Habitual Physical Activity and All-Cause Mortality Among Individuals with and Without Impaired Lung Function: Findings from a Prospective Cohort Study
Abstract
1. Introduction
2. Methods and Materials
2.1. Study Population
2.2. Baseline Lung Function Measurement
2.3. Physical Activity Measurement
2.4. All-Cause Mortality Ascertainment
2.5. Covariates
2.6. Statistical Analysis
2.7. Sensitivity Analysis
3. Results
3.1. Baseline Characteristics of Study Population
3.2. Associations of PA and Lung Function with All-Cause Mortality
3.3. Associations Between PA Attributes and All-Cause Mortality
3.4. Sensitivity Analyses
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blond, K.; Brinklov, C.F.; Ried-Larsen, M.; Crippa, A.; Grontved, A. Association of high amounts of physical activity with mortality risk: A systematic review and meta-analysis. Br. J. Sports Med. 2020, 54, 1195–1201. [Google Scholar] [CrossRef] [PubMed]
- Ding, D.; Van Buskirk, J.; Nguyen, B.; Stamatakis, E.; Elbarbary, M.; Veronese, N.; Clare, P.J.; Lee, I.M.; Ekelund, U.; Fontana, L. Physical activity, diet quality and all-cause cardiovascular disease and cancer mortality: A prospective study of 346 627 UK Biobank participants. Br. J. Sports Med. 2022, 56, 1148–1156. [Google Scholar] [CrossRef]
- Lee, D.H.; Rezende, L.F.M.; Joh, H.K.; Keum, N.; Ferrari, G.; Rey-Lopez, J.P.; Rimm, E.B.; Tabung, F.K.; Giovannucci, E.L. Long-Term Leisure-Time Physical Activity Intensity and All-Cause and Cause-Specific Mortality: A Prospective Cohort of US Adults. Circulation 2022, 146, 523–534. [Google Scholar] [CrossRef] [PubMed]
- Burtscher, J.; Millet, G.P.; Gatterer, H.; Vonbank, K.; Burtscher, M. Does Regular Physical Activity Mitigate the Age-Associated Decline in Pulmonary Function? Sports Med. 2022, 52, 963–970. [Google Scholar] [CrossRef]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Vitti, A.; Nikolaidis, P.T.; Villiger, E.; Onywera, V.; Knechtle, B. The “New York City Marathon”: Participation and performance trends of 1.2M runners during half-century. Res. Sports Med. 2020, 28, 121–137. [Google Scholar] [CrossRef]
- Shiroma, E.J.; Sesso, H.D.; Moorthy, M.V.; Buring, J.E.; Lee, I.M. Do moderate-intensity and vigorous-intensity physical activities reduce mortality rates to the same extent? J. Am. Heart Assoc. 2014, 3, e000802. [Google Scholar] [CrossRef] [PubMed]
- Sabia, S.; Dugravot, A.; Kivimaki, M.; Brunner, E.; Shipley, M.J.; Singh-Manoux, A. Effect of intensity and type of physical activity on mortality: Results from the Whitehall II cohort study. Am. J. Public Health 2012, 102, 698–704. [Google Scholar] [CrossRef]
- Cho, S.J.; Stout-Delgado, H.W. Aging and Lung Disease. Annu. Rev. Physiol. 2020, 82, 433–459. [Google Scholar] [CrossRef]
- Divo, M.J.; Marin, J.M.; Casanova, C.; Cabrera Lopez, C.; Pinto-Plata, V.M.; Marin-Oto, M.; Polverino, F.; de-Torres, J.P.; Billheimer, D.; Celli, B.R.; et al. Comorbidities and mortality risk in adults younger than 50 years of age with chronic obstructive pulmonary disease. Respir. Res. 2022, 23, 267. [Google Scholar] [CrossRef]
- Wijnant, S.R.A.; De Roos, E.; Kavousi, M.; Stricker, B.H.; Terzikhan, N.; Lahousse, L.; Brusselle, G.G. Trajectory and mortality of preserved ratio impaired spirometry: The Rotterdam Study. Eur. Respir. J. 2020, 55, 1901217. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Ryu, J.; Chung, S.J.; Park, D.W.; Park, T.S.; Moon, J.Y.; Kim, T.H.; Sohn, J.W.; Yoon, H.J.; Kim, S.H. Overall and respiratory mortality reduction with physical activity in subjects with and without asthma. Allergy 2023, 78, 1677–1680. [Google Scholar] [CrossRef]
