; Kettunen, J.; Christiansen, M.W.; Fairfax, B.P.; Schramm, K.; Powell, J.E. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat. Genet. 2013, 45, 1238–1243. [Google Scholar] [CrossRef] [PubMed]
- Regeneron Pharmaceuticals, Inc. Global Terms of Use. 2024. Available online: https://www.regeneron.com/terms (accessed on 20 December 2024).
- Lee, J.C.; Biasci, D.; Roberts, R.; Gearry, R.B.; Mansfield, J.C.; Ahmad, T.; Prescott, N.J.; Satsangi, J.; Wilson, D.C.; Jostins, L. Genome-wide association study identifies distinct genetic contributions to prognosis and susceptibility in Crohn’s disease. Nat. Genet. 2017, 49, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Cordero, R.Y.; Cordero, J.B.; Stiemke, A.B.; Datta, L.W.; Buyske, S.; Kugathasan, S.; McGovern, D.P.; Brant, S.R.; Simpson, C.L. Trans-ancestry, Bayesian meta-analysis discovers 20 novel risk loci for inflammatory bowel disease in an African American, East Asian and European cohort. Hum. Mol. Genet. 2023, 32, 873–882. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.; Poterba, T.; Curtis, D.; Akil, H.; Al Eissa, M.; Barchas, J.D.; Bass, N.; Bigdeli, T.B.; Breen, G.; Bromet, E.J. Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature 2022, 604, 509–516. [Google Scholar] [CrossRef]
- Sims, R.; Van Der Lee, S.J.; Naj, A.C.; Bellenguez, C.; Badarinarayan, N.; Jakobsdottir, J.; Kunkle, B.W.; Boland, A.; Raybould, R.; Bis, J.C. Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s disease. Nat. Genet. 2017, 49, 1373–1384. [Google Scholar] [CrossRef]
- Balicza, P.; Varga, N.Á.; Bolgár, B.; Pentelényi, K.; Bencsik, R.; Gál, A.; Gézsi, A.; Prekop, C.; Molnár, V.; Molnár, M.J. Comprehensive analysis of rare variants of 101 autism-linked genes in a Hungarian cohort of autism spectrum disorder patients. Front. Genet. 2019, 10, 434. [Google Scholar] [CrossRef]
- Sazonovs, A.; Stevens, C.R.; Venkataraman, G.R.; Yuan, K.; Avila, B.; Abreu, M.T.; Ahmad, T.; Allez, M.; Ananthakrishnan, A.N.; Atzmon, G. Large-scale sequencing identifies multiple genes and rare variants associated with Crohn’s disease susceptibility. Nat. Genet. 2022, 54, 1275–1283. [Google Scholar] [CrossRef]
- Yousef, N.A.; ElHarouni, A.A.; Shaik, N.A.; Banaganapalli, B.; Al Ghamdi, A.F.; Galal, A.H.; Alahmadi, T.S.; Shuaib, T.; Aljeaid, D.; Alshaer, D.S. Nationwide survey on awareness of consanguinity and genetic diseases in Saudi Arabia: Challenges and potential solutions to reduce the national healthcare burden. Hum. Genom. 2024, 18, 138. [Google Scholar] [CrossRef]
- Gajendran, M.; Loganathan, P.; Catinella, A.P.; Hashash, J.G. A comprehensive review and update on Crohn’s disease. Disease-a-Month 2018, 64, 20–57. [Google Scholar] [CrossRef]
- Michail, S.; Bultron, G.; DePaolo, R.W. Genetic variants associated with Crohn’s disease. Appl. Clin. Genet. 2013, 6, 25–32. [Google Scholar] [CrossRef]
- Kopitar-Jerala, N. The role of interferons in inflammation and inflammasome activation. Front. Immunol. 2017, 8, 873. [Google Scholar] [CrossRef] [PubMed]
- Gurung, P.; Malireddi, R.S.; Anand, P.K.; Demon, D.; Walle, L.V.; Liu, Z.; Vogel, P.; Lamkanfi, M.; Kanneganti, T.-D. Toll or interleukin-1 receptor (TIR) domain-containing adaptor inducing interferon-β (TRIF)-mediated caspase-11 protease production integrates Toll-like receptor 4 (TLR4) protein-and Nlrp3 inflammasome-mediated host defense against enteropathogens. J. Biol. Chem. 2012, 287, 34474–34483. [Google Scholar] [CrossRef] [PubMed]
