The Effects of Beta-Blockers on Leukocytes and the Leukocyte Subpopulation in Heart Failure Patients
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Becher, P.M.; Lund, L.H.; Coats, A.J.; Savarese, G. An update on global epidemiology in heart failure. Eur. Heart J. 2022, 43, 3005–3007. [Google Scholar] [CrossRef] [PubMed]
- Farcas, A.D.; Stoia, M.A.; Anton, F.P.; Hognogi, D.M.; Ianos, R.D.; Hojda, S.E.S.; Gavrila, I.L.; Lutac, D.; Burian, I.I.; Simiti, L.A.V. The Lymphocyte Count and Neutrophil/lymphocyte Ratio are Independent Predictors for Adverse Cardiac Events in Ischemic Heart Failure but not with Non-ischemic Heart Failure. Rev. Chim. 2016, 76, 2091–2094. [Google Scholar]
- Goidescu, C.; Farcas, A.; Anton, F.; Vida-Simiti, L. The Pattern of Ventricular Remodeling Influences the Level of Oxidative Stress in Heart Failure Patients. Rev. Chim. 2017, 68, 1506–1511. [Google Scholar] [CrossRef]
- Harding, D.; Chong, M.H.A.; Lahoti, N.; Bigogno, C.M.; Prema, R.; Mohiddin, S.A.; Marelli-Berg, F. Dilated cardiomyopathy and chronic cardiac inflammation: Pathogenesis, diagnosis and therapy. J. Intern. Med. 2023, 293, 23–47. [Google Scholar] [CrossRef] [PubMed]
- Curran, F.M.; Bhalraam, U.; Mohan, M.; Singh, J.S.; Anker, S.D.; Dickstein, K.; Doney, A.S.; Filippatos, G.; George, J.; Metra, M.; et al. Neutrophil-to-lymphocyte ratio and outcomes in patients with new-onset or worsening heart failure with reduced and preserved ejection fraction. ESC Heart Fail. 2021, 8, 3168–3179. [Google Scholar] [CrossRef]
- Cristescu, L.; Tilea, I.; Iancu, D.-G.; Stoica, F.; Moldovan, D.-A.; Capriglione, V.; Varga, A. Insights into the Neutrophil-to-Lymphocyte Ratio and the Platelet-to-Lymphocyte Ratio as Predictors for the Length of Stay and Readmission in Chronic Heart Failure Patients. Diagnostics 2024, 14, 2102. [Google Scholar] [CrossRef]
- Cho, J.H.; Cho, H.J.; Lee, H.Y.; Ki, Y.J.; Jeon, E.S.; Hwang, K.K.; Chae, S.C.; Baek, S.H.; Kang, S.M.; Choi, D.J.; et al. Neutrophil-Lymphocyte Ratio in Patients with Acute Heart Failure Predicts In-Hospital and Long-Term Mortality. J. Clin. Med. 2020, 9, 557. [Google Scholar] [CrossRef]
- Crișan, C.A.; Milhem, Z.; Stretea, R.; Țața, I.-M.; Cherecheș, R.M.; Micluția, I.V. A Narrative Review on REM Sleep Deprivation: A Promising Non-Pharmaceutical Alternative for Treating Endogenous Depression. J. Pers. Med. 2023, 13, 306. [Google Scholar] [CrossRef]
- Mohan, M.; Deshmukh, H.; Baig, F.; Hawkey, S.; Rutherford, L.; Struthers, A.; Maria, A.; Lang, C. Abstract 15218: Neutrophil to Lymphocyte ratio Predicts All-cause Mortality in Patients with Chronic Heart Failure. Circulation 2014, 130 (Suppl. S2), A15218. [Google Scholar]
- Uthamalingam, S.; Patvardhan, E.A.; Subramanian, S.; Ahmed, W.; Martin, W.; Daley, M.; Capodilupo, R. Utility of the neutrophil to lymphocyte ratio in predicting long-term outcomes in acute decompensated heart failure. Am. J. Cardiol. 2011, 107, 433–438. [Google Scholar] [CrossRef]