- Østergaard, E.B.; Sritharan, S.S.; Kristiansen, A.D.; Thomsen, P.M.; Løkke, A. Barriers and motivational factors towards physical activity in daily life living with COPD—An interview based pilot study. Eur. Clin. Respir. J. 2018, 5, 1484654. [Google Scholar] [CrossRef] [PubMed]
- Watz, H.; Pitta, F.; Rochester, C.L.; Garcia-Aymerich, J.; ZuWallack, R.; Troosters, T.; Vaes, A.W.; Puhan, M.A.; Jehn, M.; Polkey, M.I.; et al. An official European Respiratory Society statement on physical activity in COPD. Eur. Respir. J. 2014, 44, 1521–1537. [Google Scholar] [CrossRef]
- Wen, C.P.; Wai, J.P.; Tsai, M.K.; Yang, Y.C.; Cheng, T.Y.; Lee, M.C.; Chan, H.T.; Tsao, C.K.; Tsai, S.P.; Wu, X. Minimum amount of physical activity for reduced mortality and extended life expectancy: A prospective cohort study. Lancet 2011, 378, 1244–1253. [Google Scholar] [CrossRef]
- Elovainio, M.; Hakulinen, C.; Pulkki-Råback, L.; Virtanen, M.; Josefsson, K.; Jokela, M.; Vahtera, J.; Kivimäki, M. Contribution of risk factors to excess mortality in isolated and lonely individuals: An analysis of data from the UK Biobank cohort study. Lancet Public Health 2017, 2, e260–e266. [Google Scholar] [CrossRef]
- Celis-Morales, C.A.; Welsh, P.; Lyall, D.M.; Steell, L.; Petermann, F.; Anderson, J.; Iliodromiti, S.; Sillars, A.; Graham, N.; Mackay, D.F.; et al. Associations of grip strength with cardiovascular, respiratory, and cancer outcomes and all cause mortality: Prospective cohort study of half a million UK Biobank participants. BMJ 2018, 361, k1651. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.M.; Jylhävä, J.; Pedersen, N.L.; Hägg, S. A Frailty Index for UK Biobank Participants. J. Gerontol. Ser. A. Biol. Sci. Med. Sci. 2019, 74, 582–587. [Google Scholar] [CrossRef]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; van der Grinten, C.P.; Gustafsson, P.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef]
- Doiron, D.; de Hoogh, K.; Probst-Hensch, N.; Fortier, I.; Cai, Y.; De Matteis, S.; Hansell, A.L. Air pollution, lung function and COPD: Results from the population-based UK Biobank study. Eur. Respir. J. 2019, 54, 1802140. [Google Scholar] [CrossRef]
- Quanjer, P.H.; Stanojevic, S.; Cole, T.J.; Baur, X.; Hall, G.L.; Culver, B.H.; Enright, P.L.; Hankinson, J.L.; Ip, M.S.; Zheng, J.; et al. Multi-ethnic reference values for spirometry for the 3-95-yr age range: The global lung function 2012 equations. Eur. Respir. J. 2012, 40, 1324–1343. [Google Scholar] [CrossRef] [PubMed]
- Rabe, K.F.; Hurd, S.; Anzueto, A.; Barnes, P.J.; Buist, S.A.; Calverley, P.; Fukuchi, Y.; Jenkins, C.; Rodriguez-Roisin, R.; van Weel, C.; et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am. J. Respir. Crit. Care Med. 2007, 176, 532–555. [Google Scholar] [CrossRef] [PubMed]
- Mannino, D.M.; Diaz-Guzman, E. Interpreting lung function data using 80% predicted and fixed thresholds identifies patients at increased risk of mortality. Chest 2012, 141, 73–80. [Google Scholar] [CrossRef]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef]
- IPAQ Research Committee. Guidelines for Data Processing and Analysis of the International Physical Activity Questionnaire (IPAQ)—Short and Long Forms. 2005. Available online: https://biobank.ndph.ox.ac.uk/showcase/ukb/docs/ipaq_analysis.pdf (accessed on 16 November 2022).
- WHO. WHO Guidelines on Physical Activity and Sedentary Behaviour. 2020. Available online: https://iris.who.int/bitstream/handle/10665/336656/9789240015128-eng.pdf?sequence=1 (accessed on 13 April 2023).
