Antioxidant Properties of Seeds from Lines of Artichoke, Cultivated Cardoon and Wild Cardoon
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals and Standards
2.2. Sample Preparation
Species | Lines | Abbreviation |
---|---|---|
Artichoke-male fertile lines | ||
Brawley North | BN | |
Cavi | CA | |
Cyl | CYL | |
F19 | F-19 | |
Vert de Provence | VP | |
White bloomer | WB | |
22BD | 22BD | |
Cultivated Cardoon | ||
Bianco avorio | BA | |
Belgio | BE | |
F.S. | F.S. | |
Madrid | MA | |
Wild Cardoon | ||
Cerveteri | CE | |
Siena | S | |
Tarquinia | T | |
Cardoon/Artichoke Hybrides | ||
F1 hybrid | Madrigal | MG |
F1 hybrid | Romolo | RO |
cardoon × artichoke hybrid | F1 103 | F1 103 |
cardoon × artichoke hybrid | F1 104 | F1 104 |
F1 hybrid (synthetic variety) | Istar | I |
2.3. Extraction for Evaluation of Antioxidant Properties
2.4. Antioxidant Properties Determination
2.5. Statistical Analysis
3. Results and Discussion
Crop | FRAP | TEAC | ||
---|---|---|---|---|
Aqueous-organic extract | Residue | Aqueous-organic extract | Residue | |
Artichoke | ||||
BN | 278.5 ± 18.8 ab | 249.3 ± 51.0 a | 71.4 ± 3.8 a | 31.5 ± 11.7 ab |
CA | 262.3 ± 17.0 a | 185.1 ± 6.6 a | 106.3 ± 7.7 c | 21.5 ± 1.6 a |
CYL | 248.3 ± 16.3 a | 898.4 ± 65.4 b | 63.3 ± 3.2 a | 36.7 ± 6.2 ab |
F-19 | 310.2 ± 28.7 b | 333.7 ± 69.3 a | 87.9 ± 5.6 b | 25.4 ± 5.6 a |
VP | 344.9 ± 17.9 c | 616.3 ± 39.4 c | 87.4 ± 9.6 b | 45.6 ± 7.1 b |
WB | 320.0 ± 25.2 bc | 1067.2 ± 173.1 d | 72.85 ± 2.5 a | 36.6 ± 2.7 ab |
22BD | 273.6 ± 7.2 ab | 704.3 ± 57.0 c | 64.3 ± 2.1 a | 34.4 ± 8.1 ab |
Cultivated Cardoon | ||||
BA | 352.3 ± 22.2 b | 708.9 ± 73.4 b | 96.2 ± 4.1 b | 30.0 ± 1.8 ab |
BE | 326.1 ± 34.1 b | 298.6 ± 76.2 a | 104.4 ± 7.0 b | 38.7 ± 14.9 b |
F.S. | 333.1 ± 23.0 b | 206.6 ± 80.1 a | 119.0 ± 1.3 c | 19.1 ± 3.1 a |
MA | 255.4 ± 22.4 a | 265.4 ± 98.6 a | 85.8 ± 2.0 a | 29.7 ± 11.0 ab |
Wild Cardoon | ||||
CE | 340.9 ± 24.2 | 301.3 ± 20.0 a | 78.2 ± 1.7 a | 23.1 ± 0.8 a |
S | 343.2 ± 8.8 | 733.8 ± 56.4 c | 93.6 ± 9.0 b | 42.0 ± 2.2 c |
T | 358.9 ± 18.3 | 629.2 ± 52.7 b | 75.3 ± 5.1 a | 28.7 ± 1.8 b |
Cardoon/Artichoke Hybrides | ||||
MG | 231.3 ± 18.0 a | 159.8 ± 39.4 a | 95.8 ± 3.6 a | 18.6 ± 1.9 a |
RO | 252.7 ± 20.6 ac | 391.5 ± 30.1 b | 94.9 ± 2.5 a | 32.1 ± 2.0 c |
F1 103 | 292.2 ± 22.6 bc | 219.9 ± 33.8 a | 110.7 ± 2.4 b | 19.6 ± 0.6 a |
F1 104 | 280.2 ± 10.5 c | 166.5 ± 30.9 a | 123.5 ± 2.6 c | 17.9 ± 3.3 a |
I | 331.8 ± 12.3 d | 238.0 ± 47.2 a | 122.3 ± 7.2 c | 24.5 ± 0.7 b |
4. Conclusions
Acknowledgments
Conflict of Interest
References
- Raccuia, S.A.; Mainolfi, A.; Mandolino, G.; Melilli, M.G. Genetic diversity in Cynara cardunculus revealed by AFLP markers: Comparison between cultivars and wild types from Sicily. Plant Breed 2004, 123, 280–284. [Google Scholar] [CrossRef]
- Acquadro, A.; Portis, E.; Albertini, E.; Lanteri, S. M-AFLP-based protocol for microsatellite loci isolation in Cynara cardunculus L. (Asteraceae). Mol. Ecol. Notes 2005, 5, 272–274. [Google Scholar] [CrossRef]
- Sonnante, G.; Pignone, D.; Hammer, K. The domestication of artichoke and cardoon: From Roman times to the genomic age. Ann. Bot. 2007, 100, 1095–1100. [Google Scholar] [CrossRef]
- Lattanzio, V.; Kroon, P.A.; Linsalata, V.; Cardinali, A. Globe artichoke: A functional food and source of nutraceutical ingredients. J. Funct. Foods 2009, 1, 131–144. [Google Scholar] [CrossRef]
- Ceccarelli, N.; Curadi, M.; Picciarelli, P.; Martelloni, L.; Sbrana, C.; Giovannetti, M. Globe artichoke as functional food. Mediter. J. Nutr. Metab. 2010, 3, 197–201. [Google Scholar] [CrossRef]
