Impact of Micro and Nano Zinc Oxide Particles on Lentil Seed’s Internal Activity Using Biospeckle Optical Coherence Tomography (bOCT)
Abstract
1. Introduction
2. Materials and Method
2.1. Nanoparticles
2.2. Plant Material
2.3. Biospeckle Optical Coherence Tomography (bOCT)
2.3.1. Optical Experimental System
2.3.2. Biospeckle and Contrast
2.4. Growth Parameters Analysis
2.4.1. Germination Percentage and Seedling Growth
2.4.2. Biomass Measurement
2.5. Oxidative Stress Response Analysis
2.6. Statistical Analysis
3. Results
3.1. bOCT Measurements
3.1.1. Comparison of Biospeckle Contrast
3.1.2. Quantitative Analysis
3.2. Comparison with Conventional Measurements
3.2.1. Morphological Parameters
3.2.2. Physiological Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Keller, A.A.; Ehrens, A.; Zheng, Y.; Nowack, B. Developing trends in nanomaterials and their environmental implications. Nat. Nanotechnol. 2023, 18, 834–837. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.P.; Vikal, S.; Tyagi, L.; Sharma, K.; Gautam, Y.K.; Nakane, D.; Soni, R.K.; Akitsu, T. Plant and microbe-based synthesis of nanoparticles and their applications. In Nanoparticles and Plant-Microbe Interactions: An Environmental Perspective; Academic Press: Cambridge, MA, USA, 2023; pp. 69–108. [Google Scholar] [CrossRef]
- Hochella, M.F.; Mogk, D.W.; Ranville, J.; Allen, I.C.; Luther, G.W.; Marr, L.C.; McGrail, B.P.; Murayama, M.; Qafoku, N.P.; Rosso, K.M.; et al. Natural, incidental, and engineered nanomaterials and their impacts on the Earth system. Science 2019, 363, eaau8299. [Google Scholar] [CrossRef] [PubMed]
- Nanomaterials Market Size To Reach $32.77 Billion By 2030. Available online: https://www.grandviewresearch.com/press-release/global-nanomaterials-market (accessed on 14 October 2024).
- Raha, S.; Ahmaruzzaman, M. ZnO nanostructured materials and their potential applications: Progress, challenges and perspectives. Nanoscale Adv. 2022, 4, 1868–1925. [Google Scholar] [CrossRef]
- Czyżowska, A.; Barbasz, A. A review: Zinc oxide nanoparticles—Friends or enemies? Int. J. Environ. Health Res. 2022, 32, 885–901. [Google Scholar] [CrossRef]
- Fréchette-Viens, L.; Hadioui, M.; Wilkinson, K.J. Quantification of ZnO nanoparticles and other Zn containing colloids in natural waters using a high sensitivity single particle ICP-MS. Talanta 2019, 200, 156–162. [Google Scholar] [CrossRef]
- Choi, S.; Johnston, M.; Wang, G.S.; Huang, C.P. A seasonal observation on the distribution of engineered nanoparticles in municipal wastewater treatment systems exemplified by TiO2 and ZnO. Sci. Total Environ. 2018, 625, 1321–1329. [Google Scholar] [CrossRef]
- Judy, J.D.; Bertsch, P.M. Bioavailability, Toxicity, and Fate of Manufactured Nanomaterials in Terrestrial Ecosystems. Adv. Agron. 2014, 123, 1–64. [Google Scholar] [CrossRef]
- Khan, M.; Khan, M.S.A.; Borah, K.K.; Goswami, Y.; Hakeem, K.R.; Chakrabartty, I. The potential exposure and hazards of metal-based nanoparticles on plants and environment, with special emphasis on ZnO NPs, TiO2 NPs, and AgNPs: A review. Environ. Adv. 2021, 6, 100128. [Google Scholar] [CrossRef]
- Yang, S.; Yin, R.; Wang, C.; Yang, Y.; Wang, J. Phytotoxicity of zinc oxide nanoparticles and multi-walled carbon nanotubes, alone or in combination, on Arabidopsis thaliana and their mutual effects on oxidative homeostasis. PLoS ONE 2023, 18, e0281756. [Google Scholar] [CrossRef]
