Presenting GAELLE: An Online Genetic Algorithm for Electronic Landscapes Exploration of Reactive Conformers
Abstract
1. Introduction
2. Computational Protocol
2.1. Global Reactivity Descriptors
2.2. The Maximum Hardness Principle (MHP)
“There seems to be a rule of nature that molecules arrange themselves so to be as hard as possible.”
2.3. The Minimum Electrophilicity Principle (MEP)
“The natural direction of chemical evolution is toward a state of minimum electrophilicity.”
2.4. Computational Details
3. Results and Discussions
3.1. Workflow and Algorithmic Strategy
3.2. Web Interface
3.3. Examples of Applications
3.3.1. Case Study: Ligands
3.3.2. Case Studies: Small Reactive Molecules
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grimme, S. Exploration of Chemical Compound, Conformer, and Reaction Space with Meta-Dynamics Simulations Based on Tight-Binding Quantum Chemical Calculations. J. Chem. Theory Comput. 2019, 15, 2847–2862. [Google Scholar] [CrossRef]
- Pracht, P.; Grimme, S.; Bannwarth, C.; Bohle, F.; Ehlert, S.; Feldmann, G.; Gorges, J.; Müller, M.; Neudecker, T.; Plett, C.; et al. CREST—A program for the exploration of low-energy molecular chemical space. J. Chem. Phys. 2024, 160, 114110. [Google Scholar]
- Anggara, K.; Zhu, Y.; Delbianco, M.; Rauschenbach, S.; Abb, S.; Seeberger, P.H.; Kern, K. Exploring the Molecular Conformation Space by Soft Molecule–Surface Collision. J. Am. Chem. Soc. 2020, 142, 21420–21427. [Google Scholar] [CrossRef]
- Bedoya, M.; Adasme-Carreño, F.; Peña-Martínez, P.A.; Muñoz-Gutiérrez, C.; Peña-Tejo, L.; Montesinos, J.C.E.M.; Hernández-Rodríguez, E.W.; González, W.; Martínez, L.; Alzate-Morales, J. Moltiverse: Molecular Conformer Generation Using Enhanced Sampling Methods. J. Chem. Inf. Model. 2025, 65, 5998–6013. [Google Scholar] [CrossRef]
- Axelrod, S.; Gómez-Bombarelli, R. Molecular machine learning with conformer ensembles. Mach. Learn. Sci. Technol. 2023, 4, 035025. [Google Scholar] [CrossRef]
- Jiang, R.; Gogineni, T.; Kammeraad, J.; He, Y.; Tewari, A.; Zimmerman, P.M. Conformer-RL: A deep reinforcement learning library for conformer generation. J. Comput. Chem. 2022, 43, 1880–1886. [Google Scholar] [PubMed]
- Brain, Z.E.; Addicoat, M.A. Optimization of a genetic algorithm for searching molecular conformer space. J. Chem. Phys. 2011, 135, 174106. [Google Scholar] [CrossRef] [PubMed]
- Nair, N.; Goodman, J.M. Genetic Algorithms in Conformational Analysis. J. Chem. Inf. Comput. Sci. 1998, 38, 317–320. [Google Scholar] [CrossRef]
- Gonzalez, C.; Schlegel, H.B. Reaction path following in mass-weighted internal coordinates. J. Phys. Chem. 1990, 94, 5523–5527. [Google Scholar] [CrossRef]
- Toro-Labbé, A.; Gutiérrez-Oliva, S.; Murray, J.S.; Politzer, P. A new perspective on chemical and physical processes: The reaction force. Mol. Phys. 2007, 105, 2619–2625. [Google Scholar] [CrossRef]
- Toro-Labbé, A.; Gutiérrez-Oliva, S.; Murray, J.S.; Politzer, P. The reaction force and the transition region of a reaction. J. Mol. Model. 2008, 15, 707–710. [Google Scholar] [CrossRef] [PubMed]
