Anthropogenic Impact and Antimicrobial Resistance Occurrence in South American Wild Animals: A Systematic Review and Meta-Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction and Classification
2.4. Statistical Analysis
3. Results
3.1. Systematic Review
3.1.1. Studies Classification
3.1.2. Type of Environment, Animals, and Bacteria Studied
3.1.3. Meta-Analysis
3.2. AMR Proportions in Bacteria Isolated from Free-Living Wild Animals
3.3. AMR Proportions in Enterobacterales Isolated from Free-Living Wild Animals
3.4. Heterogeneity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMR | Antimicrobial resistance |
ARB | Antimicrobial-resistant bacteria |
ARG | Antimicrobial-resistance genes |
ESBL | Enterobacteriaceae producing Extended Spectrum Beta-Lactamases |
AI | Anthropogenic impact |
I² | Inconsistency index statistic |
References
- Taylor, L.H.; Latham, S.M.; Woolhouse, M.E.T. Risk factors for human disease emergence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2001, 356, 983–989. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.E.; Patel, N.G.; Levy, M.A.; Storeygard, A.; Balk, D.; Gittleman, J.L.; Daszak, P. Global trends in emerging infectious diseases. Nature 2008, 451, 990–993. [Google Scholar] [CrossRef] [PubMed]
- Van Boeckel, T.P.; Glennon, E.E.; Chen, D.; Gilbert, M.; Robinson, T.P.; Grenfell, B.T.; Levin, S.A.; Bonhoeffer, S.; Laxminarayan, R. Reducing antimicrobial use in food animals: Consider user fees and regulatory caps on veterinary use. Science 2017, 351, 1350–1352. [Google Scholar] [CrossRef]
- Cabello, F.C.; Godfrey, H.P.; Tomova, A.; Ivanova, L.; Dölz, H.; Millanao, A.; Buschmann, A.H. Aquacultural antimicrobial use and antimicrobial resistance. Environ. Microbiol. 2013, 15, 1917–1942. [Google Scholar] [CrossRef] [PubMed]
- Millanao, A.; Barrientos-Schaffeld, C.; Siegel-Tike, C.; Tomova, A.; Ivanova, L.; Godfrey, H.; Dölz, H.; Buschmann, A.; Cabello, F. Resistencia a los antimicrobianos en Chile y el paradigma de Una Salud: Manejando los riesgos para la salud pública humana y animal resultante del uso de antimicrobianos en la acuicultura del salmón y en medicina. Rev. Chil. Infectol. 2018, 35, 299–308. [Google Scholar] [CrossRef]
- O’ Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. HM Gov. 2016. Available online: https://apo.org.au/node/63983 (accessed on 24 November 2024).
- Bonnedahl, J.; Järhult, J.D. Antibiotic resistance in wild birds. J. Med. Sci. 2014, 119, 113–116. [Google Scholar] [CrossRef]
- Radhouani, H.; Silva, N.; Poeta, P.; Torres, C.; Correia, S.; Igrejas, G. Potential impact of antimicrobial resistance in wildlife, environment and human health. Front. Microbiol. 2014, 5, 66221. [Google Scholar] [CrossRef]
- Furness, L.E.; Campbell, A.; Zhang, L.; Gaze, W.H.; McDonald, R.A. Wild small mammals as sentinels for the environmental transmission of antimicrobial resistance. Environ. Res. J. 2017, 154, 28–34. [Google Scholar] [CrossRef]
- Kmeť, V.; Čuvalová, A.; Stanko, M. Small mammals as sentinels of antimicrobial-resistant staphylococci. Folia Microbiol. 2018, 63, 665–668. [Google Scholar] [CrossRef]
- Hassell, J.M.; Ward, M.J.; Muloi, D.; Bettridge, J.M.; Robinson, T.P.; Kariuki, S.; Ogendo, A.; Kiiru, J.; Imboma, T.; Kang’ethe, E.K.; et al. Clinically relevant antimicrobial resistance at the wildlife–livestock–human interface in Nairobi: An epidemiological study. Lancet Planet Health 2019, 3, e259–e269. [Google Scholar] [CrossRef] [PubMed]
- Dolejska, M. Antibiotic-Resistant Bacteria in Wildlife. In Antibiotic Resistance in the Environment. The Handbook of Environmental Chemistry; Manaia, C., Donner, E., Vaz-Moreira, I., Hong, P., Eds.; Springer: Cham, Switzerland, 2020; Volume 91, Available online: https://rdcu.be/d1kfD (accessed on 24 November 2024).
