Food-Related Compounds That Modulate Expression of Inducible Nitric Oxide Synthase May Act as Its Inhibitors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Docking Affinities of Natural Dietary Bioactive Compounds with iNOS
Compound | Natural source [References] | 3E7G 1NSI Affinity score (Kcal/mol) a | |
---|---|---|---|
Cyanidin-3-rutinoside | Raspberry, cherries [23,24] | −9.3 ± 0.0 | −9.5 ± 0.0 |
Silibinin | Milk thistle [25,26] | −9.5 ± 0.0 | −9.2 ± 0.0 |
Cyanidin-3-sambubioside | Peanut [27] | −9.2 ± 0.0 | −8.5 ± 0.0 |
Malvidin-3-arabinoside | Blueberries [28] | −8.3 ± 0.0 | −9.2 ± 0.0 |
Malvidin-3-galactoside | Berries [29] | −7.9 ± 0.0 | −9.1 ± 0.0 |
Petunidin-3-arabinoside | Bilberry [30] | −8.5 ± 0.0 | −9.0 ± 0.0 |
Resveratrol | Grape skins [31] | −8.9 ± 0.0 | −7.5 ± 0.0 |
Cyanidin | Strawberries [32] | −8.9 ± 0.1 | −7.1 ± 0.0 |
Delphinidin-3-arabinoside | Blueberries [28] | −8.2 ± 0.0 | −8.8 ± 0.0 |
Petunidin-3-glucoside | Blueberries [28] | −8.1 ± 0.0 | −8.8 ± 0.0 |
Peonidin-3-glucoside | Black rice [33] | −8.4 ± 0.0 | −8.6 ± 0.0 |
Malvidin-3-glucoside | Berries [29] | −8.1 ± 0.0 | −8.6 ± 0.0 |
Apigenin | Celery [34] | −8.4 ± 0.0 | −7.7 ± 0.0 |
Carnosol | Rosemary [35] | −8.6 ± 0.0 | −7.4 ± 0.0 |
Delphinidin | Dark berries [36] | −8.6 ± 0.0 | −7.0 ± 0.0 |
Proanthocyanidin | Berries [37] | −8.5 ± 0.0 | −8.5 ± 0.0 |
Epigallocatechin-3-gallate | Green tea [38] | −8.3 ± 0.0 | −8.3 ± 0.0 |
Cyanidin-3-galactoside | Lingonberry [39] | −8.3 ± 0.0 | −8.1 ± 0.0 |
Delphinidin-3-glucoside | Berries [29] | −8.1 ± 0.0 | −8.3 ± 0.0 |
Quercetin | Broccoli [40] | −8.3 ± 0.0 | −7.8 ± 0.0 |
Cyanidin-3-glucoside | Black rice [33] | −8.2 ± 0.0 | −8.1 ± 0.0 |
Pelargonidin-3-glucoside | Strawberries [41] | −8.0 ± 0.0 | −8.1 ± 0.0 |
Curcumin | Curcuma [42] | −8.1 ± 0.1 | −7.8 ± 0.1 |
Kaempferol | Broccoli [40] | −8.1 ± 0.0 | −7.7 ± 0.0 |
5-Hydroxy-3,6,7,8,3',4-hexamethoxyflavone | Citrus peel [43] | −8.1 ± 0.0 | −6.5 ± 0.0 |
All-trans-retinoic acid | Carrot [44] | −8.0 ± 0.1 | −7.8 ± 0.0 |
Naringenin | Citrus peel [45] | −8.0 ± 0.0 | −7.4 ± 0.0 |
Pterostilbene | Blueberries [46] | −7.9 ± 0.0 | −7.3 ± 0.0 |
Tangeretin | Citrus peel [47] | −7.5 ± 0.0 | −7.0 ± 0.0 |
Genistein | Soybean [48] | −7.5 ± 0.1 | −6.9 ± 0.0 |
Docosahexaenoic acid | Fish and fish oil [49] | −6.4 ± 0.1 | −7.5 ± 0.1 |
Epicatechin | Green tea [38] | −7.3 ± 0.0 | −7.3 ± 0.0 |
[6]-Shogaol | Ginger [50] | −7.2 ± 0.1 | −7.2 ± 0.0 |
[6]-Gingerol | Ginger [50] | −7.1 ± 0.1 | −6.9 ± 0.0 |
Eicosapentaenoic acid | Fish and fish oil [49] | −6.3 ± 0.1 | −7.1 ± 0.1 |
Phenethylisothiocyanate | Cabbage [51] | −6.1 ± 0.0 | −6.1 ± 0.0 |
Lycopene | Tomato [52] | −6.1 ± 0.2 | −4.0 ± 0.2 |
Benzylisothiocyanate | Cabbage [51] | −6.0 ± 0.0 | −5.8 ± 0.0 |
Menthone | Mentha [53] | −5.8 ± 0.0 | −4.7 ± 0.0 |
Sulforaphane | Cabbage [54] | −4.8 ± 0.0 | −4.7 ± 0.0 |
β-Carotene | Carrot [55] | −4.8 ± 0.1 | −0.5 ± 0.4 |
Lutein | Spinach and eggs [56] | −3.5 ± 0.0 | −1.8 ± 0.9 |
Mean affinity (kcal/mol) | −7.6 ± 0.2 | −7.3 ± 0.3 | |
AR-C95791(Inhibitor-iNOS) | −8.4 ± 0.0 | −6.9 ± 0.0 | |
L-Arginine (Substrate- iNOS) | −5.9 ± 0.0 | −6.4 ± 0.0 |
2.2. iNOS Interacting Residues with Natural Compounds and Search for Allosteric Binding Sites
2.3. Docking Validation with Biological Data
iNOS inhibitor | AID/Reference | PDB ID: 3E7G Affinity (kcal/mol) | PDB ID: 1NSI Affinity (kcal/mol) | Affinity mean a | IC50 (µM) | LogIC50 (µM) |