- Hamer, M.; Sharma, N.; Batty, G.D. Association of objectively measured physical activity with brain structure: UK Biobank study. J. Intern. Med. 2018, 284, 439–443. [Google Scholar] [CrossRef]
- Ramakrishnan, R.; Doherty, A.; Smith-Byrne, K.; Rahimi, K.; Bennett, D.; Woodward, M.; Walmsley, R.; Dwyer, T. Accelerometer measured physical activity and the incidence of cardiovascular disease: Evidence from the UK Biobank cohort study. PLoS Med. 2021, 18, e1003487. [Google Scholar] [CrossRef]
- Chudasama, Y.V.; Zaccardi, F.; Gillies, C.L.; Dhalwani, N.N.; Yates, T.; Rowlands, A.V.; Davies, M.J.; Khunti, K. Leisure-time physical activity and life expectancy in people with cardiometabolic multimorbidity and depression. J. Intern. Med. 2020, 287, 87–99. [Google Scholar] [CrossRef]
- Emerging Risk Factors Collaboration; Angelantonio, E.D.; Kaptoge, S.; Wormser, D.; Willeit, P.; Butterworth, A.S.; Bansal, N.; O’Keeffe, L.M.; Gao, P.; Wood, A.M.; et al. Association of Cardiometabolic Multimorbidity With Mortality. JAMA 2015, 314, 52–60. [Google Scholar] [CrossRef]
- Tennant, P.W.G.; Murray, E.J.; Arnold, K.F.; Berrie, L.; Fox, M.P.; Gadd, S.C.; Harrison, W.J.; Keeble, C.; Ranker, L.R.; Textor, J.; et al. Use of directed acyclic graphs (DAGs) to identify confounders in applied health research: Review and recommendations. Int. J. Epidemiol. 2021, 50, 620–632. [Google Scholar] [CrossRef]
- Ramirez, F.D.; Chen, S.; Langan, S.M.; Prather, A.A.; McCulloch, C.E.; Kidd, S.A.; Cabana, M.D.; Chren, M.M.; Abuabara, K. Association of Atopic Dermatitis With Sleep Quality in Children. JAMA Pediatr. 2019, 173, e190025. [Google Scholar] [CrossRef]
- Evandt, J.; Oftedal, B.; Krog, N.H.; Skurtveit, S.; Nafstad, P.; Schwarze, P.E.; Skovlund, E.; Houthuijs, D.; Aasvang, G.M. Road traffic noise and registry based use of sleep medication. Environ. Health 2017, 16, 110. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Hu, Y.; Yu, C.; Guo, Y.; Pei, P.; Yang, L.; Chen, Y.; Du, H.; Sun, D.; Pang, Y.; et al. Lifestyle, cardiometabolic disease, and multimorbidity in a prospective Chinese study. Eur. Heart J. 2021, 42, 3374–3384. [Google Scholar] [CrossRef]
- Wang, Y.; Nie, J.; Ferrari, G.; Rey-Lopez, J.P.; Rezende, L.F.M. Association of Physical Activity Intensity With Mortality: A National Cohort Study of 403 681 US Adults. JAMA Intern. Med. 2021, 181, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Clarenbach, C.F.; Sievi, N.A.; Haile, S.R.; Brack, T.; Brutsche, M.H.; Frey, M.; Irani, S.; Leuppi, J.D.; Thurnheer, R.; Kohler, M. Determinants of annual change in physical activity in COPD. Respirology 2017, 22, 1133–1139. [Google Scholar] [CrossRef]
- Arokiasamy, P.; Uttamacharya, U.; Jain, K.; Biritwum, R.B.; Yawson, A.E.; Wu, F.; Guo, Y.; Maximova, T.; Espinoza, B.M.; Rodríguez, A.S.; et al. The impact of multimorbidity on adult physical and mental health in low- and middle-income countries: What does the study on global ageing and adult health (SAGE) reveal? BMC Med. 2015, 13, 178. [Google Scholar] [CrossRef]
- Ho, F.K.; Gray, S.R.; Welsh, P.; Petermann-Rocha, F.; Foster, H.; Waddell, H.; Anderson, J.; Lyall, D.; Sattar, N.; Gill, J.M.R.; et al. Associations of fat and carbohydrate intake with cardiovascular disease and mortality: Prospective cohort study of UK Biobank participants. BMJ 2020, 368, m688. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Xiang, Y.; Yang, X.; Chen, J.; Xian, W.; Wang, Y. Associations of sugary beverage consumption with chronic obstructive pulmonary disease, asthma, and asthma-chronic obstructive pulmonary disease overlap syndrome: A prospective cohort study. Am. J. Clin. Nutr. 2024, 120, 707–718. [Google Scholar] [CrossRef]