- Christaki, E.; Bonos, E.; Florou-Paneri, P. Nutritional and functional properties of Cynara crops (globe artichoke and cardoon) and their potential applications: A review. Int. J. Appl. Sci. Technol. 2012, 2, 64–70. [Google Scholar]
- Jiménez-Escrig, A.; Dragsted, L.O.; Daneshvar, B; Pulido, R.; Saura-Calixto, F. In vitro antioxidant activities of edible artichoke (Cynara scolymus L.) and effect on biomarkers of antioxidants in rats. J. Agric. Food Chem. 2003, 51, 5540–5545. [Google Scholar] [CrossRef] [PubMed]
- Di Venere, D.; Linsalata, V.; Calabrese, N.; Cardinali, A.; Sergio, L. Biochemical characterization of wild and cultivated cardoon accessions. Acta Hort. 2005, 681, 523–528. [Google Scholar]
- Kukić, J.; Popović, V.; Petrović, S.; Mucaji, P.; Ćirić, A.; Stojković, D.; Soković, M. Antioxidant and antimicrobial activity of Cynara cardunculus extracts. Food Chem. 2008, 107, 861–868. [Google Scholar] [CrossRef]
- Velez, Z.; Campinho, M.A.; Guerra, A.R.; García, L.; Ramos, P.; Guerreiro, O.; Felício, L.; Schmitt, F.; Duarte, M. Biological Characterization of Cynara cardunculus L. Methanolic extracts: Antioxidant, anti-proliferative, anti-migratory and anti-angiogenic activities. Agriculture 2012, 2, 472–492. [Google Scholar] [CrossRef]
- Pandino, G.; Lombardo, S.; Williamson, G.; Mauromicale, G. Polyphenol profile and content in wild and cultivated Cynara cardunculus L. Ital. J. Agron. 2012, 7, e35. [Google Scholar] [CrossRef]
- Falleh, H.; Ksouri, R.; Chaieb, K.; Karray-Bouraoui, N.; Trabelsi, N.; Boulaaba, M.; Abdelly, C. Phenolic composition of Cynara cardunculus L. organs, and their biological activities. C. R. Biol. 2008, 331, 372–379. [Google Scholar] [CrossRef]
- Georgieva, E.; Karamalakova, Y.; Nikolova, G.; Grigorov, B.; Pavlov, D.; Gadjeva, V.; Zheleva, A. Radical scavenging capacity of seeds and leaves ethanol extracts of Cynara scolymus L.—A comparative study. Biotechnol. Biotechnol. Equip 2012, 151–155. [Google Scholar] [CrossRef]
- Foti, S.; Mauromicale, G.; Raccuia, S.A.; Fallico, B.; Fanella, F.; Maccarone, E. Possible alternative utilization of Cynara spp. I. Biomass, grain yield and chemical composition of grain. Ind. Crop. Prod. 1999, 10, 219–228. [Google Scholar] [CrossRef]
- Raccuia, S.A.; Melilli, M.G. Biomass and grain oil yields in Cynara cardunculus L. genotypes grown in a Mediterranean environment. Field Crop Res. 2007, 101, 187–197. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Remesy, C.; Jimenez, L. Polyphenols: Food source and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [PubMed]
- Scalbert, A.; Manach, C.; Morand, C.; Remesy, C. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr. 2005, 45, 287–306. [Google Scholar] [CrossRef]
- Hartzfeld, P.W.; Forkner, R.; Hunter, M.D.; Hagerman, A.E. Determination of hydrolyzable tannins (gallotannins and ellagitannins) after reaction with potassium iodate. J. Agric. Food Chem. 2002, 50, 1785–1790. [Google Scholar] [CrossRef] [PubMed]
- Perez-Jimenez, J.; Saura-Calixto, F. Literature data may underestimate the actual antioxidant capacity of cereals. J. Agric. Food Chem. 2005, 53, 5036–5040. [Google Scholar] [CrossRef]
- Saura-Calixto, F.; Goni, I. Antioxidant capacity of the Spanish Mediterranean diet. Food Chem. 2006, 94, 442–447. [Google Scholar] [CrossRef]
- Diaz-Rubio, M.E.; Perez-Jimenez, J.; Saura-Calixto, F. Dietary fiber and antioxidant capacity in Fucus vesiculosus products. Int. J. Food Sci. Nutr. 2009, 2, 23–34. [Google Scholar]