---|---|---|---|---|---|---|
Pimagedine | AID: 92004 | −4.0 ± 0.0 | −4.4 ± 0.0 | −4.2 ± 0.0 | 3.9 | 0.59 |
AMT | [78] | −4.7 ± 0.1 | −4.4 ± 0.1 | −4.6 ± 0.1 | 3.6 | 0.56 |
N(G)-iminoethylornithine | AID: 92181 | −5.5 ± 0.0 | −6.2 ± 0.0 | −5.9 ± 0.1 | 2.2 | 0.34 |
L-NIL | AID: 92009 | −5.8 ± 0.1 | −6.3 ± 0.1 | −6.0 ± 0.1 | 1.3 | 0.11 |
Targinine | AID: 92143 | −5.8 ± 0.1 | −6.7 ± 0.0 | −6.2 ± 0.1 | 0.86 | −0.07 |
Nitroarginine | AID: 92143 | −6.1 ± 0.1 | −6.9 ± 0.0 | −6.5 ± 0.1 | 0.67 | −0.17 |
AR-C95791 | AID: 92009 | −8.4 ± 0.0 | −6.9 ± 0.0 | −7.7 ± 0.2 | 0.35 | −0.46 |
CID10398018 | AID: 92144 | −6.4 ± 0.0 | 6.6 ± 0.1 | −6.5 ± 0.0 | 0.25 | −0.60 |
Etiron | AID: 92011 | −4.1 ± 0.1 | −4.1 ± 0.0 | −4.1 ± 0.0 | 0.16 | −0.80 |
CID 10011896 | AID: 92011 | −4.2 ± 0.1 | −4.3 ± 0.0 | −4.2 ± 0.0 | 0.14 | −0.85 |
CID 3863 | AID: 92004 | −5.9 ± 0.0 | −6.2 ± 0.1 | −6.0 ± 0.0 | 0.1 | −1.00 |
CID 16116298 | AID: 280474 | −7.6 ± 0.0 | −6.7 ± 0.0 | −7.2 ± 0.1 | 0.1 | −1.00 |
CID 16116293 | AID: 280474 | −8.4 ± 0.0 | −9.2 ± 0.0 | −8.8 ± 0.1 | 0.1 | −1.00 |
CID 16115471 | AID: 280474 | −8.1 ± 0.1 | −8.6 ± 0.0 | −8.3 ± 0.1 | 0.066 | −1.18 |
CID 16115345 | AID: 280474 | −8.1 ± 0.0 | −9.0 ± 0.0 | −8.6 ± 0.1 | 0.066 | −1.18 |
CID 44420709 | AID: 280474 | −8.7 ± 0.0 | −8.7 ± 0.0 | −8.7 ± 0.0 | 0.033 | −1.48 |
CID 16116564 | AID: 280474 | −8.1 ± 0.0 | −8.5 ± 0.0 | −8.3 ± 0.0 | 0.012 | −1.92 |
CID 16115897 | AID: 280474 | −8.3 ± 0.0 | −8.9 ± 0.0 | −8.6 ± 0.1 | 0.01 | −2.00 |
CID 16115611 | AID: 280474 | −9.8 ± 0.0 | −9.1 ± 0.0 | −9.5 ± 0.1 | 0.0054 | −2.27 |
CID 16115606 | AID: 280474 | −8.6 ± 0.0 | −9.6 ± 0.0 | −9.5 ± 0.1 | 0.0041 | −2.39 |
CID 16115472 | AID: 280474 | −8.1 ± 0.0 | −8.8 ± 0.0 | −8.4 ± 0.1 | 0.0035 | −2.46 |
CID 16115342 | AID: 280474 | −9.5 ± 0.0 | −9.1 ± 0.0 | −9.3 ± 0.0 | 0.003 | −2.52 |
CID 16114996 | AID: 280474 | −9.9 ± 0.0 | −10.5 ± 0.0 | −10.2 ± 0.0 | 0.0027 | −2.57 |
CID 16115233 | AID: 280474 | −7.7 ± 0.0 | −8.4 ± 0.0 | −8.1 ± 0.1 | 0.0015 | −2.82 |
CID 16115115 | AID: 280474 | −10.4 ± 0.1 | −10.4 ± 0.0 | −10.4 ± 0.0 | 0.0011 | −2.96 |
CID 16114992 | AID: 280474 | −9.2 ± 0.0 | −9.9 ± 0.0 | −9.5 ± 0.1 | 0.001 | −3.00 |
CID 16114995 | AID: 280474 | −10.2 ± 0.0 | −11.1 ± 0.0 | −10.7 ± 0.1 | 0.00096 | −3.02 |
CID 16116046 | AID: 280474 | −9.9 ± 0.1 | −10.1 ± 0.0 | −10.0 ± 0.0 | 0.0008 | −3.10 |
CID 16116045 | AID: 280474 | −9.8 ± 0.0 | −10.3 ± 0.0 | −10.0 ± 0.1 | 0.00067 | −3.17 |
CID 16115896 | AID: 280474 | −8.7 ± 0.0 | −9.1 ± 0.0 | −8.9 ± 0.1 | 0.0005 | −3.30 |
3. Experimental
3.1. Protein Structures and Modeling of Ligands
3.2. Protein-Ligand Docking Simulations
3.3. Residues Interacting with the Natural Bioactive Compounds on iNOS Binding Site and Searching of Alternative Allosteric Binding Sites
3.4. Docking Validation with Biological Data for iNOS Inhibitors
4. Conclusions
Acknowledgments
References
- Day, B.J. Antioxidants as potential therapeutics for lung fibrosis. Antioxid. Redox Signal. 2008, 10, 355–370. [Google Scholar] [CrossRef]
- Song, F.L.; Gan, R.Y.; Zhang, Y.; Xiao, Q.; Kuang, L.; Li, H.B. Total phenolic contents and antioxidant capacities of selected chinese medicinal plants. Int. J. Mol. Sci. 2010, 11, 2362–2372. [Google Scholar]
- Lü, J.M.; Lin, P.H.; Yao, Q.; Chen, C. Chemical and molecular mechanisms of antioxidants: Experimental approaches and model systems. J. Cell Mol. Med. 2010, 14, 840–860. [Google Scholar] [CrossRef]
