Refining Camera Trap Surveys for Mammal Detection and Diversity Assessment in the Baviaanskloof Catchment, South Africa
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Survey Design
2.3. Data Analysis
3. Results
3.1. Survey Design and Detection Patterns
3.2. Capture Frequency and Species Occupancy
Latin Name | Common Name | Taxonomic Order | Captures | Sites | CaptureRate | Naïve(ѱ) | Occupancy (psi) | Detection (p) |
---|---|---|---|---|---|---|---|---|
Orycteropus afer | aardvark | Insectivore | 6 | 4 | 0.05 | 0.03 | 0.29 (−0.51, 1.08) | 0.08 (−0.54–0.70) |
Proteles cristata | aardwolf | Insectivore | 40 | 10 | 0.31 | 0.08 | 0.07 (−0.02, 0.15) | 0.28 (−0.07–0.62) |
Felis silvestris lybica | African wild cat | Carnivore | 14 | 7 | 0.11 | 0.05 | 0.75 (0.05, 1.45) | 0.27 (−0.04–0.57) |
Papio ursinus | baboon | Omnivore | 6327 | 126 | 48.3 | 0.96 | 0.94 (0.85, 1.03) | 0.37 (0.04–0.79) |
Otocyon megalotis | bat-eared fox | Insectivore | 74 | 12 | 0.56 | 0.09 | 0.08 (−0.03, 0.19) | 0.30 (0.01–0.58) |
Canis mesomelas | black backed jackal | Carnivore | 21 | 16 | 0.16 | 0.12 | 0.96 (0.78, 1.14) | 0.26 (−0.01–0.53) |
Damaliscus pygargus | bontebok | Large Herbivore | 28 | 5 | 0.21 | 0.04 | 0.03 (−0.03, 0.09) | 0.19 (−0.20–0.60) |
Tragelaphus sylvaticus | bushbuck | Large Herbivore | 2353 | 58 | 17.96 | 0.44 | 0.42 (0.24, 0.60) | 0.31 (0.05–0.55) |
Potamochoerus larvatus | bushpig | Large Herbivore | 357 | 49 | 2.73 | 0.37 | 0.36 (0.19, 0.53) | 0.29 (0.07–0.55) |
Syncerus caffer | cape buffalo | Large Herbivore | 622 | 39 | 4.75 | 0.30 | 0.29 (0.13, 0.46) | 0.36 (0.07–0.70) |
Caracal caracal | caracal | Carnivore | 43 | 25 | 0.33 | 0.19 | 0.46 (0.14, 0.79) | 0.23 (−0.04–0.52) |
Taurotragus oryx | eland | Large Herbivore | 47 | 5 | 0.35 | 0.06 | 0.18 (−0.23, 0.56) | 0.05 (−0.03–0.13) |
Oryx gazella | gemsbok | Large Herbivore | 231 | 4 | 1.76 | 0.09 | 0.49 (−0.48, 1.47) | 0.44 (−0.13–0.62) |
Sylvicapra grimmia | grey duiker | Small Herbivore | 182 | 25 | 1.39 | 0.19 | 0.18 (0.04, 0.32) | 0.30 (0.06–0.56) |
Herpestes pulverulentus | grey mongoose | Insectivore | 33 | 22 | 0.25 | 0.17 | 0.82 (0.27, 1.38) | 0.31 (0.07–0.57) |
Pelea capreolus | grey rhebok | Small Herbivore | 15 | 2 | 0.11 | 0.02 | 0.02 (−0.04, 0.07) | 0.22 (−0.28–0.68) |
Raphicerus melanotis | grysbok | Small Herbivore | 248 | 43 | 1.89 | 0.33 | 0.31 (0.14, 0.48) | 0.26 (−0.01–0.54) |
Mellivora capensis | honey badger | Carnivore | 36 | 24 | 0.27 | 0.18 | 0.95 (0.80, 1.10) | 0.30 (0.07–0.55) |
Aepyceros melampus | impala | Large Herbivore | 30 | 6 | 0.23 | 0.05 | 0.05 (−0.04, 0.14) | 0.20 (−0.13–0.53) |
Oreotragus oreotragus | klipspringer | Small Herbivore | 150 | 25 | 1.15 | 0.19 | 0.17 (0.03, 0.30) | 0.29 (0.06–0.57) |
Tragelaphus strepsiceros | kudu | Large Herbivore | 3886 | 112 | 29.66 | 0.86 | 0.84 (0.71, 0.96) | 0.31 (0.07–0.58) |
Genetta tigrina | large-spotted genet | Carnivore | 58 | 23 | 0.44 | 0.18 | 0.19 (0.02, 0.37) | 0.29 (0.05–0.56) |
Panthera pardus | leopard | Carnivore | 400 | 68 | 3.05 | 0.52 | 0.51 (0.32, 0.71) | 0.32 (0.09–0.57) |
Redunca fulvorufula | mountain reedbuck | Small Herbivore | 142 | 22 | 1.08 | 0.17 | 0.08 (−0.02, 0.18) | 0.26 (−0.03–0.55) |
Equus zebra | mountain zebra | Large Herbivore | 91 | 13 | 0.69 | 0.09 | 0.08 (−0.02, 0.18) | 0.25 (−0.03–0.55) |