- Ang, S.P.; Chia, J.E.; Jaiswal, V.; Hanif, M.; Iglesias, J. Prognostic Value of Neutrophil-to-Lymphocyte Ratio in Patients with Acute Decompensated Heart Failure: A Meta-Analysis. J. Clin. Med. 2024, 13, 1212. [Google Scholar] [CrossRef] [PubMed]
- Masarone, D.; Martucci, M.L.; Errigo, V.; Pacileo, G. The Use of β-Blockers in Heart Failure with Reduced Ejection Fraction. J. Cardiovasc. Dev. Dis. 2021, 8, 101. [Google Scholar] [CrossRef] [PubMed]
- Ajam, T.; Ajam, S.; Devaraj, S.; Mohammed, K.; Sawada, S.; Kamalesh, M. Effect of carvedilol vs metoprolol succinate on mortality in heart failure with reduced ejection fraction. Am. Heart J. 2018, 199, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Polat, N.; Yıldız, A.; Bilik, M.Z.; Aydın, M.; Acet, H.; Kaya, H.; Demir, M.; Işık, M.A.; Alan, S.; Toprak, N. The importance of hematologic indices in the risk stratification of patients with acute decompensated systolic heart failure. Türk Kardiyol. Derneği Arşivi 2015, 43, 157–165. [Google Scholar]
- Nakamura, K.; Murakami, M.; Miura, D.; Yunoki, K.; Enko, K.; Tanaka, M.; Saito, Y.; Nishii, N.; Miyoshi, T.; Yoshida, M.; et al. Beta-Blockers and Oxidative Stress in Patients with Heart Failure. Pharmaceuticals 2012, 4, 1088–1100. [Google Scholar] [CrossRef]
- Jin, S.; Kang, P.M. A Systematic Review on Advances in Management of Oxidative Stress-Associated Cardiovascular Diseases. Antioxidants 2024, 13, 923. [Google Scholar] [CrossRef]
- Chin, B.S.P.; Langford, N.J.; Nuttall, S.L.; Gibbs, C.R.; Blann, A.D.; Lip, G.Y.H. Anti-oxidative properties of beta-blockers and angiotensin-converting enzyme inhibitors in congestive heart failure. Eur. J. Heart Fail. 2003, 5, 171–174. [Google Scholar] [CrossRef]
- Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Mostafa-Hedeab, G.; Kasozi, K.I.; Zirintunda, G.; Aslam, A.; Allahyani, M.; Welburn, S.C.; Batiha, G.E.S. Effects of β-Blockers on the Sympathetic and Cytokines Storms in COVID-19. Front. Immunol. 2021, 12, 749291. [Google Scholar] [CrossRef]
- Vakhshoori, M.; Nemati, S.; Sabouhi, S.; Yavari, B.; Shakarami, M.; Bondariyan, N.; Emami, S.A.; Shafie, D. Neutrophil to lymphocyte ratio (NLR) prognostic effects on heart failure; a systematic review and meta-analysis. BMC Cardiovasc. Disord. 2023, 23, 555. [Google Scholar] [CrossRef]
- Maslov, L.N.; Naryzhnaya, N.V.; Voronkov, N.S.; Kurbatov, B.K.; Derkachev, I.A.; Ryabov, V.V.; Vyshlov, E.V.; Kolpakov, V.V.; Tomilova, E.A.; Sapozhenkova, E.V.; et al. The role of β-adrenergic receptors in the regulation of cardiac tolerance to ischemia/reperfusion. Why do β-adrenergic receptor agonists and antagonists protect the heart? Fundam. Clin. Pharmacol. 2024, 38, 658–673. [Google Scholar] [CrossRef]
- García-Prieto, J.; Villena-Gutiérrez, R.; Gómez, M.; Bernardo, E.; Pun-García, A.; García-Lunar, I.; Crainiciuc, G.; Fernández-Jiménez, R.; Sreeramkumar, V.; Bourio-Martínez, R.; et al. Neutrophil stunning by metoprolol reduces infarct size. Nat. Commun. 2017, 8, 14780. [Google Scholar] [CrossRef] [PubMed]