- Kamat, C.D.; Gadal, S.; Mhatre, M.; Williamson, K.S.; Pye, Q.N.; Hensley, K. Antioxidants in central nervous system diseases: preclinical promise and translational challenges. J. Alzheimers Dis. 2008, 15, 473–493. [Google Scholar]
- Kris-Etherton, P.M.; Hecker, K.D.; Bonanome, A.; Coval, S.M.; Binkoski, A.E.; Hilpert, K.F.; Griel, A.E.; Etherton, T.D. Bioactive compounds in foods: Their role in the prevention of cardiovascular disease and cancer. Am. J. Med. 2002, 113, 71–88. [Google Scholar] [CrossRef]
- Delcourt, C.; Korobelnik, J.F.; Barberger-Gateau, P.; Delyfer, M.N.; Rougier, M.B.; Le Goff, M.; Malet, F.; Colin, J.; Dartigues, J.F. Nutrition and age-related eye diseases: The alienor (antioxydants, lipides essentiels, nutrition et maladies oculaires) Study. J. Nutr. Health Aging 2010, 14, 854–861. [Google Scholar] [CrossRef]
- Wang, L.S.; Stoner, G.D. Anthocyanins and their role in cancer prevention. Cancer Lett. 2008, 269, 281–290. [Google Scholar] [CrossRef]
- Xia, E.Q.; Deng, G.F.; Guo, Y.J.; Li, H.B. Biological activities of polyphenols from grapes. Int. J. Mol. Sci. 2010, 11, 622–646. [Google Scholar] [CrossRef]
- Heima, K.E.; Tagliaferroa, A.R. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 2002, 13, 572–584. [Google Scholar] [CrossRef]
- Hammerstone, J.F.; Lazarus, S.A.; Schmitz, H.H. Procyanidin content and variation in some commonly consumed foods. J. Nutr. 2000, 130, 2086–2092. [Google Scholar]
- Nichols, J.A.; Katiyar, S.K. Skin photoprotection by natural polyphenols: Anti-inflammatory, anti-oxidant and DNA repair mechanisms. Arch. Dermatol. Res. 2010, 302, 71–83. [Google Scholar]
- Rahman, M.A.; Amin, A.R.; Shin, D.M. Chemopreventive potential of natural compounds in head and neck cancer. Nutr. Cancer 2010, 62, 973–987. [Google Scholar] [CrossRef]
- Hooper, L.; Kroon, P.A.; Rimm, E.B.; Cohn, J.S.; Harvey, I.; Le Cornu, K.A.; Ryder, J.J.; Hall, W.L.; Cassidy, A. Flavonoids, flavonoid-rich foods, and cardiovascular risk: A meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2008, 88, 38–50. [Google Scholar]
- Zaslaver, M.; Offer, S.; Kerem, Z.; Stark, A.H.; Weller, J.I.; Eliraz, A.; Madar, Z. Natural compounds derived from foods modulate nitric oxide production and oxidative status in epithelial lung cells. J. Agric. Food Chem. 2005, 53, 9934–9939. [Google Scholar]
- Bian, K.; Murad, F. Nitric oxide (NO)—Biogeneration, regulation, and relevance to human diseases. Front. Biosci. 2003, 8, 264–278. [Google Scholar] [CrossRef]
- Garcin, E.D.; Arvai, A.S.; Rosenfeld, R.J.; Kroeger, M.D.; Crane, B.R.; Andersson, G.; Andrews, G.; Hamley, P.J.; Mallinder, P.R.; Nicholls, D.J.; et al. Anchored plasticity opens doors for selective inhibitor design in nitric oxide synthase. Nat. Chem. Biol. 2008, 4, 700–707. [Google Scholar]
- Rosenfeld, R.J.; Garcin, E.D.; Panda, K.; Andersson, G.; Åberg, A.; Wallace, A.V.; Morris, G.M.; Olson, A.J.; Stuehr, D.J.; Tainer, J.A.; et al. Conformational changes in nitric oxide synthases Induced by chlorzoxazone and nitroindazoles: Crystallographic and computational analyses of Inhibitor potency. Biochemistry 2002, 41, 13915–13925. [Google Scholar]
- Li, D.; Stuehr, D.J.; Yeh, S.R.; Rousseau, D.L. Heme distortion modulated by ligand-protein interactions in inducible nitric-oxide synthase. J. Biol. Chem. 2004, 279, 26489–26499. [Google Scholar]