- Watts, E.L.; Matthews, C.E.; Freeman, J.R.; Gorzelitz, J.S.; Hong, H.G.; Liao, L.M.; McClain, K.M.; Saint-Maurice, P.F.; Shiroma, E.J.; Moore, S.C. Association of Leisure Time Physical Activity Types and Risks of All-Cause, Cardiovascular, and Cancer Mortality Among Older Adults. JAMA Netw. Open 2022, 5, e2228510. [Google Scholar] [CrossRef]
- Zhao, M.; Veeranki, S.P.; Li, S.; Steffen, L.M.; Xi, B. Beneficial associations of low and large doses of leisure time physical activity with all-cause, cardiovascular disease and cancer mortality: A national cohort study of 88,140 US adults. Br. J. Sports Med. 2019, 53, 1405–1411. [Google Scholar] [CrossRef]
- Baughman, P.; Marott, J.L.; Lange, P.; Martin, C.J.; Shankar, A.; Petsonk, E.L.; Hnizdo, E. Combined effect of lung function level and decline increases morbidity and mortality risks. Eur. J. Epidemiol. 2012, 27, 933–943. [Google Scholar] [CrossRef]
- Garcia-Aymerich, J.; Serra Pons, I.; Mannino, D.M.; Maas, A.K.; Miller, D.P.; Davis, K.J. Lung function impairment, COPD hospitalisations and subsequent mortality. Thorax 2011, 66, 585–590. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Cai, M.; Li, H.; Wang, X.; Tian, F.; Wu, Y.; Zhang, Z.; Lin, H. Risk/benefit tradeoff of habitual physical activity and air pollution on chronic pulmonary obstructive disease: Findings from a large prospective cohort study. BMC Med. 2022, 20, 70. [Google Scholar] [CrossRef]
- Shu, C.C.; Lee, J.H.; Tsai, M.K.; Su, T.C.; Wen, C.P. The ability of physical activity in reducing mortality risks and cardiovascular loading and in extending life expectancy in patients with COPD. Sci. Rep. 2021, 11, 21674. [Google Scholar] [CrossRef] [PubMed]
- Wouters, E.F.M.; Franssen, F.M.E.; Spruit, M.A. Survival and physical activity in COPD: A giant leap forward! Chest 2011, 140, 279–281. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.I.; Kuo, C.S. Relationship between respiratory muscle function and age, sex, and other factors. J. Appl. Physiol. 1989, 66, 943–948. [Google Scholar] [CrossRef]
- Benadjaoud, M.A.; Menai, M.; van Hees, V.T.; Zipunnikov, V.; Regnaux, J.P.; Kivimäki, M.; Singh-Manoux, A.; Sabia, S. The association between accelerometer-assessed physical activity and respiratory function in older adults differs between smokers and non-smokers. Sci. Rep. 2019, 9, 10270. [Google Scholar] [CrossRef]
- Carsin, A.E.; Keidel, D.; Fuertes, E.; Imboden, M.; Weyler, J.; Nowak, D.; Heinrich, J.; Erquicia, S.P.; Martinez-Moratalla, J.; Huerta, I.; et al. Regular Physical Activity Levels and Incidence of Restrictive Spirometry Pattern: A Longitudinal Analysis of 2 Population-Based Cohorts. Am. J. Epidemiol. 2020, 189, 1521–1528. [Google Scholar] [CrossRef]
- Spruit, M.A.; Pitta, F.; McAuley, E.; ZuWallack, R.L.; Nici, L. Pulmonary Rehabilitation and Physical Activity in Patients with Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2015, 192, 924–933. [Google Scholar] [CrossRef]
- Arem, H.; Moore, S.C.; Patel, A.; Hartge, P.; Berrington de Gonzalez, A.; Visvanathan, K.; Campbell, P.T.; Freedman, M.; Weiderpass, E.; Adami, H.O.; et al. Leisure time physical activity and mortality: A detailed pooled analysis of the dose-response relationship. JAMA Intern. Med. 2015, 175, 959–967. [Google Scholar] [CrossRef]