- Zaatari, G.; Fintel, D.J.; Subacius, H.; Germano, J.J.; Shani, J.; Goldberger, J.J. Comparison of Metoprolol Versus Carvedilol After Acute Myocardial Infarction. Am. J. Cardiol. 2021, 147, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ricci, F.; Di Credico, A.; Gaggi, G.; Iannetti, G.; Ghinassi, B.; Gallina, S.; Olshansky, B.; Di Baldassarre, A. Metoprolol disrupts inflammatory response of human cardiomyocytes via β-arrestin2 biased agonism and NF-κB signaling modulation. Biomed Pharmacother. 2023, 168, 115804. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, H.; Castanares-Zapatero, D.; Pierman, G.; Pothen, L.; De Greef, J.; Aboubakar Nana, F.; Rodriguez-Villalobos, H.; Belkhir, L.; Yombi, J.C. Validation of Neutrophil-to-Lymphocyte Ratio Cut-off Value Associated with High In-Hospital Mortality in COVID-19 Patients. Int. J. Gen. Med. 2021, 14, 5111–5117. [Google Scholar] [CrossRef] [PubMed]
- Debien, V.; Davidson, G.; Baltzinger, P.; Kurtz, J.E.; Séverac, F.; Imperiale, A.; Pessaux, P.; Addeo, P.; Bachellier, P.; Su, X.; et al. Involvement of Neutrophils in Metastatic Evolution of Pancreatic Neuroendocrine Tumors. Cancers 2021, 13, 2771. [Google Scholar] [CrossRef]
- von Haehling, S.; Schefold, J.C.; Jankowska, E.; Doehner, W.; Springer, J.; Strohschein, K.; Genth-Zotz, S.; Volk, H.D.; Poole-Wilson, P.; Anker, S.D. Leukocyte Redistribution: Effects of Beta Blockers in Patients with Chronic Heart Failure. PLoS ONE 2009, 4, e6411. [Google Scholar] [CrossRef]
- Zebrack, J.S.; Munger, M.; Macgregor, J.; Lombardi, W.L.; Stoddard, G.P.; Gilbert, E.M. Beta-receptor selectivity of carvedilol and metoprolol succinate in patients with heart failure (SELECT trial): A randomized dose-ranging trial. Pharmacotherapy 2009, 29, 883–890. [Google Scholar] [CrossRef]
- Schiattarella, G.G.; Magliulo, F.; Cattaneo, F.; Gargiulo, G.; Sannino, A.; Franzone, A.; Oliveti, M.; Perrino, C.; Trimarco, B.; Esposito, G. Novel Molecular Approaches in Heart Failure: Seven Trans-Membrane Receptors Signaling in the Heart and Circulating Blood Leukocytes. Front. Cardiovasc. Med. 2015, 2, 13. [Google Scholar] [CrossRef]
- Cao, D.Y.; Saito, S.; Veiras, L.C.; Okwan-Duodu, D.; Bernstein, E.A.; Giani, J.F.; Bernstein, K.E.; Khan, Z. Role of angiotensin-converting enzyme in myeloid cell immune responses. Cell. Mol. Biol. Lett. 2020, 25, 31. [Google Scholar] [CrossRef]
- Lin, G.; Dai, C.; Xu, K.; Wu, M. Predictive value of neutrophil to lymphocyte ratio and red cell distribution width on death for ST segment elevation myocardial infarction. Sci. Rep. 2021, 11, 11506. [Google Scholar] [CrossRef]
- Avci, B.Ş.; Avci, A.; Dönmez, Y.; Kaya, A.; Gülen, M.; Özer, A.İ.; Bulut, A.; Koç, M.; Nazik, H.; Satar, S. The Effectiveness of Neutrophil-Lymphocyte Ratio in Predicting in-Hospital Mortality in Non-ST-Elevation Myocardial Infarction. Emerg. Med. Int. 2020, 2020, 8718304. [Google Scholar] [CrossRef] [PubMed]
- Nibley, P.C.; Shenoy, S.K. β-adrenergic receptor signaling mediated by β-arrestins and its potential role in heart failure. Curr. Opin. Physiol. 2024, 37, 100723. [Google Scholar] [CrossRef] [PubMed]