Aonyx capensis | otter | Carnivore | 5 | 3 | 0.04 | 0.02 | 0.08 (−0.27, 0.44) | −0.01 (−0.74–0.63) |
Ictonyx striatus | polecat | Carnivore | 10 | 4 | 0.08 | 0.03 | 0.03 (−0.09, 0.15) | 0.18 (−0.28–0.61) |
Hystrix africaeaustralis | porcupine | Small Herbivore | 213 | 43 | 1.63 | 0.33 | 0.33 (0.13, 0.53) | 0.31 (0.08–0.57) |
Alcelaphus buselaphus | red hartebeest | Large Herbivore | 14 | 7 | 0.11 | 0.05 | 0.73 (0.12, 1.34) | 0.19 (−0.29–0.62) |
Pronolagus saundersiae | red rock hare | Small Herbivore | 23 | 5 | 0.18 | 0.04 | 0.04 (−0.05, 0.12) | 0.17 (−0.27–0.60) |
Procavia capensis | rock hyrax | Small Herbivore | 59 | 12 | 0.45 | 0.09 | 0.09 (−0.01, 0.19) | 0.29 (0.04–0.57) |
Lepus saxatilis | scrub hare | Small Herbivore | 514 | 49 | 3.92 | 0.37 | 0.36 (0.19, 0.54) | 0.29 (0.07–0.54) |
Antidorcas marsupialis | springbok | Small Herbivore | 215 | 8 | 1.64 | 0.06 | 0.05 (−0.03, 0.12) | 0.17 (−0.24–0.60) |
Chlorocebus pygerythrus | vervet monkey | Omnivore | 785 | 62 | 5.99 | 0.47 | 0.44 (0.27, 0.61) | 0.30 (0.07–0.56) |
3.3. Species Richness and Accumulation
3.4. Influence of Camera Setup
4. Discussion
4.1. Biodiversity in the Baviaanskloof Catchment
4.2. Influence of Camera Trap Configurations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACF | Autocorrelation Function |
AIC | Akaike Information Criterion |
FAMD | Factor Analysis of Mixed Data |
GLM | Generalized Linear Models |
JAGS | Just Another Gibbs Sampler |
MCMC | Markov Chain Monte Carlo |
NLSM | Non-linear Least Squares Method |
References
- Magurran, A.E. Measuring Biological Diversity, 2nd ed.; Blackwell Science Ltd.: Oxford, UK, 2004. [Google Scholar]
- Magurran, A.E.; Baillie, S.R.; Buckland, S.T.; Dick, J.M.; Elston, D.A.; Scott, E.M.; Smith, R.I.; Somerfield, P.J.; Watt, A.D. Long-Term Datasets in Biodiversity Research and Monitoring: Assessing Change in Ecological Communities through Time. Trends Ecol. Evol. 2010, 25, 574–582. [Google Scholar] [CrossRef] [PubMed]
- Yoccoz, N.G.; Killengreen, S.T.; Bråthen, K.A.; Ravolainen, V.T.; Ims, R.A.; Henden, J.-A. Rapid, Landscape Scale Responses in Riparian Tundra Vegetation to Exclusion of Small and Large Mammalian Herbivores. Basic Appl. Ecol. 2011, 12, 643–653. [Google Scholar] [CrossRef]
- Buckland, S.T.; Magurran, A.E.; Green, R.E.; Fewster, R.M. Monitoring Change in Biodiversity through Composite Indices. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 243–254. [Google Scholar] [CrossRef]
- Yoccoz, N.G.; Nichols, J.D.; Boulinier, T. Monitoring of Biological Diversity in Space and Time. Trends Ecol. Evol. 2001, 16, 446–453. [Google Scholar] [CrossRef]
- Kelly, L.T.; Dayman, R.; Nimmo, D.G.; Clarke, M.F.; Bennett, A.F. Spatial and Temporal Drivers of Small Mammal Distributions in a Semi-Arid Environment: The Role of Rainfall, Vegetation and Life-History. Austral Ecol. 2013, 38, 786–797. [Google Scholar] [CrossRef]
- Lambin, E.F.; Meyfroidt, P. Global Land Use Change, Economic Globalization, and the Looming Land Scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef]
- Fischer, J.; Lindenmayer, D.B. Landscape Modification and Habitat Fragmentation: A Synthesis. Glob. Ecol. Biogeogr. 2007, 16, 265–280. [Google Scholar] [CrossRef]
- Ewers, R.M.; Didham, R.K. Confounding Factors in the Detection of Species Responses to Habitat Fragmentation. Biol. Rev. Camb. Philos. Soc. 2006, 81, 117–142. [Google Scholar] [CrossRef]