- Ekelund, U.; Sanchez-Lastra, M.A.; Dalene, K.E.; Tarp, J. Dose-response associations, physical activity intensity and mortality risk: A narrative review. J. Sport. Health Sci. 2024, 13, 24–29. [Google Scholar] [CrossRef]
- Longobardi, I.; Prado, D.; Goessler, K.F.; Meletti, M.M.; de Oliveira Júnior, G.N.; de Andrade, D.C.O.; Gualano, B.; Roschel, H. Oxygen uptake kinetics and chronotropic responses to exercise are impaired in survivors of severe COVID-19. Am. J. Physiol. Heart Circ. Physiol. 2022, 323, H569–H576. [Google Scholar] [CrossRef] [PubMed]
- Burn, N.L.; Weston, M.; Maguire, N.; Atkinson, G.; Weston, K.L. Effects of Workplace-Based Physical Activity Interventions on Cardiorespiratory Fitness: A Systematic Review and Meta-Analysis of Controlled Trials. Sports Med. 2019, 49, 1255–1274. [Google Scholar] [CrossRef] [PubMed]
- Lavie, C.J.; Church, T.S.; Milani, R.V.; Earnest, C.P. Impact of physical activity, cardiorespiratory fitness, and exercise training on markers of inflammation. J. Cardiopulm. Rehabil. Prev. 2011, 31, 137–145. [Google Scholar] [CrossRef]
- Fry, A.; Littlejohns, T.J.; Sudlow, C.; Doherty, N.; Adamska, L.; Sprosen, T.; Collins, R.; Allen, N.E. Comparison of Sociodemographic and Health-Related Characteristics of UK Biobank Participants With Those of the General Population. Am. J. Epidemiol. 2017, 186, 1026–1034. [Google Scholar] [CrossRef]
- Brigham, E.P.; West, N.E. Diagnosis of asthma: Diagnostic testing. Int. Forum Allergy Rhinol. 2015, 5 (Suppl. S1), S27–S30. [Google Scholar] [CrossRef]
- Gao, M.; Jebb, S.A.; Aveyard, P.; Ambrosini, G.L.; Perez-Cornago, A.; Carter, J.; Sun, X.; Piernas, C. Associations between dietary patterns and the incidence of total and fatal cardiovascular disease and all-cause mortality in 116,806 individuals from the UK Biobank: A prospective cohort study. BMC Med. 2021, 19, 83. [Google Scholar] [CrossRef]
- Chudasama, Y.V.; Khunti, K.K.; Zaccardi, F.; Rowlands, A.V.; Yates, T.; Gillies, C.L.; Davies, M.J.; Dhalwani, N.N. Physical activity, multimorbidity, and life expectancy: A UK Biobank longitudinal study. BMC Med. 2019, 17, 108. [Google Scholar] [CrossRef] [PubMed]
- Zemedikun, D.T.; Gray, L.J.; Khunti, K.; Davies, M.J.; Dhalwani, N.N. Patterns of Multimorbidity in Middle-Aged and Older Adults: An Analysis of the UK Biobank Data. Mayo Clin. Proc. 2018, 93, 857–866. [Google Scholar] [CrossRef]
- Barnett, K.; Mercer, S.W.; Norbury, M.; Watt, G.; Wyke, S.; Guthrie, B. Epidemiology of multimorbidity and implications for health care, research, and medical education: A cross-sectional study. Lancet 2012, 380, 37–43. [Google Scholar] [CrossRef]
- Chu, H.; Nie, L.; Cole, S.R. Estimating the relative excess risk due to interaction: A bayesian approach. Epidemiology 2011, 22, 242–248. [Google Scholar] [CrossRef]
- Sun, S.; Cao, W.; Qiu, H.; Ran, J.; Lin, H.; Shen, C.; Siu-Yin Lee, R.; Tian, L. Benefits of Physical Activity Not Affected by Air Pollution: A Prospective Cohort Study. Int. J. Epidemiol. 2020, 49, 142–152. [Google Scholar] [CrossRef] [PubMed]
Level * | Overall | Airflow Obstruction Severity † | p Value | ||
---|---|---|---|---|---|
Normal | Restricted | Obstructed | |||
Total number | 201,596 | 161,600 (80.16) | 13,593 (6.74) | 26,403 (13.10) | |
Death | <0.001 | ||||
Yes | 10,560 (5.24) | 7182 (4.44) | 1080 (7.95) | 2298 (8.70) | |