- Pan, M.H.; Lai, C.S.; Dushenkov, S.; Ho, C.T. Modulation of inflammatory genes by natural dietary bioactive compounds. J. Agric. Food Chem. 2009, 57, 4467–4477. [Google Scholar]
- May, A.; Zacharias, M. Accounting for global protein deformability during protein-protein and protein-ligand docking. Biochim. Biophys. Acta 1754, 225–231. [Google Scholar]
- Maldonado, W.; Olivero, J. Potential interaction of natural dietary bioactive compounds with COX-2. J. Mol. Graph. Model. 2011, 30, 157–166. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 2009, 31, 455–461. [Google Scholar]
- Feng, R.; Ni, H.M.; Wang, S.Y.; Tourkova, I.L.; Shurin, M.R.; Harada, H.; Yin, X.M. Cyanidin-3-rutinoside, a natural polyphenol antioxidant, selectively kills leukemic cells by induction of oxidative stress. J. Biol. Chem. 2007, 282, 13468–13476. [Google Scholar]
- Sarić, A.; Sobocanec, S.; Balog, T.; Kusić, B.; Sverko, V.; Dragović-Uzelac, V.; Levaj, B.; Cosić, Z.; Macak-Safranko, Z.; Marotti, T. Improved antioxidant and anti-inflammatory potential in mice consuming sour cherry juice (Prunus Cerasus cv. Maraska). Plant Foods Hum. Nutr. 2009, 64, 231–237. [Google Scholar] [CrossRef]
- Yin, F.; Liu, J.; Ji, X.; Wang, Y.; Zidichouski, J.; Zhang, J. Silibinin: A novel inhibitor of Aβ aggregation. Neurochem. Int. 2011, 58, 399–403. [Google Scholar] [CrossRef]
- Abenavoli, L.; Capasso, R.; Milic, N.; Capasso, F. Milk thistle in liver diseases: Past, present, future. Phytother. Res. 2010, 24, 1423–1432. [Google Scholar] [CrossRef]
- Cheng, J.C.; Kan, L.S.; Chen, J.T.; Chen, L.G.; Glu, H.C.; Lin, S.M.; Wang, S.H.; Yang, K.H.; Chiou, R.Y. Detection of cyanidin in different-colored peanut testae and identification of peanut cyanidin 3-sambubioside. J. Agric. Food Chem. 2009, 57, 8805–8811. [Google Scholar]
- Wang, S.Y.; Chen, C.T.; Sciarappa, W.; Wang, C.Y.; Camp, M.J. Fruit quality, antioxidant capacity, and flavonoid content of organically and conventionally grown blueberries. J. Agric. Food Chem. 2008, 56, 5788–5794. [Google Scholar] [CrossRef]
- Hosseinian, F.S.; Beta, T. Saskatoon and wild blueberries have higher anthocyanin contents than other Manitoba berries. J. Agric. Food Chem. 2007, 55, 10832–10838. [Google Scholar] [CrossRef]
- Ichiyanagi, T.; Shida, Y.; Rahman, M.M.; Hatano, Y.; Konishi, T. Bioavailability and tissue distribution of anthocyanins in bilberry (Vaccinium myrtillus L.) extract in rats. J. Agric. Food Chem. 2006, 54, 6578–6587. [Google Scholar]
- Kalantari, H.; Das, D.K. Physiological effects of resveratrol. Biofactors 2010, 36, 401–406. [Google Scholar] [CrossRef]
- Reber, J.D.; Eggett, D.L.; Parker, T.L. Antioxidant capacity interactions and a chemical/structural model of phenolic compounds found in strawberries. Int. J. Food Sci. Nutr. 2011, 62, 445–452. [Google Scholar] [CrossRef]
- Chen, P.N.; Kuo, W.H.; Chiang, C.L.; Chiou, H.L.; Hsieh, Y.S.; Chu, S.C. Black rice anthocyanins inhibit cancer cells invasion via repressions of MMPs and u-PA expression. Chem. Biol. Interact. 2006, 163, 218–229. [Google Scholar] [CrossRef]
- Yao, Y.; Sang, W.; Zhou, M.; Ren, G. Phenolic composition and antioxidant activities of 11 celery cultivars. J. Food Sci. 2010, 75, 9–13. [Google Scholar]