- Politzer, P.; Toro-Labbé, A.; Gutiérrez-Oliva, S.; Herrera, B.; Jaque, P.; Concha, M.C.; Murray, J.S. The reaction force: Three key points along an intrinsic reaction coordinate. J. Chem. Sci. 2005, 117, 467–472. [Google Scholar] [CrossRef]
- Politzer, P.; Burda, J.V.; Concha, M.C.; Lane, P.; Murray, J.S. Analysis of the Reaction Force for a Gas Phase SN2 Process: CH3Cl + H2O → CH3OH + HCl. J. Phys. Chem. 2005, 110, 756–761. [Google Scholar] [CrossRef]
- Forero-Girón, A.C.; Toro-Labbé, A. How does dopamine convert into norepinephrine? Insights on the key step of the reaction. J. Mol. Model. 2025, 31, 32. [Google Scholar] [CrossRef] [PubMed]
- Aroule, O.; Zins, E.L. A comprehensive study of the influence of non-covalent interactions on electron density redistribution during the reaction between acetic acid and methylamine. J. Mol. Model. 2025, 31, 48. [Google Scholar] [CrossRef]
- Geerlings, P.; De Proft, F.; Langenaeker, W. Conceptual Density Functional Theory. Chem. Rev. 2003, 103, 1793–1874. [Google Scholar] [CrossRef]
- Chermette, H. Chemical reactivity indexes in density functional theory. J. Comput. Chem. 1999, 20, 129–154. [Google Scholar] [CrossRef]
- Geerlings, P.; Chamorro, E.; Chattaraj, P.K.; De Proft, F.; Gázquez, J.L.; Shubin, L.; Morell, C.; Toro-Labbé, A.; Vela, A.; Ayers, P.W. Conceptual density functional theory: Status, prospects, issues. Theor. Chem. Accounts 2020, 139, 36. [Google Scholar] [CrossRef]
- Parr, R.G.; Yang, W. Density functional approach to the frontier-electron theory of chemical reactivity. J. Am. Chem. Soc. 1984, 106, 4049–4050. [Google Scholar] [CrossRef]
- Fukui, K. Role of frontier orbitals in chemical reactions. Science 1982, 218, 747–754. [Google Scholar] [CrossRef]
- Parr, R.G.; Pearson, R.G. Absolute hardness: Companion parameter to absolute electronegativity. J. Am. Chem. Soc. 1983, 105, 7512–7516. [Google Scholar] [CrossRef]
- Parr, R.G.; Donnelly, R.A.; Levy, M.; Palke, W.E. Electronegativity: The density functional viewpoint. J. Chem. Phys. 1978, 68, 3801–3807. [Google Scholar] [CrossRef]
- Parr, R.G.; Szentpály, L.v.; Liu, S. Electrophilicity Index. J. Am. Chem. Soc. 1999, 121, 1922–1924. [Google Scholar] [CrossRef]
- Chattaraj, P.K.; Sarkar, U.; Roy, D.R. Electrophilicity Index. Chem. Rev. 2006, 106, 2065–2091. [Google Scholar] [CrossRef] [PubMed]
- Morell, C.; Grand, A.; Toro-Labbé, A. New Dual Descriptor for Chemical Reactivity. J. Phys. Chem. 2005, 109, 205–212. [Google Scholar] [CrossRef]
- Morell, C.; Grand, A.; Toro-Labbé, A. Theoretical support for using the Delta f(r) descriptor. Chem. Phys. Lett. 2006, 425, 342–346. [Google Scholar] [CrossRef]
- Geerlings, P.; Fias, S.; Boisdenghien, Z.; De Proft, F. Conceptual DFT: Chemistry from the linear response function. Chem. Soc. Rev. 2014, 43, 4989. [Google Scholar] [CrossRef]
- Senet, P. Nonlinear electronic responses, Fukui functions and hardnesses as functionals of the ground-state electronic density. J. Chem. Phys. 1996, 105, 6471–6489. [Google Scholar] [CrossRef]