- Vida, C.; Portilla, Y.; Murga, C. Adrenergic modulation of neutrophil and macrophage functions: Pathophysiological cues. Curr. Opin. Physiol. 2024, 41, 100780. [Google Scholar] [CrossRef]
- Kyriazis, I.D.; de Lucia, C. Adrenergic signaling in cardiovascular aging. Curr. Opin. Physiol. 2024, 37, 100722. [Google Scholar] [CrossRef]
- Angkananard, T.; Inthanoo, T.; Sricholwattana, S.; Rattanajaruskul, N.; Wongsoasu, A.; Roongsangmanoon, W. The Predictive role of Neutrophil-to-Lymphocyte Ratio (NLR) and Mean Platelet Volume-to-Lymphocyte Ratio (MPVLR) for Cardiovascular Events in Adult Patients with Acute Heart Failure. Mediators Inflamm. 2021, 2021, 6889733. [Google Scholar] [CrossRef]
Patients without BBs (88p) | Patients with BBs (242p) | p | |
---|---|---|---|
Age (years) | 68.41 ± 12.69 | 67.09 ± 15.53 | 0.669 |
Sex (men) | 64.8% | 35.2% | 0.004 |
Length of stay (days) | 7.45 ± 3.54 | 7.29 ± 3.43 | 0.458 |
Leukocytes (109/L) | 7.19 ± 2.20 | 7.84 ± 3.26 | 0.159 |
Lymphocytes (%) | 14.18 ± 9.44 | 18.32 ± 10.59 | 0.019 |
Lymphocytes (number) | 1.06 ± 0.83 | 1.09 ± 0.82 | 0.818 |
Neutrophils (%) | 54.77 ± 29.88 | 53.66 ± 31.01 | 0.493 |
Neutrophils (number) | 4.25 ± 3.18 | 4.20 ± 2.93 | 0.907 |
Monocyte (%) | 3.14 ± 4.52 | 4.41 ± 4.18 | 0.763 |
Eosinophils (%) | 1.18 ± 2.11 | 1.17 ± 1.55 | 0.963 |
Basophils (%) | 0.06 ± 0.11 | 0.14 ± 0.35 | 0.042 |
NLR (neutrophil–lymphocyte ratio) | 5.15 ± 8.68 | 3.64 ± 3.87 | 0.039 |
Ejection fraction (%) | 31.49 ± 19.22 | 36.7 ± 18.55 | 0.045 |
Ischemic heart disease | 30.6% | 69.4% | 0.005 |
Hypertensive heart disease | 54.6% | 45.4% | 0.037 |
Idiopathic dilated cardiomyopathy | 42.6% | 58.4% | 0.034 |
NT-proBNP pg/mL | 5879.03 ± 2804.58 | 3283.39 ± 1079.66 | 0.010 |
Characteristics (Mean ± SD) | Patients with Metoprolol (138p) | Patients with Carvedilol (60p) | p |
---|---|---|---|
Age (years) | 66.81 ± 15.34 | 64.82 ± 16.04 | 0.576 |
Sex (men) | 48.4% | 51.6% | 0.025 |
Length of stay (days) | 7.25 ± 4.21 | 8.04 ± 3.47 | 0.356 |
Leukocytes (109/L) | 7.64 ± 2.36 | 7.84 ± 2.30 | 0.052 |
Lymphocytes (%) | 12.75 ± 13.09 | 15.35 ± 10.41 | 0.015 |
Lymphocytes (109/L) | 1.28 ± 0.93 | 0.86 ± 0.70 | 0.039 |
Neutrophils (%) | 53.92 ± 28.92 | 37.56 ± 35.63 | 0.034 |
Neutrophils (109/L) | 4.55 ± 3.41 | 3.14 ± 3.03 | 0.015 |
Monocyte (%) | 3.53 ± 4.16 | 2.51 ± 3.67 | 0.038 |
Eosinophils (%) | 1.00 ± 1.75 | 1.21 ± 1.95 | 0.672 |
Basophils (%) | 0.07 ± 0.10 | 0.06 ± 0.12 | 0.877 |
History of myocardial ischemia | 76.4% | 23.6% | 0.004 |
Hypertensive heart disease | 34.6% | 65.4% | 0.003 |
Non-ischemic dilated cardiomyopathy | 45.2% | 54.8% | 0.035 |
NLR (neutrophil/lymphocyte ratio) | 4.26 ± 3.56 | 4.58 ± 4.17 | 0.043 |
NT-proBNP pg/mL | 1079.14 ± 283.48 | 4439.29 ± 2328.56 | 0.002 |
LDL-cholesterol (mg/dL) | 91.8 ± 42.6 | 102.8 ± 53.10 | 0.046 |
Characteristics (Mean ± SD) | Metoprolol <100 mg/Day (75p) | Metoprolol ≥100 mg/Day (63p) | p | Carvedilol <25 mg/Day (32p) | Carvedilol ≥25 mg/Day (28p) | p |