- Bernardes, W.A.; Lucarini, R.; Tozatti, M.G.; Souza, M.G.; Andrade Silva, M.L.; da Silva Filho, A.A.; Martins, C.H.; Miller Crotti, A.E.; Pauletti, P.M.; Groppo, M.; et al. Antimicrobial activity of Rosmarinus officinalis against oral pathogens: Relevance of carnosica acid and carnosol. Chem. Biodivers. 2010, 7, 1835–1840. [Google Scholar] [CrossRef]
- Castellarin, S.D.; Di Gaspero, G. Transcriptional control of anthocyanin biosynthetic genes in extreme phenotypes for berry pigmentation of naturally occurring grapevines. BMC Plant Biol. 2007, 30, 7–46. [Google Scholar]
- Déziel, B.A.; Patel, K.; Neto, C.; Gottschall-Pass, K.; Hurta, R.A. Proanthocyanidins from the american cranberry (Vaccinium macrocarpon) inhibit matrix metalloproteinase-2 and matrix metalloproteinase-9 activity in human prostate cancer cells via alterations in multiple cellular signaling pathways. J. Cell. Biochem. 2010, 111, 742–754. [Google Scholar]
- Wang, P.; Aronson, W.J.; Huang, M.; Zhang, Y.; Lee, R.P.; Heber, D.; Henning, S.M. Green tea polyphenols and metabolites in prostatectomy tissue: Implications for cancer prevention. Cancer Prev. Res. 2010, 3, 985–993. [Google Scholar] [CrossRef]
- Lehtonen, H.M.; Rantala, M.; Suomela, J.P.; Viitanen, M.; Kallio, H. Urinary excretion of the main anthocyanin in lingonberry (Vaccinium vitis-idaea), Cyanidin 3-O-galactoside, and its metabolites. J. Agric. Food Chem. 2009, 57, 4447–4451. [Google Scholar]
- Vasanthi, H.R.; Mukherjee, S.; Das, D.K. Potential health benefits of broccoli- a chemico-biological overview. Mini Rev. Med. Chem. 2009, 9, 749–759. [Google Scholar] [CrossRef]
- Mullen, W.; Edwards, C.A.; Serafini, M.; Crozier, A. Bioavailability of pelargonidin-3-O-glucoside and its metabolites in humans following the ingestion of strawberries with and without cream. J. Agric. Food Chem. 2008, 56, 713–719. [Google Scholar] [CrossRef]
- Rasyid, A.; Rahman, A.R.; Jaalam, K.; Lelo, A. Effect of different curcumin dosages on human gall bladder. Asia Pac. J. Clin. Nutr. 2002, 11, 314–318. [Google Scholar]
- Lai, C.S.; Li, S.; Chai, C.Y.; Lo, C.Y.; Ho, C.T.; Wang, Y.J.; Pan, M.H. Inhibitory effect of citrus 5-hydroxy-3,6,7,8,3',4'-hexamethoxyflavone on 12-O-tetradecanoylphorbol 13-acetate-induced skin inflammation and tumor promotion in mice. Carcinogenesis 2007, 28, 2581–2588. [Google Scholar] [CrossRef]
- Theodosiou, M.; Laudet, V.; Schubert, M. From carrot to clinic: An overview of the retinoic acid signaling pathway. Cell. Mol. Life Sci. 2010, 67, 1423–1445. [Google Scholar] [CrossRef]
- Lien, L.T.; Yeh, H.S.; Su, W.T. Effect of adding extracted hesperetin, naringenin and pectin on egg cholesterol, serum traits and antioxidant activity in laying hens. Arch. Anim. Nutr. 2008, 62, 33–43. [Google Scholar] [CrossRef]
- Alosi, J.A.; McDonald, D.E.; Schneider, J.S.; Privette, A.R.; McFadden, D.W. Pterostilbene inhibits breast cancer in vitro through mitochondrial depolarization and induction of caspase-dependent apoptosis. J. Surg. Res. 2010, 161, 195–201. [Google Scholar] [CrossRef]
- Stuetz, W.; Prapamontol, T.; Hongsibsong, S.; Biesalski, H.K. Polymethoxylated flavones, flavanone glycosides, carotenoids, and antioxidants in different cultivation types of tangerines (Citrus reticulata Blanco cv. Sainampueng) from Northern Thailand. J. Agric. Food Chem. 2010, 58, 6069–6074. [Google Scholar] [CrossRef]
- Basini, G.; Bussolati, S.; Santini, S.E.; Grasselli, F. The impact of the phyto-oestrogen genistein on swine granulosa cell function. J. Anim. Physiol. Anim. Nutr. (Berl.) 2010, 94, 374–382. [Google Scholar] [CrossRef]