- Goni, I.; Diaz-Rubio, M.E.; Perez-Jimenez, J.; Saura-Calixto, F. Towards an update methodology for measurement of dietary fiber, including associated polyphenols, in food and beverages. Food Res. Int. 2009, 42, 840–846. [Google Scholar] [CrossRef]
- Arranz, S.; Silván, J.M.; Saura-Calixto, F. Non extractable polyphenols, usually ignored, are the major part of dietary polyphenols: A study on the Spanish diet. Mol. Nutr. Food Res. 2010, 54, 1646–1658. [Google Scholar] [CrossRef]
- Rufino, M.S.; Alves, R.E.; de Brito, E.S.; Pérez-Jimenez, J.; Saura-Calixto, F.; Mancini-Filo, J. Bioactive compounds and antioxidant capacity of 18 non-traditional tropical fruits from Brazil. Food Chem. 2010, 121, 996–1002. [Google Scholar] [CrossRef]
- Kristl, J.; Slekovec, M.; Tojnko, S.; Unuk, T. Extractable antioxidants and non-extractable phenolics in the total antioxidant activity of selected plum cultivars (Prunus domestica L.): Evolution during on-tree ripening. Food Chem. 2011, 125, 29–34. [Google Scholar] [CrossRef]
- Iqbal, S.; Bhanger, M.I.; Anwar, F. Antioxidant properties and components of some commercially available varieties of rice bran in Pakistan. Food Chem. 2005, 93, 265–272. [Google Scholar] [CrossRef]
- Gorinstein, S.; Vargas, O.J.M.; Jaramillo, N.O.; Salas, I.A.; Ayala, A.L.M.; Arincibia-Avila, P.; Toledo, F.; Katrich, E.; Trakhtenberg, S. The total polyphenols and the antioxidant potentials of some selected cereals and pseudocereals. Eur. Food Res. Technol. 2007, 225, 321–328. [Google Scholar] [CrossRef]
- Bennet, R.N.; Shiga, T.M.; Hassimoto, N.M.A.; Rosa, E.A.S.; Lajolo, F.M.; Cordenunsi, B.R. Phenolics and antioxidant properties of fruit pulp and cell wall fractions of postharvest banana (Musa acuminate Juss.) Cultivars. J. Agric. Food Chem. 2010, 54, 1646–1658. [Google Scholar]
- Delgrado-Andrade, C.; Conde-Aguilera, J.A.; Haro, A.; de la Cueva, S.P.; Rufian-Henares, J.A. A combined procedure to evaluate the global antioxidant response of bread. J. Cereal Sci. 2010, 52, 239–246. [Google Scholar] [CrossRef]
- Tabernero, M.; Venema, K.; Maathuis, A.J.H.; Saura-Calixto, F.D. Metabolite production during in vitro colonic fermentation of dietary fiber: Analysis and comparison of two European diets. J. Agric. Food Chem. 2011, 59, 8968–8975. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Jiménez, J.; Torres, J.L. Analysis of nonextractable phenolic compounds in foods: The current state of the art. J. Agric. Food Chem. 2011, 59, 12713–12724. [Google Scholar] [CrossRef]
- Saura-Calixto, F. Concept and health-related properties of nonextractable polyphenols: The missing dietary polyphenols. J. Agric. Food Chem. 2012, 60, 11195–11200. [Google Scholar] [CrossRef]
- Arranz, S.; Saura-Calixto, F.; Shaha, S.; Kroon, P.A. High contents of non extractable polyphenols in fruits suggest that polyphenol contents of plant foods have been underestimated. J. Agric. Food Chem. 2009, 57, 7298–7303. [Google Scholar] [CrossRef] [PubMed]
- Tarascou, I.; Souquet, J.M.; Mazauric, J.P.; Carrillo, S.; Coq, S.; Canon, F.; Fulcrand, H.; Cheynier, V. The hidden face of food phenolic composition. Arch. Biochem. Biophys. 2010, 501, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Fukumoto, L.R.; Mazza, G. Assessing antioxidant and prooxidant activities of phenolic compounds. J. Agric. Food Chem. 2000, 48, 3597–3604. [Google Scholar] [CrossRef]