---|---|---|---|---|---|---|
Age (years) | 64.83 ± 13.24 | 65.21 ± 14.34 | 0.245 | 62.85 ± 15.14 | 65.23 ± 16.27 | 0.576 |
Length of stay (days) | 7.31 ± 3.82 | 7.55 ± 4.31 | 0.467 | 8.04 ± 3.47 | 7.85 ± 3.39 | 0.356 |
Leukocytes (109/L) | 6.50 ± 2.10 | 7.40 ± 2.62 | 0.655 | 7.98 ± 1.83 | 7.52 ± 0.30 | 0.470 |
Lymphocytes (%) | 14.65 ± 3.33 | 16.23 ± 5.15 | 0.027 | 13.24 ± 10.35 | 12.52 ± 14.52 | 0.043 |
Lymphocytes (109/L) | 1.25 ± 0.51 | 1.63 ± 1.07 | 0.043 | 0.92 ± 0.76 | 0.73 ± 0.59 | 0.115 |
Neutrophils (%) | 68.26 ± 12.96 | 24.66 ± 12.72 | 0.004 | 36.33 ± 35.81 | 40.19 ± 37.93 | 0.807 |
Neutrophils (109/L) | 3.99 ± 2.68 | 4.67 ± 2.23 | 0.023 | 2.29 ± 2.10 | 4.60 ± 3.94 | 0.005 |
Monocyte (%) | 3.53 ± 3.16 | 3.79 ± 2.73 | 0.052 | 1.48 ± 0.81 | 1.72 ± 0.51 | 0.051 |
Eosinophils (%) | 0.87 ± 0.67 | 0.98 ± 0.82 | 0.372 | 0.96 ± 0.82 | 1.75 ± 0.85 | 0.294 |
Basophils (%) | 0.6 ± 0.10 | 0.7 ± 0.15 | 0.056 | 0.16 ± 0.11 | 0.8 ± 0.69 | 0.725 |
NLR (neutrophil/lymphocyte ratio) | 4.85 ± 2.67 | 3.18 ± 2.53 | 0.029 | 2.46 ± 1.09 | 7.10 ± 4.41 | 0.014 |
NT-proBNP (pg/mL) | 1249.41 ± 320.17 | 674.88 ± 220.15 | 0.414 | 5094.81 ± 2786.43 | 2351.71 ± 1282.00 | 0.046 |
Patients with NIHF | Patients with IHF | p | |
---|---|---|---|
Age | 62.08 ± 12.58 | 63.02 ± 14.28 | NS |
Women | 64.6% | 63.9% | NS |
Men | 36.4% | 37.1% | NS |
Hemoglobin (g/dL) | 12.10 ± 3.47 | 13.25 ± 3.56 | NS |
Hematocrit (%) | 34.28 ± 13.41 | 32.12 ± 13.58 | NS |
Leukocytes (109/L) | 6.23 ± 1.98 × 109 | 7.36 ± 3.26 × 109 | <0.001 |
Neutrophils (109/L) | 51.5 ± 32.6 | 56.6 ± 24.8 | <0.005 |
Lymphocytes (109/L) | 14.2 ± 11% | 16.2 ± 9.2% | <0.05 |
NLR (neutrophil–lymphocyte ratio) | 0.89 (0.28–1.05) | 1.17 (1.12–1.43) | <0.02 |
CRP (mg/dL) (CRP: C reactive protein) | 0.14 ± 0.34 | 0.28 ± 0.58 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farcaş, A.D.; Stoia, M.A.; Mocan-Hognogi, D.L.; Goidescu, C.M.; Cocoi, A.F.; Anton, F.P. The Effects of Beta-Blockers on Leukocytes and the Leukocyte Subpopulation in Heart Failure Patients. Biomedicines 2024, 12, 2907. https://doi.org/10.3390/biomedicines12122907
Farcaş AD, Stoia MA, Mocan-Hognogi DL, Goidescu CM, Cocoi AF, Anton FP. The Effects of Beta-Blockers on Leukocytes and the Leukocyte Subpopulation in Heart Failure Patients. Biomedicines. 2024; 12(12):2907. https://doi.org/10.3390/biomedicines12122907
Chicago/Turabian StyleFarcaş, Anca Daniela, Mirela Anca Stoia, Diana Larisa Mocan-Hognogi, Cerasela Mihaela Goidescu, Alexandra Florina Cocoi, and Florin Petru Anton. 2024. "The Effects of Beta-Blockers on Leukocytes and the Leukocyte Subpopulation in Heart Failure Patients" Biomedicines 12, no. 12: 2907. https://doi.org/10.3390/biomedicines12122907
APA StyleFarcaş, A. D., Stoia, M. A., Mocan-Hognogi, D. L., Goidescu, C. M., Cocoi, A. F., & Anton, F. P. (2024). The Effects of Beta-Blockers on Leukocytes and the Leukocyte Subpopulation in Heart Failure Patients. Biomedicines, 12(12), 2907. https://doi.org/10.3390/biomedicines12122907