- Guenther, S.; Ewers, C.; Wieler, L.H. Extended-Spectrum Beta-Lactamases Producing E. coli in Wildlife, yet Another Form of Environmental Pollution? Front. Microbiol. 2011, 2, 17304. [Google Scholar] [CrossRef] [PubMed]
- Dolejska, M.; Papagiannitsis, C.C. Plasmid-mediated resistance is going wild. Plasmid 2018, 99, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Costa, D.; Poeta, P.; Sáenz, Y.; Vinué, L.; Jouini, A.; Zarazaga, M.; Rodrigues, J.; Torres, C. Detection of Escherichia coli harbouring extended-spectrum β-lactamases of the CTX-M, TEM and SHV classes in faecal samples of wild animals in Portugal. J. Antimicrob. Chemother. 2006, 58, 1311–1312. [Google Scholar] [CrossRef]
- Silva, N.; Igrejas, G.; Rodrigues, P.; Rodrigues, T.; Goncalves, A.; Felgar, A.C.; Pacheco, R.; Goncalves, D.; Cunha, R.; Poeta, P. Molecular characterization of vancomycin-resistant enterococci and extended-spectrum beta-lactamase-containing Escherichia coli isolates wild birds from the Azores Archipelago. Avian Pathol. 2011, 40, 473–479. [Google Scholar] [CrossRef]
- Ho, P.L.; Lo, W.U.; Lai, E.L.; Law, P.Y.; Leung, S.M.; Wang, Y.; Chow, K.H. Clonal diversity of CTX-M-producing, multidrug-resistant Escherichia coli from rodents. J. Med. Microbiol. 2015, 64, 586. [Google Scholar] [CrossRef]
- Solà-Ginés, M.; González-López, J.J.; Cameron-Veas, K.; Piedra-Carrasco, N.; Cerdà-Cuéllar, M.; Migura-Garcia, L. Houseflies (Musca domestica) as Vectors for Extended-Spectrum β-Lactamase-Producing Escherichia coli on Spanish Broiler Farms. Appl. Environ. Microbiol. 2015, 81, 3604–3611. [Google Scholar] [CrossRef]
- Wang, J.; Ma, B.; Zeng, L.; Yang, W.; Huang, Y.; Liu, H. The role of wildlife (wild birds) in the global transmission of antimicrobial resistance genes. Zool. Res. 2017, 38, 55–80. [Google Scholar] [CrossRef]
- Brahmi, S.; Touati, A.; Dunyach-Remy, C.; Sotto, A.; Pantel, A.; Lavigne, J.P. High prevalence of extended-spectrum beta-lactamase-producing Enterobacteriaceae in wild fish from the Mediterranean Sea in Algeria. Microb. Drug Resist. 2018, 24, 290–298. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; Da Fonseca, G.A.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Newbold, T.; Hudson, L.N.; Hill, S.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global effects of land use on local terrestrial biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.A.; Grace, D.; Kock, R.; Alonso, S.; Rushton, J.; Said, M.Y.; McKeever, D.; Mutua, F.; Young, J.; McDermott, J.; et al. Zoonosis emergence linked to agricultural intensification and environmental change. Proc. Natl. Acad. Sci. USA 2013, 110, 8399–8404. [Google Scholar] [CrossRef] [PubMed]
- White, R.J.; Razgour, O. Emerging zoonotic diseases originating in mammals: A systematic review of effects of anthropogenic land-use change. Mamm. Rev. 2020, 50, 336–352. [Google Scholar] [CrossRef] [PubMed]
- Rossi, F. The Challenges of Antimicrobial Resistance in Brazil. Clin. Infect. Dis. 2011, 52, 1138–1143. [Google Scholar] [CrossRef]
- Pan American Health Organization (a). Perfil de País Perú—Resistencia Antimicrobiana. 2009. Available online: https://iris.paho.org/bitstream/handle/10665.2/51800/9789275329702_spa.pdf (accessed on 25 November 2024).