- Peschel, W.; Sanchez-Rabaneda, F.; Diekmann, W.; Plescher, A.; Gartzia, I.; Jimenez, D.; Lamuela-Raventos, R.; Buxaderas, S.; Codina, C. An industrial approach in the search of natural antioxidants from vegetable and fruit wastes. Food Chem. 2006, 97, 137–150. [Google Scholar] [CrossRef]
- Neveu, V.; Perez-Jiménez, J.; Vos, F.; Crespy, V.; du Chaffaut, L.; Mennen, L.; Knox, C.; Eisner, R.; Cruz, J.; Wishart, D.; et al. Phenol-Explorer: An online comprehensive database on polyphenol contents in foods. Database 2010, bap024. [Google Scholar] [CrossRef]
- Durazzo, A.; Turfani, V.; Azzini, E.; Maiani, G.; Carcea, M. Phenols, lignans and antioxidant properties of legume and sweet chestnut flours. Food Chem. 2013, 140, 666–671. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Pulido, R.; Bravo, L.; Saura-Calixto, F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 2000, 48, 3396–3402. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Reşat Apak, R.; Gorinstein, S.; Böhm, V.; Schaich, K.M.; Özyürek, M.; Kubilay Güçlü, K. Methods of measurement and evaluation of natural antioxidant capacity/activity (IUPAC Technical Report). Pure Appl. Chem. 2013, 85, 957–998. [Google Scholar] [CrossRef]
- Schlesier, K.; Harwat, M.; Bohm, V.; Bitsch, R. Assessment of antioxidant activity by using different in vitro methods. Free Radic. Res. 2002, 36, 177–187. [Google Scholar] [CrossRef]
- Perez-Jimenez, J.; Arranz, S.; Tabernero, M.; Diaz-Rubio, M.E.; Serrano, J.; Goni, I.; Saura-Calixto, F. Updated methodology to determine antioxidant capacity in plant foods, oils and beverages: Extraction, measurements and expression of results. Food Res. Int. 2008, 41, 274–285. [Google Scholar] [CrossRef]
- Luthria, D.L. Significance of sample preparation in developing analytical methodologies for accurate estimation of bioactive compounds in functional foods. J. Sci. Food. Agric. 2006, 86, 2266–2272. [Google Scholar] [CrossRef]
- Arranz, S.; Perez-Jimenez, J.; Saura-Calixto, F. Antioxidant capacity of walnut (Junglas regia L.): Contribution of oil and defatted matter. Eur. Food Res. Technol. 2011, 227, 425–431. [Google Scholar]
- Saura-Calixto, F.; Serrano, J.; Goni, I. Intake and bioaccessibility of total polyphenols in a whole diet. Food Chem. 2007, 101, 492–501. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Durazzo, A.; Foddai, M.S.; Temperini, A.; Azzini, E.; Venneria, E.; Lucarini, M.; Finotti, E.; Maiani, G.; Crinò, P.; Saccardo, F.; et al. Antioxidant Properties of Seeds from Lines of Artichoke, Cultivated Cardoon and Wild Cardoon. Antioxidants 2013, 2, 52-61. https://doi.org/10.3390/antiox2020052
Durazzo A, Foddai MS, Temperini A, Azzini E, Venneria E, Lucarini M, Finotti E, Maiani G, Crinò P, Saccardo F, et al. Antioxidant Properties of Seeds from Lines of Artichoke, Cultivated Cardoon and Wild Cardoon. Antioxidants. 2013; 2(2):52-61. https://doi.org/10.3390/antiox2020052
Chicago/Turabian StyleDurazzo, Alessandra, Maria Stella Foddai, Andrea Temperini, Elena Azzini, Eugenia Venneria, Massimo Lucarini, Enrico Finotti, Gianluca Maiani, Paola Crinò, Francesco Saccardo, and et al. 2013. "Antioxidant Properties of Seeds from Lines of Artichoke, Cultivated Cardoon and Wild Cardoon" Antioxidants 2, no. 2: 52-61. https://doi.org/10.3390/antiox2020052
APA StyleDurazzo, A., Foddai, M. S., Temperini, A., Azzini, E., Venneria, E., Lucarini, M., Finotti, E., Maiani, G., Crinò, P., Saccardo, F., & Maiani, G. (2013). Antioxidant Properties of Seeds from Lines of Artichoke, Cultivated Cardoon and Wild Cardoon. Antioxidants, 2(2), 52-61. https://doi.org/10.3390/antiox2020052