Sex | <0.001 | ||||
Female | 113,255 (56.18) | 93,730 (58.00) | 7747 (56.99) | 11,778 (44.61) | |
Male | 88,341 (43.82) | 67,870 (42.00) | 5846 (43.01) | 14,625 (55.39) | |
Age, year | 56.38 (7.99) | 55.85 (7.98) | 57.00 (7.78) | 59.25 (7.45) | <0.001 |
Follow-up, year | 11.81 (1.54) | 11.84 (1.46) | 11.67 (1.82) | 11.67 (1.85) | <0.001 |
BMI level | <0.001 | ||||
Healthy | 67,676 (33.57) | 54,647 (33.82) | 2984 (21.95) | 10,045 (38.04) | |
Underweight | 619 (0.31) | 458 (0.28) | 25 (0.18) | 136 (0.52) | |
Overweight | 87,148 (43.23) | 70,519 (43.64) | 5379 (39.57) | 11,250 (42.61) | |
Obesity | 46,153 (22.89) | 35,976 (22.26) | 5205 (38.29) | 4972 (18.83) | |
TDI | <0.001 | ||||
Quintile 1 | 40,316 (20.00) | 32,879 (20.35) | 2477 (18.22) | 4960 (18.79) | |
Quintile 2 | 40,319 (20.00) | 32,667 (20.21) | 2569 (18.90) | 5083 (19.25) | |
Quintile 3 | 40,316 (20.00) | 32,518 (20.12) | 2571 (18.91) | 5227 (19.80) | |
Quintile 4 | 40,325 (20.00) | 32,272 (19.97) | 2765 (20.34) | 5288 (20.03) | |
Quintile 5 | 40,320 (20.00) | 31,264 (19.35) | 3211 (23.62) | 5845 (22.14) | |
Yearly household income, £ | <0.001 | ||||
Less than 18,000 | 32,140 (15.94) | 23,845 (14.76) | 2729 (20.08) | 5566 (21.08) | |
18,000 to 30,999 | 44,101 (21.88) | 34,562 (21.39) | 3198 (23.53) | 6341 (24.02) | |
31,000 to 51,999 | 49,915 (24.76) | 41,055 (25.41) | 3107 (22.86) | 5753 (21.79) | |
52,000 to 100,000 | 42,807 (21.23) | 35,782 (22.14) | 2463 (18.12) | 4562 (17.28) | |
Greater than 100,000 | 12,176 (6.04) | 10,305 (6.38) | 586 (4.31) | 1285 (4.87) | |
Unknown | 20,457 (10.15) | 16,051 (9.93) | 1510 (11.11) | 2896 (10.97) | |
Employment status | <0.001 | ||||
Paid | 121,421 (60.23) | 100,689 (62.31) | 7737 (56.92) | 12,995 (49.22) | |
Retired | 66,778 (33.12) | 50,300 (31.13) | 4693 (34.53) | 11,785 (44.64) | |
Unpaid | 13,397 (6.65) | 10,611 (6.57) | 1163 (8.56) | 1623 (6.15) | |
Education level | <0.001 | ||||
Higher degree | 105,487 (52.33) | 86,154 (53.31) | 6315 (46.46) | 13,018 (49.31) | |
Any school degree | 59,074 (29.30) | 48,076 (29.75) | 4094 (30.12) | 6904 (26.15) | |
Vocational qualifications | 11,111 (5.51) | 8493 (5.26) | 880 (6.47) | 1738 (6.58) | |
Other | 25,924 (12.86) | 18,877 (11.68) | 2304 (16.95) | 4743 (17.96) | |
Alcohol intake frequency | <0.001 | ||||
Never | 11,203 (5.56) | 8629 (5.34) | 1025 (7.54) | 1549 (5.87) | |
Occasional | 40,763 (20.22) | 32,812 (20.30) | 3220 (23.69) | 4731 (17.92) | |
Moderate | 105,155 (52.16) | 85,262 (52.76) | 6636 (48.82) | 13,257 (50.21) | |
Heavy | 44,475 (22.06) | 34,897 (21.59) | 2712 (19.95) | 6866 (26.00) | |
Smoking Status | <0.001 | ||||
Never | 115,846 (57.46) | 95,938 (59.37) | 7443 (54.76) | 12,465 (47.21) | |
Previous | 79,954 (39.66) | 61,296 (37.93) | 5730 (42.15) | 12,928 (48.96) | |
Current | 5796 (2.88) | 4366 (2.70) | 420 (3.09) | 1010 (3.83) | |
Diet | <0.001 | ||||
Unhealthy | 25,396 (12.60) | 20,176 (12.49) | 1927 (14.18) | 3293 (12.47) | |
Moderate | 57,461 (28.50) | 45,625 (28.23) | 4102 (30.18) | 7734 (29.29) | |
Healthy | 115,670 (57.38) | 93,483 (57.85) | 7296 (53.67) | 14,891 (56.40) | |
Unknown | 3069 (1.52) | 2316 (1.43) | 268 (1.97) | 485 (1.84) | |
Sedentary time | <0.001 | ||||
Short | 71,089 (35.26) | 57,950 (35.86) | 4129 (30.38) | 9010 (34.12) | |
Moderate | 64,717 (32.10) | 51,932 (32.14) | 4358 (32.06) | 8427 (31.92) | |
Long | 64,094 (31.79) | 50,460 (31.23) | 4953 (36.44) | 8681 (32.88) | |