- Pan American Health Organization (b). Perfil de País Bolivia—Resistencia Antimicrobiana. 2009. Available online: https://iris.paho.org/bitstream/handle/10665.2/51801/9789275329450_spa.pdf (accessed on 25 November 2024).
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int. J. Surg. 2010, 8, 336–341. [Google Scholar] [CrossRef]
- Jacobson, A.P.; Riggio, J. Global areas of low human impact (‘Low Impact Areas’) and fragmentation of the natural world. Sci. Rep. 2019, 9, 14179. [Google Scholar] [CrossRef]
- QGIS.org. QGIS Geographic Information System. 2023. Available online: http://qgis.org (accessed on 25 November 2024).
- Microsoft Corporation. Microsoft Excel. 2024. Available online: https://office.microsoft.com/excel (accessed on 25 December 2024).
- Miro. The Innovation Workspace. 2024. Available online: https://miro.com (accessed on 25 December 2024).
- Schwarzer, G. General Package for Meta-Analysis. 2023. Available online: https://cran.r-project.org/web/packages/meta/meta.pdf (accessed on 25 November 2024).
- Higgins, J.P.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef]
- Deeks, J.; Higgins, J.; Altman, D. Chapter 9: Analysing data and undertaking meta-analyses. In Handbook for Systematic Reviews of Interventions Version 5.1.0; The Cochrane Collaboration: Chichester, UK, 2011. [Google Scholar]
- Hunter, J.P.; Saratzis, A.; Sutton, A.J.; Boucher, R.H.; Sayers, R.D.; Bown, M.J. In meta-analyses of proportion studies, funnel plots were found to be an inaccurate method of assessing publication bias. J. Clin. Epidemiol. 2014, 67, 897–903. [Google Scholar] [CrossRef]
- Bonnedahl, J.; Drobni, M.; Gauthier-Clerc, M.; Hernandez, J.; Granholm, S.; Kayser, Y.; Melhus, Å.; Kahlmeter, G.; Waldenström, J.; Johansson, A.; et al. Dissemination of Escherichia coli with CTX-M Type ESBL between Humans and Yellow-Legged Gulls in the South of France. PLoS ONE 2009, 4. [Google Scholar] [CrossRef]
- Skurnik, D.; Clermont, O.; Guillard, T.; Launay, A.; Danilchanka, O.; Pons, S.; Diancourt, L.; Lebreton, F.; Kadlec, K.; Roux, D.; et al. Emergence of Antimicrobial-Resistant Escherichia coli of Animal Origin Spreading in Humans. Mol. Biol. Evol. 2016, 33, 898–914. [Google Scholar] [CrossRef][Green Version]
- Vittecoq, M.; Godreuil, S.; Prugnolle, F.; Durand, P.; Brazier, L.; Renaud, N.; Arnal, A.; Aberkane, S.; Jean-Pierre, H.; Gauthier-Clerc, M.; et al. Antimicrobial resistance in wildlife. J. Appl. Ecol. 2016, 53, 519–529. [Google Scholar] [CrossRef]
- Vitenskapskomiteen for Mat og Miljø (VKM). Antimicrobial Resistance in Wildlife—Potential for Dissemination Opinion of the Panel on Microbial Ecology of the Norwegian Scientific Committee for Food and Environment. 2018. Available online: https://vkm.no/download/18.7a26f9821622412b0ec270aa/1521631878577/Antimicrobial%20resistance%20in%20wildlife%20potential%20for%20dissemination.pdf (accessed on 25 November 2024).