- Keshta, F.S.; Shetaya, W.H.; Marzouk, E.R. The toxicity and uptake of bulk and nano-sized ZnO particles in wheat (Triticum aestivum) seedlings. J. Plant Nutr. 2023, 46, 3667–3682. [Google Scholar] [CrossRef]
- Benavides-Mendoza, A.; Betancourt, R.; Francisco-Francisco, N.; Betancourt-Galindo, R.; Author, C. Impact of ZnSO4− and ZnO Nanoparticles on Seed Germination and Seedling Growth of Lettuce. Phyton-Int. J. Exp. Bot. 2023, 92, 1831–1840. [Google Scholar] [CrossRef]
- Rasheed, A.; Li, H.; Tahir, M.M.; Mahmood, A.; Nawaz, M.; Shah, A.N.; Aslam, M.T.; Negm, S.; Moustafa, M.; Hassan, M.U.; et al. The role of nanoparticles in plant biochemical, physiological, and molecular responses under drought stress: A review. Front. Plant Sci. 2022, 13, 976179. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xie, H.; Wang, P.; Yin, H. Nanoparticles in Plants: Uptake, Transport and Physiological Activity in Leaf and Root. Materials 2023, 16, 3097. [Google Scholar] [CrossRef] [PubMed]
- Saleah, S.A.; Kim, S.; Luna, J.A.; Wijesinghe, R.E.; Seong, D.; Han, S.; Kim, J.; Jeon, M. Optical Coherence Tomography as a Non-Invasive Tool for Plant Material Characterization in Agriculture: A Review. Sensors 2024, 24, 219. [Google Scholar] [CrossRef]
- Thouvenin, O.; Boccara, A.C.; Harms, F.; Apelian, C. Dynamic full field optical coherence tomography: Subcellular metabolic contrast revealed in tissues by interferometric signals temporal analysis. Biomed. Opt. Express 2016, 7, 1511–1524. [Google Scholar] [CrossRef]
- de Wit, J.; Tonn, S.; Shao, M.R.; Van den Ackerveken, G.; Kalkman, J. Revealing real-time 3D in vivo pathogen dynamics in plants by label-free optical coherence tomography. Nat. Commun. 2024, 15, 8353. [Google Scholar] [CrossRef]
- Li, D.; Rajagopalan, U.M.; Kadono, H.; Silva, Y.S.K. De Biospeckle Optical Coherence Tomography (bOCT) reveals variable effects of acid mine drainage (AMD) on monocot and dicot seed germination. In Proceedings of the SPIE Photonics Europe, Strasbourg, France, 3–7 April 2022; Volume 12147, pp. 78–83. [Google Scholar] [CrossRef]
- De Silva, Y.S.K.; Rajagopalan, U.M.; Kadono, H.; Li, D. Positive and negative phenotyping of increasing Zn concentrations by Biospeckle Optical Coherence Tomography in speedy monitoring on lentil (Lens culinaris) seed germination and seedling growth. Plant Stress 2021, 2, 100041. [Google Scholar] [CrossRef]
- Erskine, W.; Sarker, A.; Kumar, S. Crops that feed the world 3. Investing in lentil improvement toward a food secure world. Food Secur. 2011, 3, 127–139. [Google Scholar] [CrossRef]
- Ganesan, K.; Xu, B. Polyphenol-Rich Lentils and Their Health Promoting Effects. Int. J. Mol. Sci. 2017, 18, 2390. [Google Scholar] [CrossRef]
- Du, W.; Yang, J.; Peng, Q.; Liang, X.; Mao, H. Comparison study of zinc nanoparticles and zinc sulphate on wheat growth: From toxicity and zinc biofortification. Chemosphere 2019, 227, 109–116. [Google Scholar] [CrossRef]
- Awasthi, A.; Bansal, S.; Jangir, L.K.; Awasthi, G.; Awasthi, K.K.; Awasthi, K. Effect of ZnO Nanoparticles on Germination of Triticum aestivum Seeds. Macromol. Symp. 2017, 376, 1700043. [Google Scholar] [CrossRef]
- Barampuram, S.; Allen, G.; Krasnyanski, S. Effect of various sterilization procedures on the in vitro germination of cotton seeds. Plant Cell Tissue Organ Cult. 2014, 118, 179–185. [Google Scholar] [CrossRef]
- Ali Metwally, S.; Helmy Abou Leila, B.; Saad Gaballah, M. Laser Application in Agriculture and Its Physiological Effect on Plant: A Review. Plant Arch. 2020, 20, 9535–9543. [Google Scholar]