- Mann, N.J.; O’Connell, S.L.; Baldwin, K.M.; Singh, I.; Meyer, B.J. Effects of seal oil and tuna-fish oil on platelet parameters and plasma lipid levels in healthy subjects. Lipids 2010, 45, 669–681. [Google Scholar] [CrossRef]
- Weng, C.J.; Wu, C.F.; Huang, H.W.; Ho, C.T.; Yen, G.C. Anti-invasion effects of 6-shogaol and 6-gingerol, two active components in ginger, on human hepatocarcinoma cells. Mol. Nutr. Food Res. 2010, 54, 1618–1627. [Google Scholar] [CrossRef]
- Visanji, J.M.; Duthie, S.J.; Pirie, L.; Thompson, D.G.; Padfield, P.J. Dietary isothiocyanates inhibit Caco-2 cell proliferation and induce G2/M phase cell cycle arrest, DNA damage, and G2/M checkpoint activation. J. Nutr. 2004, 134, 3121–3126. [Google Scholar]
- Vogel, J.T.; Tieman, D.M.; Sims, C.A.; Odabasi, A.Z.; Clark, D.G.; Klee, H.J. Carotenoid content impacts flavor acceptability in tomato (Solanum lycopersicum). J. Sci. Food Agric. 2010, 90, 2233–2340. [Google Scholar]
- Muhammad, S.A.; Muhammad, S.; Waqar, A.; Masood, P.; Raghav, Y. Chlorinated monoterpene ketone, acylated β-sitosterol glycosides and a flavanone glycoside from Mentha longifolia (Lamiaceae). Phytochemistry 2002, 59, 889–895. [Google Scholar]
- Skupinska, K.; Misiewicz-Krzeminska, I.; Lubelska, K.; Kasprzycka-Guttman, T. The effect of isothiocyanates on CYP1A1 and CYP1A2 activities induced by polycyclic aromatic hydrocarbons in Mcf7 cells. Toxicol. In Vitro 2009, 23, 763–771. [Google Scholar] [CrossRef]
- Thürmann, P.A.; Steffen, J.; Zwernemann, C.; Aebischer, C.P.; Cohn, W.; Wendt, G.; Schalch, W. Plasma concentration response to drinks containing beta-carotene as carrot juice or formulated as a water dispersible powder. Eur. J. Nutr. 2002, 41, 228–235. [Google Scholar] [CrossRef]
- Burns-Whitmore, B.L.; Haddad, E.H.; Sabaté, J.; Jaceldo-Siegl, K.; Tanzman, J.; Rajaram, S. Effect of n-3 fatty acid enriched eggs and organic eggs on serum lutein in free-living lacto-ovo vegetarians. Eur. J. Clin. Nutr. 2010, 64, 1332–1337. [Google Scholar]
- Salado, C.; Olaso, E.; Gallot, N.; Valcarcel, M.; Egilegor, E.; Mendoza, L.; Vidal-Vanaclocha, F. Resveratrol prevents inflammation-dependent hepatic melanoma metastasis by inhibiting the secretion and effects of interleukin-18. J. Transl. Med. 2011, 9, 59. [Google Scholar] [CrossRef]
- Au, A.Y.; Hasenwinkel, J.M.; Frondoza, C.G. Silybin inhibits interleukin-1β-induced production of pro-inflammatory mediators in canine hepatocyte cultures. J. Vet. Pharmacol. Ther. 2011, 34, 120–129. [Google Scholar]
- Mauray, A.; Felgines, C.; Morand, C.; Mazur, A.; Scalbert, A.; Milenkovic, D. Bilberry anthocyanin-rich extract alters expression of genes related to atherosclerosis development in aorta of apo E-deficient mice. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 72–80. [Google Scholar] [CrossRef]
- Seymour, E.M.; Lewis, S.K.; Urcuyo-Llanes, D.E.; Tanone, I.I.; Kirakosyan, A.; Kaufman, P.B.; Bolling, S.F. Regular tart cherry intake alters abdominal adiposity, adipose gene transcription, and inflammation in obesity-prone rats fed a high fat diet. J. Med. Food. 2009, 5, 935–942. [Google Scholar]
- Karlsen, A.; Retterstøl, L.; Laake, P.; Paur, I.; Kjølsrud-Bøhn, S.; Sandvik, L.; Blomhoff, R. Anthocyanins inhibit nuclear factor-kB activation in monocytes and reduce plasma concentrations of pro-Inflammatory mediators in healthy adults. J. Nutr. 2007, 137, 1951–1954. [Google Scholar]