- MacKenzie, D.I.; Nichols, J.D.; Lachman, G.B.; Droege, S.; Royle, J.A.; Langtimm, C.A. Estimating Site Occupancy Rates When Detection Probabilities Are Less than One. Ecology 2002, 83, 2248–2255. [Google Scholar] [CrossRef]
- Treves, A.; Mwima, P.; Plumptre, A.J.; Isoke, S. Camera-Trapping Forest—Woodland Wildlife of Western Uganda Reveals How Gregariousness Biases Estimates of Relative Abundance and Distribution. Biol. Conserv. 2010, 143, 521–528. [Google Scholar] [CrossRef]
- Kendall, W.L.; Pollock, K.H.; Brownie, C.; Kendall, W.L. A Likelihood-Based Approach to Capture-Recapture Estimation of Demographic Parameters under the Robust Design. Biometrics 1995, 51, 293–308. [Google Scholar] [CrossRef] [PubMed]
- Delisle, Z.J.; Flaherty, E.A.; Nobbe, M.R.; Wzientek, C.M. Next-Generation Camera Trapping: Systematic Review of Historic Trends Suggests Keys to Expanded Research Applications in Ecology and Conservation. Front. Ecol. Evol. 2021, 9, 617996. [Google Scholar] [CrossRef]
- O’Brien, T.G. On the Use of Automated Cameras to Estimate Species Richness for Large—and Medium-Sized Rainforest Mammals. Anim. Conserv. 2008, 11, 179–181. [Google Scholar] [CrossRef]
- O’Connell, A.F.; Nichols, J.D.; Karanth, U.K. Camera Traps in Animal Ecology; Springer: New York, NY, USA, 2011; Volume 271. [Google Scholar] [CrossRef]
- Meißner, R.; Blumer, M.; Weiß, M.; Beukes, M.; Aramayo Ledezma, G.; Condori Callisaya, Y.; Aramayo Bejarano, J.L.; Jansen, M. Habitat Destruction Threatens Jaguars in a Mixed Land-Use Region of Eastern Bolivia. Oryx 2024, 58, 110–120. [Google Scholar] [CrossRef]
- Tobler, M.W.; Carrillo-Percastegui, S.E.; Pitman, R.L.; Mares, R.; Powell, G. Further Notes on the Analysis of Mammal Inventory Data Collected with Camera Traps. Anim. Conserv. 2008, 11, 187–189. [Google Scholar] [CrossRef]
- Kays, R.; Tilak, S.; Kranstauber, B.; Jansen, P.A.; Carbone, C.; Rowcliffe, J.M.; Fountain, T.; Eggert, J.; He, Z. Camera Traps as Sensor Networks for M Onitoring Animal Communities. Sci. Acad. Publ. Int. J. Res. Rev. Wirel. Sens. Netw. (IJRRWSN) 2011, 1, 811–818. [Google Scholar] [CrossRef]
- Kays, R.; Arbogast, B.S.; Baker-Whatton, M.; Beirne, C.; Boone, H.M.; Bowler, M.; Burneo, S.F.; Cove, M.V.; Ding, P.; Espinosa, S.; et al. An Empirical Evaluation of Camera Trap Study Design: How Many, How Long and When? Methods Ecol. Evol. 2020, 11, 700–713. [Google Scholar] [CrossRef]
- Tobler, M.W.; Powell, G.V.N. Estimating Jaguar Densities with Camera Traps: Problems with Current Designs and Recommendations for Future Studies. Biol. Conserv. 2013, 159, 109–118. [Google Scholar] [CrossRef]
- Meek, P.D.; Ballard, G.-A.; Fleming, P.J.S. The Pitfalls of Wildlife Camera Trapping as a Survey Tool in Australia. Aust. Mammal. 2015, 37, 13–22. [Google Scholar] [CrossRef]
- Rovero, F.; Zimmermann, F.; Berzi, D.; Meek, P. “Which Camera Trap Type and How Many Do I Need?” A Review of Camera Features and Study Designs for a Range of Wildlife Research Applications. Hystrix 2013, 24, 148–156. [Google Scholar] [CrossRef]
- Kolowski, J.M.; Forrester, T.D. Camera Trap Placement and the Potential for Bias Due to Trails and Other Features. PLoS ONE 2017, 12, e0186679. [Google Scholar] [CrossRef] [PubMed]