- Glas, J.; Seiderer, J.; Wagner, J.; Olszak, T.; Fries, C.; Tillack, C.; Friedrich, M.; Beigel, F.; Stallhofer, J.; Steib, C. Analysis of IL12B gene variants in inflammatory bowel disease. PLoS ONE 2012, 7, e34349. [Google Scholar] [CrossRef]
- Robinson, R.T. IL12Rβ1: The cytokine receptor that we used to know. Cytokine 2015, 71, 348–359. [Google Scholar] [CrossRef]
- Greving, C.N.A.; Towne, J.E. A role for IL-12 in IBD after all? Immunity 2019, 51, 209–211. [Google Scholar] [CrossRef]
- Vignali, D.A.; Kuchroo, V.K. IL-12 family cytokines: Immunological playmakers. Nat. Immunol. 2012, 13, 722–728. [Google Scholar] [CrossRef]
- Hugot, J.-P.; Chamaillard, M.; Zouali, H.; Lesage, S.; Cézard, J.-P.; Belaiche, J.; Almer, S.; Tysk, C.; O’Morain, C.A.; Gassull, M. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 2001, 411, 599–603. [Google Scholar] [CrossRef]
- Solon, J.G.; Burke, J.P.; Walsh, S.R.; Coffey, J.C. The effect of NOD2 polymorphism on postsurgical recurrence in Crohn’s disease: A systematic review and meta-analysis of available literature. Inflamm. Bowel Dis. 2013, 19, 1099–1105. [Google Scholar] [CrossRef]
- Sughra, K.; Birbach, A.; de Martin, R.; Schmid, J.A. Interaction of the TNFR-receptor associated factor TRAF1 with I-kappa B kinase-2 and TRAF2 indicates a regulatory function for NF-kappa B signaling. PLoS ONE 2010, 5, e12683. [Google Scholar] [CrossRef]
- Rückert, Y.; Schindler, U.; Heinig, T.; Nikolaus, S.; Raedler, A.; Schreiber, S. IL-4 signaling mechanisms in inflammatory bowel disease mononuclear phagocytes. Inflamm. Bowel Dis. 1996, 2, 244–252. [Google Scholar] [CrossRef]
- Jarmakiewicz-Czaja, S.; Zielińska, M.; Sokal, A.; Filip, R. Genetic and epigenetic etiology of inflammatory bowel disease: An update. Genes 2022, 13, 2388. [Google Scholar] [CrossRef]
- Cy, W. NF-kappaB antiapoptosis: Induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 1998, 281, 1680–1683. [Google Scholar]
- Adler, J.; Rangwalla, S.C.; Dwamena, B.A.; Higgins, P.D. The prognostic power of the NOD2 genotype for complicated Crohn’s disease: A meta-analysis. Off. J. Am. Coll. Gastroenterol. 2011, 106, 699–712. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, K.S.; Chamaillard, M.; Ogura, Y.; Henegariu, O.; Inohara, N.; Nuñez, G.; Flavell, R.A. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 2005, 307, 731–734. [Google Scholar] [CrossRef]
- Leo, E.; Deveraux, Q.L.; Buchholtz, C.; Welsh, K.; Matsuzawa, S.-I.; Stennicke, H.R.; Salvesen, G.S.; Reed, J.C. TRAF1 is a substrate of caspases activated during tumor necrosis factor receptor-α-induced apoptosis. J. Biol. Chem. 2001, 276, 8087–8093. [Google Scholar] [CrossRef]
- Trinchieri, G.; Pflanz, S.; Kastelein, R.A. The IL-12 family of heterodimeric cytokines: New players in the regulation of T cell responses. Immunity 2003, 19, 641–644. [Google Scholar] [CrossRef]
- Gheita, T.A.; El Gazzar, I.I.; El-Fishawy, H.S.; Aboul-Ezz, M.A.; Kenawy, S.A. Involvement of IL-23 in enteropathic arthritis patients with inflammatory bowel disease: Preliminary results. Clin. Rheumatol. 2014, 33, 713–717. [Google Scholar] [CrossRef]