- Goodman, J.W. Statistical Properties of Laser Speckle Patterns. In Laser Speckle and Related Phenomena; Springer: Berlin/Heidelberg, Germany, 1975; pp. 9–75. [Google Scholar] [CrossRef]
- Aebi, H. Oxygen Radicals in Biological Systems—Catalase in Vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar]
- Alsuwayyid, A.A.; Alslimah, A.S.; Perveen, K.; Bukhari, N.A.; Al-Humaid, L.A. Effect of zinc oxide nanoparticles on Triticum aestivum L. and bioaccumulation assessment using ICP-MS and SEM analysis. J. King Saud Univ. Sci. 2022, 34, 101944. [Google Scholar] [CrossRef]
- Djanaguiraman, M.; Anbazhagan, V.; Dhankher, O.P.; Prasad, P.V.V. Uptake, Translocation, Toxicity, and Impact of Nanoparticles on Plant Physiological Processes. Plants 2024, 13, 3137. [Google Scholar] [CrossRef]
- Nagar, V.; Singh, T.; Tiwari, Y.; Aseri, V.; Pandit, P.P.; Chopade, R.L.; Pandey, K.; Lodha, P.; Awasthi, G. ZnO Nanoparticles: Exposure, toxicity mechanism and assessment. Mater. Today Proc. 2022, 69, 56–63. [Google Scholar] [CrossRef]
- Włodarczyk, K.; Smolińska, B. The Effect of Nano-ZnO on Seeds Germination Parameters of Different Tomatoes (Solanum lycopersicum L.) Cultivars. Molecules 2022, 27, 4963. [Google Scholar] [CrossRef]
- Xu, J.; Song, M.; Fang, Z.; Zheng, L.; Huang, X.; Liu, K. Applications and challenges of ultra-small particle size nanoparticles in tumor therapy. J. Control. Release 2023, 353, 699–712. [Google Scholar] [CrossRef]
- Faizan, M.; Hayat, S.; Pichtel, J. Effects of Zinc Oxide Nanoparticles on Crop Plants: A Perspective Analysis. In Sustainable Agriculture Reviews 41; Springer: Cham, Switzerland, 2020; pp. 83–99. [Google Scholar] [CrossRef]
- Gao, M.; Chang, J.; Wang, Z.; Zhang, H.; Wang, T. Advances in transport and toxicity of nanoparticles in plants. J. Nanobiotechnology 2023, 21, 75. [Google Scholar] [CrossRef]
- Aouaini, F.; Knani, S.; Ben Yahia, M.; Ben Lamine, A. Statistical physics studies of multilayer adsorption isotherm in food materials and pore size distribution. Phys. A Stat. Mech. Its Appl. 2015, 432, 373–390. [Google Scholar] [CrossRef]
- Dhaliwal, S.S.; Sharma, V.; Shukla, A.K.; Kaur, J.; Verma, V.; Singh, P.; Singh, H.; Abdel-Hafez, S.H.; Sayed, S.; Gaber, A.; et al. Enrichment of Zinc and Iron Micronutrients in Lentil (Lens culinaris Medik.) through Biofortification. Molecules 2021, 26, 7671. [Google Scholar] [CrossRef] [PubMed]
- Assessment of Exposure Wheat Triticum aestivum L. To Zinc Oxide Nanoparticles (ZNO): Evaluation of Oxidative Damage. Available online: https://www.researchgate.net/publication/323586692_Assessment_of_exposure_wheat_triticum_aestivum_L_To_zinc_oxide_nanoparticles_ZNO_Evaluation_of_oxidative_damage (accessed on 15 October 2024).
- Caser, M.; Percivalle, N.M.; Cauda, V. The Application of Micro- and Nano-Sized Zinc Oxide Particles Differently Triggers Seed Germination in Ocimum basilicum L., Lactuca sativa L., and Lepidium sativum L. under Controlled Conditions. Horticulturae 2024, 10, 575. [Google Scholar] [CrossRef]
- Pham-Khanh, N.H.; Huynh, N.Q.; Le, H.N.B.; Ha, T.K.Q. Green synthesis of zinc oxide microparticles using the leaf extract of Dolichandrone spathacea in sustainable agriculture: A new approach for protecting the legume plant (Vigna radiata) against the Cr(VI) stress. Asian J. Agric. Biol. 2024, 2024, 1–13. [Google Scholar] [CrossRef]
- De Silva, Y.S.K.; Rajagopalan, U.M.; Kadono, H.; Li, D. Effects of microplastics on lentil (Lens culinaris) seed germination and seedling growth. Chemosphere 2022, 303, 135162. [Google Scholar] [CrossRef]