- Terashima, M.; Ehara, S.; Yang, E.; Kosuge, H.; Tsao, P.S.; Quertermous, T.; Contag, C.H.; McConnell, M.V. In vivo bioluminescence imaging of inducible nitric oxide synthase gene expression in vascular Inflammation. Mol. Imaging Biol. 2010, 13, 1061–1066. [Google Scholar]
- Krieglstein, C.F.; Anthoni, C.; Cerwinka, W.H.; Stokes, K.Y.; Russell, J.; Grisham, M.B.; Granger, D.N. Role of blood- and tissue-associated inducible nitric-oxide synthase in colonic inflammation. Am. J. Pathol. 2007, 170, 490–496. [Google Scholar] [CrossRef]
- Ramasamy, K.; Dwyer-Nield, L.D.; Serkova, N.J.; Hasebroock, K.M.; Tyagi, A.; Raina, K.; Singh, R.P.; Malkinson, A.M.; Agarwal, R. Silibinin prevents lung tumorigenesis in wild-type but not in iNOS-/- mice: Potential of real-time micro-CT in lung cancer chemoprevention studies. Clin. Cancer Res. 2011, 17, 753–761. [Google Scholar]
- Chittezhath, M.; Deep, G.; Singh, R.P.; Agarwal, C.; Agarwal, R. Silibinin inhibits cytokine-induced signaling cascades and down-regulates inducible nitric oxide synthase in human lung carcinoma A549 cells. Mol. Cancer Ther. 2008, 7, 1817–1826. [Google Scholar] [CrossRef]
- Zikri, N.N.; Riedl, K.M.; Wang, L.S.; Lechner, J.; Schwartz, S.J.; Stoner, G.D. Black raspberry components inhibit proliferation, induce apoptosis, and modulate gene expression in rat esophageal epithelial cells. Nutr. Cancer 2009, 61, 816–826. [Google Scholar] [CrossRef]
- Jin, X.H.; Ohgami, K.; Shiratori, K.; Suzuki, Y.; Koyama, Y.; Yoshida, K.; Ilieva, I.; Tanaka, T.; Onoe, K.; Ohno, S. Effects of blue honeysuckle (Lonicera caerulea L.) extract on lipopolysaccharide-induced inflammation in vitro and in vivo. Exp. Eye Res. 2006, 82, 860–867. [Google Scholar] [CrossRef]
- Khan, N.; Afaq, F.; Kweon, M.H.; Kim, K.M.; Mukhtar, H. Oral consumption of pomegranate fruit extract inhibits growth and progression of primary lung tumors in mice. Cancer Res. 2007, 67, 3475–3482. [Google Scholar]
- Laua, F.C.; Joseph, J.A.; Mcdonald, J.E.; Kalt, W. Attenuation of iNOS and COX-2 by blueberry polyphenols. J. Funct. Foods 2009, 1, 274–283. [Google Scholar] [CrossRef]
- Pergola, C.; Rossi, A.; Dugo, P.; Cuzzocrea, S.; Sautebin, L. Inhibition of nitric oxide biosynthesis by anthocyanin fraction of blackberry extract. Nitric Oxide 2006, 15, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Leiroa, J.M.; lvarezb, E.A.; Arranza, J.A.; González Sisoc, I.; Orallob, F. In vitro effects of mangiferin on superoxide concentrations and expression of the inducible nitric oxide synthase, tumour necrosis factor-a and transforming growth factor-b genes. Biochem. Pharmacol. 2003, 65, 1361–1371. [Google Scholar]
- Chin, Y.W.; Park, E.Y.; Seo, S.Y.; Yoon, K.D.; Ahn, M.J.; Suh, Y.G.; Kim, S.G.; Kim, J. A novel iNOS and COX-2 inhibitor from the aerial parts of Rodgersia Podophylla. Biol. Med. Chem. Lett. 2006, 16, 4600–4602. [Google Scholar]
- Oh, J.H.; Lee, T.J.; Park, J.W.; Kwon, T.K. Withaferin A inhibits iNOS expression and nitric oxide production by Akt inactivation and down-regulating LPS-induced activity of NF-κb in RAW 264.7 cells. Eur. J. Pharmacol. 2008, 599, 11–17. [Google Scholar] [CrossRef]
- PubChem. Available online: http://pubchem.ncbi.nlm.nih.gov (accessed on 10 January 2011).