- Zheng, D.; Yin, G.; Liu, M.; Chen, C.; Jiang, Y.; Hou, L.; Zheng, Y. A systematic review of antibiotics and antibiotic resistance genes in estuarine and coastal environments. Sci. Total Environ. 2021, 777, 146009. [Google Scholar] [CrossRef] [PubMed]
- Carter, D.L.; Docherty, K.M.; Gill, S.A.; Baker, K.; Teachout, J.; Vonhof, M.J. Antibiotic resistant bacteria are widespread in songbirds across rural and urban environments. Sci. Total Environ. 2018, 627, 1234–1241. [Google Scholar] [CrossRef] [PubMed]
- Swift, B.M.; Bennett, M.; Waller, K.; Dodd, C.; Murray, A.; Gomes, R.L.; Humphreys, B.; Hobman, J.L.; Jones, M.A.; Whitlock, S.E.; et al. Anthropogenic environmental drivers of antimicrobial resistance in wildlife. Sci. Total Environ. 2019, 649, 12–20. [Google Scholar] [CrossRef]
- Allen, H.K.; Donato, J.; Wang, H.H.; Cloud-Hansen, K.; Davies, J.; Handelsman, J. Call of the wild: Antibiotic resistance genes in natural environments. Nat. Rev. Microbiol. 2008, 8, 251–259. [Google Scholar] [CrossRef]
- Pătrînjan, R.T.; Morar, A.; Ban-Cucerzan, A.; Popa, S.A.; Imre, M.; Morar, D.; Imre, K. Systematic Review of the Occurrence and Antimicrobial Resistance Profile of Foodborne Pathogens from Enterobacteriaceae in Wild Ungulates Within the European Countries. Pathogens 2024, 13, 1046. [Google Scholar] [CrossRef]
- Tinoco Torres, R.; Carvalho, J.; Cunha, M.; Serrano, E.; Palmeira, J.; Fonseca, C. A systematic review of AMR in wildlife: Temporal and geographical distribution trends. One Health 2020, 11, 100198. [Google Scholar] [CrossRef]
- Ramos, C.P.; Santana, J.A.; Morcatti Coura, F.; Xavier, R.G.C.; Leal, C.A.G.; Oliveira Junior, C.A.; Heinemann, M.B.; Lage, A.P.; Lobato, F.C.F.; Silva, R.O.S. Identification and Characterization of Escherichia coli, Salmonella spp., Clostridium perfringens, and C. difficile Isolates from Reptiles in Brazil. Biomed Res. Int. 2019, 9, 9530732. [Google Scholar] [CrossRef]
- Lozano, C.; González-Barrio, D.; García, J.T.; Ceballos, S.; Olea, P.P.; Ruiz-Fons, F.; Torres, C. Detection of vancomycin-resistant Enterococcus faecalis ST6-vanB2 and E. faecium ST915-vanA in faecal samples of wild Rattus rattus in Spain. Vet. Microbiol. 2008, 177, 168–174. [Google Scholar] [CrossRef]
- Davison, H.C.; Woolhouse, M.E.; Low, J. What is antibiotic resistance and how can we measure it? Trends Microbiol. 2000, 8, 554–559. [Google Scholar] [CrossRef]
- Song, E.; Mejías, A.; Antonara, S. Serratia Species. Pediatr. Infect. Dis. 2018, 145, 835–837. [Google Scholar] [CrossRef]
- Nikaido, H.; Rosenberg, E.Y.; Foulds, J. Porin channels in Escherichia coli: Studies with beta-lactams in intact cells. J. Bacteriol. 1983, 153, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Dib, J.; Motok, J.; Zenoff, V.F.; Ordoñez, O.; Farías, M.E. Occurrence of resistance to antibiotics, UV-B, and arsenic in bacteria isolated from extreme environments in high-altitude (above 4400 m) Andean wetlands. Curr. Microbiol. 2008, 56, 510–517. [Google Scholar] [CrossRef] [PubMed]