- Cusack, J.J.; Dickman, A.J.; Rowcliffe, J.M.; Carbone, C.; Macdonald, D.W.; Coulson, T. Random versus Game Trail-Based Camera Trap Placement Strategy for Monitoring Terrestrial Mammal Communities. PLoS ONE 2015, 10, e0126373. [Google Scholar] [CrossRef]
- Newey, S.; Davidson, P.; Nazir, S.; Fairhurst, G.; Verdicchio, F.; Irvine, R.J.; van der Wal, R. Limitations of Recreational Camera Traps for Wildlife Management and Conservation Research: A Practitioner’s Perspective. Ambio 2015, 44 (Suppl. S4), 624–635. [Google Scholar] [CrossRef] [PubMed]
- Glenday, J.A. Modeling the Hydrologic Impacts of Vegetation and Channel Network Change for a Semi-Arid, Mountainous, Meso-Scale Catchment: The Baviaanskloof, South Africa. Ph.D. Thesis, University of California, Santa Barbara, CA, USA, 2015. [Google Scholar]
- Boshoff, A. The Baviaanskloof Mega-Reserve; Terrestrial Ecology Research Unit (TERU), Nelson Mandela Metropolitan University: Port Elizabeth, South Africa, 2005; ISBN 0-86988-839-0. [Google Scholar]
- Boshoff, A.F.; Cowling, R.M.; Kerley, G.I.H. The Baviaanskloof Conservation Area—A Conservation and Tourism Development Priority; Terrestrial Ecology Research Unit Report No. 27; Nelson Mandela Metropolitan University: Port Elizabeth, South Africa, 2000. [Google Scholar]
- Boshoff, A.; Cowling, R. The Baviaanskloof Mega-Reserve: An Environmentally, Socially and Economically Sustainable Conservation and Development Initiative; Terrestrial Ecology Research Unit, Nelson Mandela Metropolitan University: Port Elizabeth, South Africa, 2005. [Google Scholar]
- Powell, M.; Vlok, J.; Cassidy, K. Baviaanskloof Subtropical Thicket Restoration: Western Baviaanskloof Private Lands. In Spatial Restoration Plan and Initial Carbon Credit Feasibility Study; Restoration Research Group, Rhodes University: Grahamstown, South Africa, 2011. [Google Scholar]
- Mills, A.J.; Cowling, R.M. Rate of Carbon Sequestration at Two Thicket Restoration Sites in the Eastern Cape, South Africa. Restor. Ecol. 2006, 14, 38–49. [Google Scholar] [CrossRef]
- Powell, M.J. Restoration of Degraded Subtropical Thickets in the Baviaanskloof Megareserve, South Africa: The Role of Carbon Stocks and Portulacaria Afra Survivorship. Master’s Thesis, Rhodes University, Grahamstown, South Africa, 2009. [Google Scholar]
- Kerley, G.I.H.; Knight, M.H.; de Kock, M. Desertification of Subtropical Thicket in the Eastern Cape, South Africa: Are There Alternatives? Environ. Monit. Assess. 1995, 37, 211–230. [Google Scholar] [CrossRef]
- Sollmann, R.; Mohamed, A.; Samejima, H.; Wilting, A. Risky Business or Simple Solution—Relative Abundance Indices from Camera-Trapping. Biol. Conserv. 2013, 159, 405–412. [Google Scholar] [CrossRef]
- Jenks, K.E.; Chanteap, P.; Damrongchainarong, K.; Cutter, P.; Cutter, P.; Redford, T.; Lynam, A.J.; Howard, J.; Leimgruber, P. Using Relative Abundance Indices from Camera-Trapping to Test Wildlife Conservation Hypotheses—An Example from Khao Yai. Trop. Conserv. Sci. 2011, 4, 113–131. [Google Scholar] [CrossRef]
- Glen, A.; Warburton, B.; Cruz, J.; Coleman, M. Comparison of Camera Traps and Kill Traps for Detecting Mammalian Predators: A Field Trial. N. Zealand J. Zool. 2014, 41, 155–160. [Google Scholar] [CrossRef]
- Ancrenaz, M.; Hearn, A.; Ross, J.; Sollmann, R.; Wilting, A. Handbook for Wildlife Monitoring using Camera Traps; BBEC II Secretariat: Kota Kinabalu, Malaysia, 2012. [Google Scholar]