- Hoffmann, G.; Tognetti, V.; Joubert, L. Can molecular and atomic descriptors predict the electrophilicity of Michael acceptors? J. Mol. Model. 2018, 24, 281. [Google Scholar] [CrossRef]
- Guégan, F.; Mignon, P.; Tognetti, V.; Joubert, L.; Morell, C. Dual descriptor and molecular electrostatic potential: Complementary tools for the study of the coordination chemistry of ambiphilic ligands. Phys. Chem. Chem. Phys. 2014, 16, 15558–15569. [Google Scholar] [CrossRef] [PubMed]
- Pearson, R.G. A Symmetry rule for Predicting Molecular Structure and Reactivity. J. Am. Chem. Soc. 1969, 91, 1252. [Google Scholar] [CrossRef]
- Pearson, R.G. Absolute electronegativity and hardness: Application to inorganic chemistry. Inorg. Chem. 1988, 27, 734–740. [Google Scholar] [CrossRef]
- Pearson, R.G. The principle of maximum hardness. Accounts Chem. Res. 1993, 26, 250–255. [Google Scholar] [CrossRef]
- Chamorro, E.; Chattaraj, P.K.; Fuentealba, P. Variation of the Electrophilicity Index along the Reaction Path. J. Phys. Chem. 2003, 107, 7068–7072. [Google Scholar] [CrossRef]
- Fuentealba, P.; Simón-Manso, Y.; Chattaraj, P.K. Molecular Electronic Excitations and the Minimum Polarizability Principle. J. Phys. Chem. 2000, 104, 3185–3187. [Google Scholar] [CrossRef]
- Miranda-Quintana, R.A.; Ayers, P.W.; Heidar-Zadeh, F. Reactivity and Charge Transfer Beyond the Parabolic Model: The “|Δμ| Big is Good” Principle. ChemistrySelect 2021, 6, 96–100. [Google Scholar] [CrossRef]
- Miranda-Quintana, R.A.; Heidar-Zadeh, F.; Ayers, P.W. Elementary Derivation of the “|Δμ| Big Is Good” Rule. J. Phys. Chem. Lett. 2018, 9, 4344–4348. [Google Scholar] [CrossRef]
- Hoffmann, G.; Balcilar, M.; Tognetti, V.; Héroux, P.; Gaüzère, B.; Adam, S.; Joubert, L. Predicting experimental electrophilicities from quantum and topological descriptors: A machine learning approach. J. Comput. Chem. 2020, 41, 2124–2136. [Google Scholar] [CrossRef]
- Ho, I.T.; Matysik, M.; Herrera, L.M.; Yang, J.; Guderlei, R.J.; Laussegger, M.; Schrantz, B.; Hammer, R.; Miranda-Quintana, R.A.; Smiatek, J. Combination of explainable machine learning and conceptual density functional theory: Applications for the study of key solvation mechanisms. Phys. Chem. Chem. Phys. 2022, 24, 28314–28324. [Google Scholar] [CrossRef]
- Hoffmann, G.; Tognetti, V.; Joubert, L. On the influence of dynamical effects on reactivity descriptors. Chem. Phys. Lett. 2019, 724, 24–28. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef]
- Pan, S.; Solà, M.; Chattaraj, P.K. On the Validity of the Maximum Hardness Principle and the Minimum Electrophilicity Principle during Chemical Reactions. J. Phys. Chem. 2013, 117, 1843–1852. [Google Scholar] [CrossRef] [PubMed]
- Saha, R.; Pan, S.; Chattaraj, P. Statistical Significance of the Maximum Hardness Principle Applied to Some Selected Chemical Reactions. Molecules 2016, 21, 1477. [Google Scholar] [CrossRef]
- Fuentealba, P.; Parr, R.G. Higher-order derivatives in density-functional theory, especially the hardness derivative ∂η/∂N. J. Chem. Phys. 1991, 94, 5559–5564. [Google Scholar] [CrossRef]