- Dib, J.R.; Weiss, A.; Neumann, A.; Ordoñez, O.; Estévez, M.C.; Farías, M.E. Isolation of bacteria from remote high altitude Andean lakes able to grow in the presence of antibiotics. Recent Patents Anti-Infect. Drug Discov. 2009, 4, 66–76. [Google Scholar] [CrossRef]
- Ferreira, C.; Otani, S.; Aarestrup, F.M.; Manaia, C.M. Quantitative PCR versus metagenomics for monitoring antibiotic resistance genes: Balancing high sensitivity and broad coverage. FEMS Microbiol. Lett. 2023, 4, xtad008. [Google Scholar] [CrossRef]
Bacteria Species 1 | Free-Living Wild Animals | Bacteria Species 1 | Captive Wild Animals |
---|---|---|---|
Escherichia coli | 38 | Escherichia coli | 28 |
Salmonella enterica | 21 | Salmonella enterica | 13 |
Enterococcus faecium | 6 | Klebsiella pneumoniae | 6 |
Enterobacter cloacae | 5 | Proteus mirabilis | 5 |
Enterococcus faecalis | 5 | Enterobacter cloacae | 4 |
Klebsiella pneumoniae | 4 | Pseudomonas aeruginosa | 4 |
Pantoea agglomerans | 4 | Staphylococcus aureus | 4 |
Enterococcus hirae | 4 | Enterococcus faecalis | 3 |
Citrobacter freundii | 4 | Pantoea agglomerans | 3 |
Enterococcus casseliflavus | 4 | Staphylococcus epidermidis | 3 |
Animal Species 1 | Free-Living Wild Animals | Animal Species 1 | Captive Wild Animals |
---|---|---|---|
Larus dominicanus- Kelp gull | 8 | Amazona aestiva- Blue-fronted amazon | 10 |
Spheniscus magellanicus- Magellanic penguin | 7 | Amazona amazonica- Orange-winged amazon | 4 |
Larus pipixcan- Franklin’s gull | 6 | Anodorhynchus hyacinthinus- Hyacinth macaw | 4 |
Chelonia mydas- Green sea turtle | 3 | Eupsittula cactorum- Caatinga parakeet | 4 |
Carollia perspicillata- Seba’s short-tailed bat | 3 | Sicalis flaveola- Saffron finch | 3 |
Desmodus rotundus- Common vampire bat | 3 | Chrysocyon brachyurus- Brazilian maned-wolf | 3 |
Didelphis marsupialis- Common opossum | 3 | Ara chloropterus- Red-and-green macaw | 3 |
Fregata magnificens- Magnificent frigatebird | 3 | Ara macao- Scarlet macaw | 3 |
Molossus molossus- Velvety free-tailed bat | 3 | Cerdocyon thous- Crab-eating fox | 3 |
Nasua nasua- South American coati | 2 | Ara ararauna- Blue-and-yellow macaws | 3 |
Antimicrobial Class | Antimicrobial | Low AI | High AI | p-Value | I2 |
---|---|---|---|---|---|
-lactams | Amoxicillin | 0.296 (160) | 0.916 (190) | <0.0001 | 82.9% |
Ampicillin | 0.552 (388) | 0.235 (1565) | 0.0001 | 89.4% | |
Aztreonam | 0.002 (95) | 0.087 (207) | 0.0136 | 51% | |
Cefepime | 0.076 (198) | 0.119 (258) | 0.4638 | 72.6% | |
Cefotaxime | 0.071 (273) | 0.110 (391) | 0.4446 | 77.8% | |
Cefoxitin | 0.012 (184) | 0.026 (216) | 0.4864 | 44.3% | |