- Engel, T.; Yung, D.E.; Ma, C.; Pariente, B.; WIls, P.; Eliakim, R.; Ungar, B.; Ben-Horin, S.; Kopylov, U. Effectiveness and safety of Ustekinumab for Crohn’s disease; systematic review and pooled analysis of real-world evidence. Dig. Liver Dis. 2019, 51, 1232–1240. [Google Scholar] [CrossRef]
- Drummond, R.A.; Franco, L.M.; Lionakis, M.S. Human CARD9: A critical molecule of fungal immune surveillance. Front. Immunol. 2018, 9, 1836. [Google Scholar] [CrossRef]
- Williams, T.M.; Leeth, R.A.; Rothschild, D.E.; Coutermarsh-Ott, S.L.; McDaniel, D.K.; Simmons, A.E.; Heid, B.; Cecere, T.E.; Allen, I.C. The NLRP1 inflammasome attenuates colitis and colitis-associated tumorigenesis. J. Immunol. 2015, 194, 3369–3380. [Google Scholar] [CrossRef]
- Seyfizadeh, N.; Seyfizadeh, N.; Gharibi, T.; Babaloo, Z. Interleukin-13 as an important cytokine: A review on its roles in some human diseases. Acta Microbiol. Immunol. Hung. 2015, 62, 341–378. [Google Scholar] [CrossRef] [PubMed]
- Vebr, M.; Pomahačová, R.; Sýkora, J.; Schwarz, J. A Narrative Review of Cytokine Networks: Pathophysiological and Therapeutic Implications for Inflammatory Bowel Disease Pathogenesis. Biomedicines 2023, 11, 3229. [Google Scholar] [CrossRef] [PubMed]
- Opal, S.M.; DePalo, V.A. Anti-inflammatory cytokines. Chest 2000, 117, 1162–1172. [Google Scholar] [CrossRef] [PubMed]
- Emam, A.A.; Shehab, M.M.; Allah, M.A.; Elkoumi, M.A.; Abdelaal, N.M.; Mosabah, A.A.; Zakaria, M.T.; Sherif, A.M.; Soliman, M.M.; El-Kaffas, R.M. Interleukin-4-590C/T gene polymorphism in Egyptian children with acute lower respiratory infection: A multicenter study. Pediatr. Pulmonol. 2019, 54, 297–302. [Google Scholar] [CrossRef]
- Luo, X.; Villablanca, E.J. Type 2 immunity in intestinal homeostasis and inflammatory bowel disease. Biochem. Soc. Trans. 2021, 49, 2371–2380. [Google Scholar] [CrossRef]
- Cao, Z.; Conway, K.L.; Heath, R.J.; Rush, J.S.; Leshchiner, E.S.; Ramirez-Ortiz, Z.G.; Nedelsky, N.B.; Huang, H.; Ng, A.; Gardet, A. Ubiquitin ligase TRIM62 regulates CARD9-mediated anti-fungal immunity and intestinal inflammation. Immunity 2015, 43, 715–726. [Google Scholar] [CrossRef]
- Winer, D.A.; Luck, H.; Tsai, S.; Winer, S. The intestinal immune system in obesity and insulin resistance. Cell Metab. 2016, 23, 413–426. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
Aged between 18 and 80 years; male or female Saudi patients; capable of giving voluntary informed consent; diagnosis of moderate-to-severe active UC/CD (Mayo endoscopic sub-score > 1 for UC OR presence of frank ulcerations for CD); and patients naïve to VDZ. | Signs of abdominal abscess; any colonic resection; either total or subtotal colectomy; known fixed stenosis of the intestine, ileostomy, or colostomy; use of non-permitted IBD therapies within 30 or 60 days; active or dormant TB infection; hepatitis C or B chronic infection; malignancy; small or large bowel malignancy; being incapable of complying with study protocols or attending study visits. |
Software | Version |
---|---|
Mapping Reference | Hg38 (original GRCh38-NCBI, Dec.2013). |
dbSNP | 154 |
1000Genome | Phase3 |
Clinvar | 07/2021 |
ESP | ESP6500SI_V2 |
dbNSFP | dbNSFPv4.2c |
Software | Version |
---|---|
BWA | Bwa-0.7.17 |
Picard | Picard-tools-2.18.2-SNAPSHOT |
GATK | GATKv4.0.5.1 |
SnpEff | SnpEff 5.0e 9 March 2021 |
Evidence Tool | Outcomes |
---|---|