- Miranda-Quintana, R.A.; Ayers, P.W. Note: Maximum hardness and minimum electrophilicity principles. J. Chem. Phys. 2018, 148, 196101. [Google Scholar] [CrossRef]
- Torrent-Sucarrat, M.; Blancafort, L.; Duran, M.; Luis, J.M.; Solà, M. Chapter 3: The breakdown of the maximum hardness and minimum polarizability principles for nontotally symmetric vibrations. In Theoretical Aspects of Chemical Reactivity; Elsevier: Amsterdam, The Netherlands, 2007; pp. 31–45. [Google Scholar]
- Riniker, S.; Landrum, G.A. Better Informed Distance Geometry: Using What We Know to Improve Conformation Generation. J. Chem. Inf. Model. 2015, 55, 2562–2574. [Google Scholar] [CrossRef] [PubMed]
- Landrum, G.; Tosco, P.; Kelley, B.; Rodriguez, R.; Cosgrove, D.; Vianello, R.; Sriniker; Gedeck, P.; Jones, G.; Kawashima, E.; et al. rdkit/rdkit: 2025_03_4 (Q1 2025) Release. BSD 3-Clause “New” or “Revised” License. 2025. Available online: https://github.com/rdkit/rdkit/releases (accessed on 1 July 2025).
- Bannwarth, C.; Ehlert, S.; Grimme, S. GFN2-xTB—An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. J. Chem. Theory Comput. 2019, 15, 1652–1671. [Google Scholar] [CrossRef] [PubMed]
- Onufriev, A.; Bashford, D.; Case, D.A. Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins Struct. Funct. Bioinform. 2004, 55, 383–394. [Google Scholar] [CrossRef] [PubMed]
- Sigalov, G.; Fenley, A.; Onufriev, A. Analytical electrostatics for biomolecules: Beyond the generalized Born approximation. J. Chem. Phys. 2006, 124, 124902. [Google Scholar] [CrossRef]
- Lange, A.W.; Herbert, J.M. Improving Generalized Born Models by Exploiting Connections to Polarizable Continuum Models. I. An Improved Effective Coulomb Operator. J. Chem. Theory Comput. 2012, 8, 1999–2011. [Google Scholar] [CrossRef] [PubMed]
- Ehlert, S.; Stahn, M.; Spicher, S.; Grimme, S. Robust and Efficient Implicit Solvation Model for Fast Semiempirical Methods. J. Chem. Theory Comput. 2021, 17, 4250–4261. [Google Scholar] [CrossRef] [PubMed]
- Bannwarth, C.; Caldeweyher, E.; Ehlert, S.; Hansen, A.; Pracht, P.; Seibert, J.; Spicher, S.; Grimme, S. Extended tight-binding quantum chemistry methods. WIREs Comput. Mol. Sci. 2021, 11, e1493. [Google Scholar] [CrossRef]
- Koopmans, T. Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica 1934, 1, 104–113. [Google Scholar] [CrossRef]
- Janak, J.F. Proof that ∂E/∂ni=εi in density-functional theory. Phys. Rev. B 1978, 18, 7165–7168. [Google Scholar] [CrossRef]
- Petrowski, A.; Ben-Hamida, S. Evolutionary Algorithms, 1st ed.; Wiley-ISTE: Hoboken, NJ, USA, 2017. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Revision B.01; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Dunning, T.H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. [Google Scholar] [CrossRef]
- Bates, J.N.; Baby, S.M.; Getsy, P.M.; Coffee, G.A.; Hsieh, Y.H.; Knauss, Z.T.; Dahan, A.; Bubier, J.A.; MacFarlane, P.M.; Mueller, D.; et al. L-NAC and L-NAC methyl ester prevent and overcome physical dependence to fentanyl in male rats. Sci. Rep. 2024, 14, 9091. [Google Scholar] [CrossRef]