- Cheshire, D.R.; Berg, A.; Andersson, G.M.K.; Andrews, G.; Beaton, H.G.; Birkinshaw, T.N.; Boughton-Smith, N.; Connolly, S.; Cook, T.R.; Cooper, A.; et al. The discovery of novel, potent and highly selective inhibitors of inducible nitric oxide synthase (iNOS). Bioorg. Med. Chem. Lett. 2011, 21, 2468–2471. [Google Scholar]
- Bourdonnec, B.L.; Leister, L.K.; Ajello, C.A.; Cassel, J.A.; Seida, P.R.; O’Hare, H.; Gu, M.; Chu, G.-H.; Tuthill, P.A.; DeHaven, R.N.; et al. Discovery of a series of aminopiperidines as novel iNOS inhibitors. Bioog. Med. Chem. Lett. 2008, 18, 336–343. [Google Scholar]
- Davey, D.D.; Adler, M.; Arnaiz, D.; Eagen, K.; Erickson, S.; Guilford, W.; Kenrick, M.; Morrissey, M.M.; Ohlmeyer, M.; Pan, G.; et al. Design, synthesis, and activity of 2-imidazol-1-ylpyrimidine derived inducible nitric oxide synthase dimerization inhibitors. J. Med. Chem. 2007, 50, 1146–1157. [Google Scholar]
- Nakane, M.; Klinghofer, V.; Kuk, J.E.; Donnelly, J.L.; Budzik, G.P.; Pollock, J.S.; Basha, F.; Carter, G.W. Novel potent and selective inhibitors of inducible nitric oxide synthase. Mol. Pharmacol. 1995, 47, 831–834. [Google Scholar]
- Hare, A.A.; Leng, L.; Gandavadi, S.; Du, X.; Cournia, Z.; Bucala, R.; Jorgensen, W.L. Optimization of N-benzyl-benzoxazol-2-ones as receptor antagonists of macrophage migration inhibitory factor (MIF). Bioorg. Med. Chem. Lett. 2010, 20, 5811–5814. [Google Scholar] [CrossRef]
- RCSB PDB Protein Data Bank. Available online: http://www.pdb.org/pdb/home/home.do (accessed on 14 February 2011).
- SYBYL molecular modeling software, Version 8.1, Tripos: St. Louis, MO, USA, 2007.
- Hwang, Y.P.; Choi, J.H.; Yun, H.J.; Han, E.H.; Kim, H.G.; Kim, J.Y.; Park, B.H.; Khanal, T.; Choi, J.M.; Chung, Y.C.; et al. Anthocyanins from purple sweet potato attenuate dimethylnitrosamine-induced liver injury in rats by inducing Nrf2-mediated antioxidant enzymes and reducing COX-2 and iNOS expression. Food Chem. Toxicol. 2011, 49, 93–99. [Google Scholar] [CrossRef]
- Li, J.; Shi, R.; Yang, C.; Zhu, X. Exploration of the binding of benzimidazole-biphenyl derivatives to hemoglobin using docking and molecular dynamics simulation. Int. J. Biol. Macromol. 2011, 48, 20–26. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.R.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A., Jr.; Vreven, T.; Kudin, K.N.; Burant, J.C.; et al. Gaussian03; Gaussian, Inc.: Pittsburgh, PA, USA, 2003. [Google Scholar]
- Guha, R.; Howard, M.T.; Hutchison, G.R.; Murray-Rust, P.; Rzepa, H.; Steinbeck, C.; Wegner, J.K.; Willighagen, E. The blue obelisk—Interoperability in chemical informatics. J. Chem. Inf. Model. 2006, 46, 991–998. [Google Scholar]
- Sanner, M.F. Python: A programming language for software integration and development. J. Mol. Graph. Model. 1999, 17, 57–61. [Google Scholar]
- Wolber, G.; Langer, T. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J. Chem. Inf. Model. 2005, 45, 160–169. [Google Scholar] [CrossRef]
- DeLano, W.L. The PyMOL Molecular Graphics System; DeLano Scientific LLC: San Carlos, CA, USA; pp. 1998–2003.
- Connolly, S.; Aberg, A.; Arvai, A.; Beaton, H.G.; Cheshire, D.R.; Cook, A.R.; Cooper, S.; Cox, D.; Hamley, P.; Mallinder, P.; et al. 2-aminopyridines as highly selective inducible nitric oxide synthase inhibitors. Differential binding modes dependent on nitrogen substitution. J. Med. Chem. 2004, 47, 3320–3323. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, Y.; Bryant, S.H. Computational analysis of the cathepsin B inhibitors activities through LR-MMPBSA binding affinity calculation based on docked complex. J. Comput. Chem. 2009, 30, 2165–2175. [Google Scholar]
- GraphPad Software, Inc. Version 3.06 for Windows, GraphPad Software, Inc.: San Diego, CA, USA, 2003.
- Sample Availability: Not available.
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Maldonado-Rojas, W.; Olivero-Verbel, J. Food-Related Compounds That Modulate Expression of Inducible Nitric Oxide Synthase May Act as Its Inhibitors. Molecules 2012, 17, 8118-8135. https://doi.org/10.3390/molecules17078118
Maldonado-Rojas W, Olivero-Verbel J. Food-Related Compounds That Modulate Expression of Inducible Nitric Oxide Synthase May Act as Its Inhibitors. Molecules. 2012; 17(7):8118-8135. https://doi.org/10.3390/molecules17078118
Chicago/Turabian StyleMaldonado-Rojas, Wilson, and Jesus Olivero-Verbel. 2012. "Food-Related Compounds That Modulate Expression of Inducible Nitric Oxide Synthase May Act as Its Inhibitors" Molecules 17, no. 7: 8118-8135. https://doi.org/10.3390/molecules17078118
APA StyleMaldonado-Rojas, W., & Olivero-Verbel, J. (2012). Food-Related Compounds That Modulate Expression of Inducible Nitric Oxide Synthase May Act as Its Inhibitors. Molecules, 17(7), 8118-8135. https://doi.org/10.3390/molecules17078118