Unknown | 1696 (0.84) | 1258 (0.78) | 153 (1.13) | 285 (1.08) | |
Secondhand smoke exposure | <0.001 | ||||
No | 150,836 (74.82) | 121,729 (75.33) | 9664 (71.10) | 19,443 (73.64) | |
Yes | 39,997 (19.84) | 31,423 (19.44) | 3096 (22.78) | 5478 (20.75) | |
Unknown | 10,763 (5.34) | 8448 (5.23) | 833 (6.13) | 1482 (5.61) | |
FEV1, liter | 2.86 (0.74) | 2.99 (0.70) | 2.08 (0.47) | 2.46 (0.73) | <0.001 |
FVC, liter | 3.76 (0.94) | 3.84 (0.89) | 2.75 (0.64) | 3.77 (1.05) | <0.001 |
FEV1/FVC percentage, % | 76.03 (5.94) | 77.85 (3.89) | 75.72 (3.75) | 65.05 (5.35) | <0.001 |
Physical activity volume, MET-min/wk | |||||
Total | 2532.15 (2314.96) | 2541.28 (2310.57) | 2285.50 (2269.02) | 2603.25 (2356.91) | <0.001 |
Low intensity | 1016.66 (1048.56) | 1019.70 (1049.88) | 965.89 (1046.75) | 1024.17 (1040.67) | <0.001 |
Moderate intensity | 900.36 (1161.33) | 897.74 (1156.15) | 824.67 (1135.52) | 955.39 (1202.83) | <0.001 |
Vigorous intensity | 615.13 (931.323) | 623.84 (930.05) | 494.94 (861.471) | 623.69 (968.73) | <0.001 |
Level Physical activity volume | <0.001 | ||||
Low | 36,058 (17.89) | 28,245 (17.48) | 3251 (23.92) | 4562 (17.28) | |
Moderate | 83,500 (41.42) | 67,072 (41.50) | 5559 (40.90) | 10,869 (41.17) | |
High | 82,038 (40.69) | 66,283 (41.02) | 4783 (35.19) | 10,972 (41.56) |
Variable | Case/No. (%) | Model 1 * | Model 2 * | Model 3 * |
---|---|---|---|---|
Airflow obstruction severity † | ||||
Normal | 7182/161,600 (4.44) | 1.000 | 1.000 | 1.000 |
Restricted | 1080/13,593 (7.95) | 1.671 (1.567, 1.781) | 1.458 (1.367, 1.556) | 1.439 (1.348, 1.535) |
Obstructed | 2298/26,403 (8.70) | 1.415 (1.35, 1.484) | 1.351 (1.287, 1.417) | 1.346 (1.282, 1.412) |
Pfor trend | - | <0.001 | <0.001 | <0.001 |
Physical activity † | ||||
Continuous, MET-min/week | 10,560/201,596 (5.24) | 0.996 (0.995, 0.997) | 0.996 (0.996, 0.997) | 0.997 (0.996, 0.997) |
Low | 2282/36,058 (6.33) | 1.000 | 1.000 | 1.000 |
Moderate | 4317/83,500 (5.17) | 0.767 (0.729, 0.807) | 0.815 (0.775, 0.858) | 0.824 (0.782, 0.867) |
High | 3961/82,038 (4.83) | 0.708 (0.672, 0.745) | 0.756 (0.717, 0.797) | 0.767 (0.727, 0.808) |
Pfor trend | - | <0.001 | <0.001 | <0.001 |
Airflow Obstruction Severity † | Level PA Volume *,† | RERI ‡ | p for Interaction § | |||
---|---|---|---|---|---|---|
Low | Moderate | High | Moderate PA Level | High PA Level | ||
Subgroup analysis | - | |||||
Normal | 1.000 | 0.871 (0.817, 0.928) | 0.822 (0.769, 0.878) | - | - | |
Restricted | 1.000 | 0.727 (0.629, 0.840) | 0.650 (0.556, 0.761) | - | - | |
Obstructed | 1.000 | 0.771 (0.692, 0.859) | 0.701 (0.626, 0.784) | - | - | |
Joint analysis | 0.010 | |||||
Normal | 1.000 | 0.870 (0.816, 0.927) | 0.818 (0.767, 0.873) | - | - | |
Restricted | 1.679 (1.492, 1.889) | 1.214 (1.088, 1.354) | 1.072 (0.949, 1.212) | −0.34 (−0.56, −0.11) | −0.43 (−0.65, −0.20) | |
Obstructed | 1.511 (1.366, 1.672) | 1.150 (1.057, 1.251) | 1.053 (0.966, 1.149) | −0.23 (−0.40, −0.07) | −0.28 (−0.44, −0.11) |
PA Attributes | Airflow Obstruction Severity *,† | |||||
---|---|---|---|---|---|---|
Normal | Restricted | Obstructed | ||||
Case/No. (%) | HR (95% CI) | Case/No. (%) | HR (95% CI) | Case/No. (%) | HR (95% CI) | |
LMPA duration, min/wk | ||||||
0–45 | 458/8471 (5.41) | 1.000 | 145/1122 (12.92) | 183/1350 (13.56) | ||
46–149 | 1028/24,297 (4.23) | 0.796 (0.713, 0.889) | 196/2358 (8.31) | 0.729 (0.586, 0.906) | 328/3774 (8.69) | 0.699 (0.583, 0.839) |