Ceftazidime | 0.039 (338) | 0.098 (215) | 0.1467 | 63.2% | |
Ceftiofur | 0.385 (36) | 0.005 (393) | 0.0093 | 42.6% | |
Ceftriaxone | 0.114 (141) | 0.060 (246) | 0.3400 | 74.2% | |
Cephalexin | 0.669 (97) | 0.431 (97) | 0.2256 | 81.2% | |
Cephalothin | 0.075 (132) | 0.675 (110) | <0.0001 | 77.6% | |
Ertapenem | 0.000 (165) | 0.001 (225) | 0.5360 | 0% | |
Imipenem | 0.007 (224) | 0.004 (166) | 0.7132 | 0% | |
Meropenem | 0.063 (57) | 0.001 (323) | 0.0346 | 0% | |
Piperacillin | 0.000 (89) | 1 (24) | <0.0001 | 79.1% | |
Ticarcillin | 0.003 (89) | 1 (24) | <0.0001 | 77.9% | |
Aminoglycosides | Amikacin | 0.000 (356) | 0.004 (486) | 0.1330 | 0% |
Gentamicin | 0.003 (515) | 0.019 (1643) | 0.0098 | 34.6% | |
Kanamycin | 0.001 (326) | 0.043 (466) | 0.0111 | 65.5% | |
Netilmicin | 0.000 (89) | 0.116 (95) | 0.0077 | 37.2% | |
Streptomycin | 0.003 (253) | 0.074 (1433) | <0.0001 | 83.5% | |
Tobramycin | 0.000 (89) | 0.060 (229) | 0.0041 | 58.5% | |
Quinolones | Ciprofloxacin | 0.015 (375) | 0.049 (1188) | 0.0566 | 68.8% |
Enrofloxacin | 0.074 (26) | 0.032 (299) | 0.6245 | 59% | |
Levofloxacin | 0.000 (123) | 0.170 (68) | 0.0080 | 60.1% | |
Nalidixic acid | 0.000 (351) | 0.193 (667) | <0.0001 | 80.7% | |
Norfloxacin | 0.000 (10) | 0.125 (723) | 0.0367 | 88.8% | |
Ofloxacin | 0.000 (89) | 0.477 (39) | 0.0006 | 69.5% | |
-lactamase inhibitors | Amoxicillin–clavulanic acid | 0.213 (270) | 0.286 (361) | 0.3563 | 73.5% |
Piperacillin plus tazobactam | 0.000 (101) | 0.007 (175) | 0.1668 | 0% | |
Ticarcillin–clavulanic acid | 0.000 (89) | 0.854 (24) | <0.0001 | 66.4% | |
Macrolides | Azithromycin | 0.000 (34) | 0.275 (188) | <0.0001 | 65.6% |
Erythromycin | 0.136 (68) | 0.170 (610) | 0.7361 | 86.3% | |
Fosfomycin | 0.002 (94) | 0.444 (23) | 0.0008 | 36% | |
Sulfonamides | Sulphonamide | 0.014 (204) | 0.105 (161) | 0.0119 | 41.5% |
Trimethoprim-sulfamethoxazole | 0.044 (258) | 0.043 (818) | 0.9666 | 66.6% | |
Tetracyclines | Doxycycline | 0.022 (79) | 0.016 (29) | 0.8757 | 41.2% |
Tetracyclines | 0.055 (430) | 0.095 (1873) | 0.1892 | 82.9% | |
Amphenicols | Chloramphenicol | 0.006 (349) | 0.034 (1788) | 0.0092 | 65% |
Antimycobacterial | Rifampicin | 0.775 (4) | 0.538 (539) | 0.6269 | 93.3% |
Glycopeptides | Vancomycin | 0.000 (34) | 0.001 (603) | 0.6663 | 69.1% |
Nitrofurans | Nitrofurantoin | 0.000 (172) | 0.014 (737) | 0.0246 | 20.5% |
Polypeptides | Colistin | 0.112 (135) | 0.046 (62) | 0.2091 | 58.3% |
Antimicrobial Class | Antimicrobial | Low AI | High AI | p-Value | I2 |
---|---|---|---|---|---|
-lactams | Amoxicillin | 0.296 (160) | 0.881 (154) | <0.0001 | 82.5% |
Ampicillin | 0.630 ( 320) | 0.355 (519) | 0.0096 | 85.1% | |
Aztreonam | 0.002 (95) | 0.113 (191) | 0.0079 | 53.9% | |
Cefepime | 0.027 (165) | 0.146 (229) | 0.0340 | 73.5% | |