Open Target Platform | This website provides access to multiple computational tools and databases that aid in identifying the causal or functional annotations between the clinical phenotype and drug target genes [20]. |
TOPPFun | The ToppGene platform is used to enrich a group of genes based on function and cellular localization, pathways, etc., to prioritize candidate genes by extensively using an array of protein interaction and functional annotations network datasets [21]. |
STRING database | This protein–protein interaction database encompass both physical and functional connections of all genes [22]. |
Genotype-Tissue Expression (GTEx) | Human gene expression data resource from various tissues and organs used to correlate their relationships to genetic variation [23]. |
RGC | New whole-exome/genome database from more than a million people of different ethnicities in the public domain for minor allele frequency of variants to identify the rare variants in the world population [24]. |
Variant Prioritizations | |||
---|---|---|---|
Group | Extreme Rare | Very Rare | Rare |
R | 2590 | 3308 | 9276 |
NR | 1808 | 2421 | 5839 |
Gene/SNP | MAF | 1000 G | GnomAD | RGC—All | RGC—Arab | Saudi MAF |
---|---|---|---|---|---|---|
Non-Responder | ||||||
NOD2 | rs5743291 | 0.0332 | 0.063 | 0.077 | 0.114 | 0.0694 |
IL-23R | rs11209026 | 0.023 | 0.042 | 0.055 | 0.057 | 0.0486 |
IL-10RA | rs2229114 | 0.017 | 0.032 | 0.040 | 0.040 | 0.0312 |
IL-27 | rs147413292 | 0.020 | 0.050 | 0.053 | 0.058 | 0.0347 |
TRAF1 | rs34119250 | 0.034 | 0.051 | 0.060 | 0.062 | 0.0694 |
Responder | ||||||
CARD9 | rs114895119 | 0.002 | 0.004 | 0.004 | 0.009 | 0.0035 |
TYK2 | rs2304255 | 0.044 | 0.062 | 0.066 | 0.071 | 0.0417 |
IL-4 | rs2234895 | 0.047 | 0.069 | 0.077 | 0.112 | 0.1146 |
NLRP1 | rs11653832 | - | 0.00000119 | 0.000002433 | 0 | 0.0938 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aljohani, H.; Anbarserry, D.; Mosli, M.; Ujaimi, A.; Bakhshwin, D.; Elango, R.; Alharthi, S. High-Throughput Whole-Exome Sequencing and Large-Scale Computational Analysis to Identify the Genetic Biomarkers to Predict the Vedolizumab Response Status in Inflammatory Bowel Disease Patients from Saudi Arabia. Biomedicines 2025, 13, 459. https://doi.org/10.3390/biomedicines13020459
Aljohani H, Anbarserry D, Mosli M, Ujaimi A, Bakhshwin D, Elango R, Alharthi S. High-Throughput Whole-Exome Sequencing and Large-Scale Computational Analysis to Identify the Genetic Biomarkers to Predict the Vedolizumab Response Status in Inflammatory Bowel Disease Patients from Saudi Arabia. Biomedicines. 2025; 13(2):459. https://doi.org/10.3390/biomedicines13020459
Chicago/Turabian StyleAljohani, Hanin, Doaa Anbarserry, Mahmoud Mosli, Amani Ujaimi, Duaa Bakhshwin, Ramu Elango, and Sameer Alharthi. 2025. "High-Throughput Whole-Exome Sequencing and Large-Scale Computational Analysis to Identify the Genetic Biomarkers to Predict the Vedolizumab Response Status in Inflammatory Bowel Disease Patients from Saudi Arabia" Biomedicines 13, no. 2: 459. https://doi.org/10.3390/biomedicines13020459
APA StyleAljohani, H., Anbarserry, D., Mosli, M., Ujaimi, A., Bakhshwin, D., Elango, R., & Alharthi, S. (2025). High-Throughput Whole-Exome Sequencing and Large-Scale Computational Analysis to Identify the Genetic Biomarkers to Predict the Vedolizumab Response Status in Inflammatory Bowel Disease Patients from Saudi Arabia. Biomedicines, 13(2), 459. https://doi.org/10.3390/biomedicines13020459