- Li, D.; Rajagopalan, U.M.; De Silva, Y.S.K.; Liu, F.; Kadono, H. Biospeckle optical coherence tomography (BOCT) in the speedy assessment of the responses of the seeds of Raphanus sativus L. (Kaiware Daikon) to acid mine drainage (AMD). Appl. Sci. 2022, 12, 355. [Google Scholar] [CrossRef]
Particle Size | Concentration (mg/L) | Average Normalized Contrast (Percentage Change) ± Error | ||
---|---|---|---|---|
5 h (%) | 10 h (%) | 20 h (%) | ||
<50 nm | 25 | −7 ± 0.73 | −4 ± 0.32 | −5 ± 0.35 |
50 | −17 ± 2.21 | −13.8 ± 1.73 | −8.7 ± 0.82 | |
100 | −14 ± 1.81 | −17 ± 2.23 | −21 ± 2.71 | |
200 | −14 ± 1.77 | −16 ± 2.02 | −16.6 ± 2.08 | |
100 nm | 25 | −15 ± 3.17 | −15.5 ± 3.24 | −19 ± 3.89 |
50 | −17.4 ± 3.26 | −20 ± 0.00 | −23 ± 0.01 | |
100 | −12 ± 0.15 | −15 ± 0.00 | −16 ± 2.04 | |
200 | −24.2 ± 3.03 | 27.2 ± 3.39 | −31.73 ± 3.96 | |
<5 µm | 25 | −5 ± 0.53 | −5 ± 0.56 | −2 ± 0.26 |
50 | 0.9 ± 0.23 | 3 ± 0.35 | −2 ± 0.42 | |
100 | −12 ± 1.15 | −12 ± 1.53 | −9 ± 0.85 | |
200 | −21 ± 2.73 | −22 ± 2.80 | −29 ± 3.61 | |
45 µm | 25 | 4 ± 0.09 | 0.7 ± 0.00 | 3 ± 0.01 |
50 | 1.4 ± 0.13 | 2.8 ± 0.24 | 6.5 ± 0.31 | |
100 | 7.6 ± 0.09 | 11 ± 0.00 | 25.5 ± 0.01 | |
200 | 1.8 ± 0.02 | −0.05 ± 0.00 | −0.9 ± 0.01 |
Treatment | Concentration (mg/L) | ANC ± SD (20 h) | Length (cm) (7 Day) | FW (g) ± SD (7 Day) | DW (g) ± SD (7 Day) | Physiological Parameters (7 Day) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
RL ± SD | SL ± SD | SFW ± SD | RFW ± SD | SDW ± SD | RDW ± SD | SOD ± SD | CAT ± SD | H2O2 ± SD | |||
Control | 0 | 1.77 ± 0.02 | 4.70 ± 0.39 | 2.96 ± 0.40 | 0.29 ± 0.01 | 0.54 ± 0.03 | 0.052 ± 0.02 | 0.063 ± 0.03 | 38.39 ± 3.47 | 19.16 ± 1.66 | 0.59 ± 0.05 |
45 µm | 25 | 1.83 ± 0.03 | 4.86 ± 0.49 | 2.99 ± 0.51 | 0.32 ± 0.03 | 0.58 ± 0.02 | 0.054 ± 0.02 | 0.072 ± 0.005 | 42.91 ± 15.23 | 21.53 ± 4.66 | 0.66 ± 0.12 |
100 | 2.22 ± 0.02 | 5.39 ± 0.23 | 3.81 ± 0.22 | 0.31 ± 0.02 | 0.66 * ± 0.10 | 0.062 ± 0.02 | 0.071 ± 0.03 | 36.67 ± 5.07 | 10.33 * ± 2.51 | 0.67 ± 0.11 | |
<50 nm | 25 | 1.69 ± 0.03 | 4.50 ± 0.54 | 2.83 ± 0.39 | 0.30 ± 0.02 | 0.45 * ± 0.01 | 0.050 ± 0.01 | 0.055 ± 0.02 | 45.04 ± 2.53 | 27.69 ± 5.96 | 0.69 ± 0.11735 |
100 | 1.39 ± 0.04 | 3.99 ± 0.34 * | 2.04 ± 0.46 * | 0.26 ± 0.07 | 0.59 ± 0.02 | 0.049 ± 0.01 | 0.069 ± 0.01 | 67.27 * ± 20.54 | 36.60 * ± 3.89 | 0.74 ± 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tyagi, L.; Kadono, H.; Rajagopalan, U.M. Impact of Micro and Nano Zinc Oxide Particles on Lentil Seed’s Internal Activity Using Biospeckle Optical Coherence Tomography (bOCT). AppliedPhys 2025, 1, 1. https://doi.org/10.3390/appliedphys1010001
Tyagi L, Kadono H, Rajagopalan UM. Impact of Micro and Nano Zinc Oxide Particles on Lentil Seed’s Internal Activity Using Biospeckle Optical Coherence Tomography (bOCT). AppliedPhys. 2025; 1(1):1. https://doi.org/10.3390/appliedphys1010001
Chicago/Turabian StyleTyagi, Lavista, Hirofumi Kadono, and Uma Maheswari Rajagopalan. 2025. "Impact of Micro and Nano Zinc Oxide Particles on Lentil Seed’s Internal Activity Using Biospeckle Optical Coherence Tomography (bOCT)" AppliedPhys 1, no. 1: 1. https://doi.org/10.3390/appliedphys1010001
APA StyleTyagi, L., Kadono, H., & Rajagopalan, U. M. (2025). Impact of Micro and Nano Zinc Oxide Particles on Lentil Seed’s Internal Activity Using Biospeckle Optical Coherence Tomography (bOCT). AppliedPhys, 1(1), 1. https://doi.org/10.3390/appliedphys1010001