Cefotaxime | 0.011 ( 239) | 0.116 (379) | 0.0053 | 78.4% | |
Cefoxitin | 0.012 (184) | 0.033 (178) | 0.4223 | 50.7% | |
Ceftazidime | 0.002 (295) | 0.175 (215) | <0.0001 | 62.5% | |
Ceftiofur | 0.443 (35) | 0.005 (392) | 0.0068 | 43.8% | |
Ceftriaxone | 0.039 (96) | 0.065 (217) | 0.5650 | 60.5% | |
Cephalexin | 0.669 (97) | 0.325 (81) | 0.1372 | 82% | |
Cephalothin | 0.018 (99) | 0.675 (110) | <0.0001 | 80.4% | |
Ertapenem | 0.000 (165) | 0.002 (209) | 0.5005 | 0% | |
Imipenem | 0.000 (181) | 0.006 (137) | 0.1945 | 0% | |
Meropenem | 0.004 (24) | 0.001 (258) | 0.7756 | 0% | |
Aminoglycosides | Amikacin | 0.000 (467) | 0.002 (927) | 0.1764 | 0% |
Gentamicin | 0.001 (437) | 0.027 (772) | 0.0012 | 22.5% | |
Kanamycin | 0.001 (292) | 0.001 (75) | 0.9175 | 0% | |
Streptomycin | 0.003 (219) | 0.077 (419) | 0.0069 | 76.1% | |
Tobramycin | 0.000 (89) | 0.058 (195) | 0.0063 | 51.3% | |
Quinolones | Ciprofloxacin | 0.010 (297) | 0.054 (600) | 0.0399 | 63.2% |
Enrofloxacin | 0.091 (25) | 0.025 (261) | 0.4846 | 8.2% | |
Nalidixic acid | 0.001 (351) | 0.216 (437) | <0.0001 | 81.9% | |
-lactamase inhibitors | Amoxicillin–clavulanic acid | 0.167 (236) | 0.315 (310) | 0.0635 | 71.2% |
Piperacillin plus tazobactam | 0.000 (101) | 0.012 (138) | 0.0943 | 0% | |
Sulfonamides | Sulphonamide | 0.014 (204) | 0.105 (161) | 0.0119 | 41.5% |
Trimethoprim-sulfamethoxazole | 0.036 (183) | 0.048 (702) | 0.7239 | 74.7% | |
Tetracyclines | Doxycycline | 0.022 (79) | 0.016 (29) | 0.8757 | 41.2% |
Tetracyclines | 0.064 (362) | 0.116 (772) | 0.2118 | 78.8% | |
Amphenicols | Chloramphenicol | 0.004(314) | 0.042(715) | 0.0050 | 52.4% |
Nitrofurans | Nitrofurantoin | 0.000 (138) | 0.004 (150) | 0.2907 | 0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez Maldonado, M.; Urzúa-Encina, C.; Ariyama, N.; Retamal, P. Anthropogenic Impact and Antimicrobial Resistance Occurrence in South American Wild Animals: A Systematic Review and Meta-Analysis. Wild 2025, 2, 14. https://doi.org/10.3390/wild2020014
Pérez Maldonado M, Urzúa-Encina C, Ariyama N, Retamal P. Anthropogenic Impact and Antimicrobial Resistance Occurrence in South American Wild Animals: A Systematic Review and Meta-Analysis. Wild. 2025; 2(2):14. https://doi.org/10.3390/wild2020014
Chicago/Turabian StylePérez Maldonado, Manuel, Constanza Urzúa-Encina, Naomi Ariyama, and Patricio Retamal. 2025. "Anthropogenic Impact and Antimicrobial Resistance Occurrence in South American Wild Animals: A Systematic Review and Meta-Analysis" Wild 2, no. 2: 14. https://doi.org/10.3390/wild2020014
APA StylePérez Maldonado, M., Urzúa-Encina, C., Ariyama, N., & Retamal, P. (2025). Anthropogenic Impact and Antimicrobial Resistance Occurrence in South American Wild Animals: A Systematic Review and Meta-Analysis. Wild, 2(2), 14. https://doi.org/10.3390/wild2020014