150–300 | 1660/39,443 (4.21) | 0.762 (0.687, 0.846) | 242/3267 (7.40) | 0.654 (0.53, 0.807) | 529/6196 (8.54) | 0.677 (0.571, 0.802) |
301–450 | 1048/24,095 (4.35) | 0.749 (0.67, 0.838) | 136/1789 (7.60) | 0.626 (0.492, 0.795) | 344/4048 (8.50) | 0.644 (0.537, 0.773) |
451–600 | 760/16,669 (4.56) | 0.771 (0.685, 0.867) | 94/1210 (7.77) | 0.636 (0.487, 0.829) | 193/2706 (7.13) | 0.547 (0.445, 0.671) |
601–900 | 888/19,161 (4.63) | 0.729 (0.65, 0.818) | 119/1516 (7.85) | 0.608 (0.474, 0.779) | 282/3284 (8.59) | 0.594 (0.492, 0.719) |
901–1200 | 489/10,348 (4.73) | 0.724 (0.637, 0.824) | 59/825 (7.15) | 0.55 (0.404, 0.748) | 178/1827 (9.74) | 0.656 (0.532, 0.809) |
>1200 | 851/19,116 (4.45) | 0.699 (0.623, 0.785) | 89/1506 (5.91) | 0.473 (0.361, 0.621) | 261/3218 (8.11) | 0.57 (0.47, 0.691) |
VPA duration, min/wk | ||||||
0–9 | 3202/60,685 (5.28) | 1.000 | 667/6449 (10.34) | 1203/10,529 (11.43) | ||
10–74 | 1846/45,018 (4.10) | 0.875 (0.826, 0.928) | 196/3481 (5.63) | 0.668 (0.568, 0.786) | 466/7037 (6.62) | 0.682 (0.612, 0.761) |
75–150 | 1066/28,054 (3.80) | 0.867 (0.808, 0.93) | 114/1907 (5.98) | 0.718 (0.587, 0.878) | 287/4247 (6.76) | 0.738 (0.648, 0.841) |
151–225 | 451/12,055 (3.74) | 0.881 (0.797, 0.973) | 33/736 (4.48) | 0.545 (0.384, 0.776) | 134/1885 (7.11) | 0.814 (0.679, 0.974) |
226–300 | 293/8487 (3.45) | 0.796 (0.706, 0.898) | 39/522 (7.47) | 0.926 (0.669, 1.282) | 91/1407 (6.47) | 0.716 (0.578, 0.887) |
>300 | 324/7301 (4.44) | 0.866 (0.771, 0.971) | 31/498 (6.22) | 0.668 (0.465, 0.96) | 117/1298 (9.01) | 0.829 (0.685, 1.004) |
VPA proportion, % | ||||||
0 | 3202/60,685 (5.28) | 1.000 | 667/6449 (10.34) | 1.000 | 1203/10,529 (11.43) | 1.000 |
0–24 | 1748/41,162 (4.25) | 0.859 (0.81, 0.911) | 187/3067 (6.10) | 0.668 (0.465, 0.96) | 480/6659 (7.21) | 0.705 (0.633, 0.786) |
25–49 | 1422/36,849 (3.86) | 0.861 (0.808, 0.917) | 146/2553 (5.72) | 0.691 (0.586, 0.816) | 403/5722 (7.04) | 0.763 (0.68, 0.856) |
50–74 | 670/18,774 (3.57) | 0.881 (0.809, 0.958) | 64/1259 (5.08) | 0.684 (0.571, 0.821) | 184/2875 (6.40) | 0.735 (0.628, 0.86) |
≥75 | 140/4130 (3.39) | 0.976 (0.823, 1.157) | 16/265 (6.04) | 0.641 (0.495, 0.83) | 28/618 (4.53) | 0.606 (0.416, 0.883) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Wang, C.; Zhang, S.; Wei, S.; Zhao, J.; Zhang, Z. Habitual Physical Activity and All-Cause Mortality Among Individuals with and Without Impaired Lung Function: Findings from a Prospective Cohort Study. Green Health 2025, 1, 6. https://doi.org/10.3390/greenhealth1020006
Chen L, Wang C, Zhang S, Wei S, Zhao J, Zhang Z. Habitual Physical Activity and All-Cause Mortality Among Individuals with and Without Impaired Lung Function: Findings from a Prospective Cohort Study. Green Health. 2025; 1(2):6. https://doi.org/10.3390/greenhealth1020006
Chicago/Turabian StyleChen, Lan, Chongjian Wang, Shiyu Zhang, Shengtao Wei, Jinde Zhao, and Zilong Zhang. 2025. "Habitual Physical Activity and All-Cause Mortality Among Individuals with and Without Impaired Lung Function: Findings from a Prospective Cohort Study" Green Health 1, no. 2: 6. https://doi.org/10.3390/greenhealth1020006
APA StyleChen, L., Wang, C., Zhang, S., Wei, S., Zhao, J., & Zhang, Z. (2025). Habitual Physical Activity and All-Cause Mortality Among Individuals with and Without Impaired Lung Function: Findings from a Prospective Cohort Study. Green Health, 1(2), 6. https://doi.org/10.3390/greenhealth1020006