- Vainio, M.J.; Johnson, M.S. Generating Conformer Ensembles Using a Multiobjective Genetic Algorithm. J. Chem. Inf. Model. 2007, 47, 2462–2474. [Google Scholar] [CrossRef]
- Rappe, A.K.; Casewit, C.J.; Colwell, K.S.; Goddard, W.A.; Skiff, W.M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 1992, 114, 10024–10035. [Google Scholar] [CrossRef]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Smith, D.G.A.; Boothroyd, S.; Jang, H.; Hahn, D.F.; Wagner, J.; Bannan, C.C.; Gokey, T.; Lim, V.T.; Stern, C.D.; et al. Development and Benchmarking of Open Force Field v1.0.0—The Parsley Small-Molecule Force Field. J. Chem. Theory Comput. 2021, 17, 6262–6280. [Google Scholar] [CrossRef] [PubMed]
- Owen, D.R.; Allerton, C.M.N.; Anderson, A.S.; Aschenbrenner, L.; Avery, M.; Berritt, S.; Boras, B.; Cardin, R.D.; Carlo, A.; Coffman, K.J.; et al. An oral SARS-CoV-2 pro inhibitor clinical candidate for the treatment of COVID-19. Science 2021, 374, 1586–1593. [Google Scholar] [CrossRef] [PubMed]
- Byrd, J.C.; Furman, R.R.; Coutre, S.E.; Flinn, I.W.; Burger, J.A.; Blum, K.A.; Grant, B.; Sharman, J.P.; Coleman, M.; Wierda, W.G.; et al. Targeting BTK with Ibrutinib in Relapsed Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2013, 369, 32–42. [Google Scholar] [CrossRef]
- Vavalà, T. Role of afatinib in the treatment of advanced lung squamous cell carcinoma. Clin. Pharmacol. Adv. Appl. 2017, 9, 147–157. [Google Scholar] [CrossRef]
Method | |||
---|---|---|---|
GAELLE | −8.88 | 3.37 | 11.68 |
MMFF94 | −8.80 | 3.09 | 12.54 |
UFF | −9.03 | 3.14 | 12.97 |
GAFF | −8.71 | 3.12 | 12.16 |
OpenFF | −9.12 | 2.87 | 14.49 |
Structure | Method | RMSD | ||
---|---|---|---|---|
Nirmaltrevir | GAELLE | 1.774 | −1.36 | 25.60 |
MMFF94 | 1.815 | 0.23 | 0.10 | |
UFF | 1.859 | −1.35 | 25.96 | |
Ibrutinib | GAELLE | 5.774 | 1.76 | −39.79 |
MMFF94 | 1.497 | 0.91 | −12.48 | |
UFF | 6.143 | 1.80 | −39.06 | |
Afatinib | GAELLE | 2.047 | −0.27 | 12.52 |
MMFF94 | 2.124 | 0.91 | −12.48 | |
UFF | 2.145 | −0.73 | 57.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aroule, O.; Torralba, F.; Hoffmann, G. Presenting GAELLE: An Online Genetic Algorithm for Electronic Landscapes Exploration of Reactive Conformers. AI Chem. 2025, 1, 1. https://doi.org/10.3390/aichem1010001
Aroule O, Torralba F, Hoffmann G. Presenting GAELLE: An Online Genetic Algorithm for Electronic Landscapes Exploration of Reactive Conformers. AI Chemistry. 2025; 1(1):1. https://doi.org/10.3390/aichem1010001
Chicago/Turabian StyleAroule, Olivier, Fabien Torralba, and Guillaume Hoffmann. 2025. "Presenting GAELLE: An Online Genetic Algorithm for Electronic Landscapes Exploration of Reactive Conformers" AI Chemistry 1, no. 1: 1. https://doi.org/10.3390/aichem1010001
APA StyleAroule, O., Torralba, F., & Hoffmann, G. (2025). Presenting GAELLE: An Online Genetic Algorithm for Electronic Landscapes Exploration of Reactive Conformers. AI Chemistry, 1(1), 1. https://doi.org/10.3390/aichem1010001