- Colyn, R.B.; Radloff, F.G.T.; O’Riain, M.J. Camera Trapping Mammals in the Scrubland’s of the Cape Floristic Kingdom—The Importance of Effort, Spacing and Trap Placement. Biodivers. Conserv. 2018, 27, 503–520. [Google Scholar] [CrossRef]
- Tobler, M.W.; Carrillo-Percastegui, S.E.; Pitman, R.L.; Mares, R.; Powell, G. An Evaluation of Camera Traps for Inventorying Large- and Medium-Sized Terrestrial Rainforest Mammals. Anim. Conserv. 2008, 11, 169–178. [Google Scholar] [CrossRef]
- Kok, A. Land-Use Effects on Mammal Communities in the Fish-Kowie Corridor, Eastern Cape, South Africa, with Particular Reference to Carnivores. Ph.D. Thesis, Rhodes University, Grahamstown, South Africa, 2016. [Google Scholar]
- Skinner, J.D.; Chimimba, C.T. The Mammals of the Southern African Sub-Region; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar] [CrossRef]
- Tambling, C.J.; Minnie, L.; Meyer, J.; Freeman, E.W.; Santymire, R.M.; Adendorff, J.; Kerley, G.I.H. Temporal Shifts in Activity of Prey Following Large Predator Reintroductions. Behav. Ecol. Sociobiol. 2015, 69, 1153–1161. [Google Scholar] [CrossRef]
- Greenberg, S.; Godin, T.; Whittington, J. Design Patterns for Wildlife-related Camera Trap Image Analysis. Ecol. Evol. 2019, 9, 13706–13730. [Google Scholar] [CrossRef] [PubMed]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2015. [Google Scholar]
- Carbone, C.; Gittleman, J.L. A Common Rule for the Scaling of Carnivore Density. Science 2002, 295, 2273–2276. [Google Scholar] [CrossRef]
- Rowcliffe, J.M.; Field, J.; Turvey, S.T.; Carbone, C.; Rowcliffe, J.M.; Field, J.; Turvey, S.T.; Carbone, C.; Rowcliffe, J.M.; Field, J.; et al. Estimating Animal Density Using Camera Traps without the Need for Individual Recognition. J. Appl. Ecol. 2008, 45, 1228–1236. [Google Scholar] [CrossRef]
- Peral, C.; Landman, M.; Kerley, G.I.H. The Inappropriate Use of Time-to-independence Biases Estimates of Activity Patterns of Free-ranging Mammals Derived from Camera Traps. Ecol. Evol. 2022, 12, e9408. [Google Scholar] [CrossRef] [PubMed]
- Dorazio, R.M.; Royle, J.A.; Söderström, B.; Glimskär, A. Estimating Species Richness and Accumulation by Modeling Species Occurrence and Detectability. Ecology 2006, 87, 842–854. [Google Scholar] [CrossRef]
- Campos-Candela, A.; Palmer, M.; Balle, S.; Alós, J. A Camera-based Method for Estimating Absolute Density in Animals Displaying Home Range Behaviour. J. Anim. Ecol. 2018, 87, 825–837. [Google Scholar] [CrossRef]
- Beukes, M.; Radloff, F.G.T.; Ferreira, S.M. Spatial and Seasonal Variation in Lion (Panthera Leo) Diet in the Southwestern Kgalagadi Transfrontier Park. Afr. J. Wildl. Res. 2020, 50, 55–68. [Google Scholar] [CrossRef]
- Rowcliffe, J.M.; Carbone, C. Surveys Using Camera Traps: Are We Looking to a Brighter Future? Anim. Conserv. 2008, 11, 185–186. [Google Scholar] [CrossRef]
- Rovero, F.; Martin, E.; Rosa, M.; Ahumada, J.A.; Spitale, D. Estimating Species Richness and Modelling Habitat Preferences of Tropical Forest Mammals from Camera Trap Data. PLoS ONE 2014, 9, e103300. [Google Scholar] [CrossRef]
- Spellerberg, I.F.; Fedor, P.J. A Tribute to Claude Shannon (1916–2001) and a Plea for More Rigorous Use of Species Richness, Species Diversity and the ‘Shannon–Wiener’ Index. Glob. Ecol. Biogeogr. 2003, 12, 177–179. [Google Scholar] [CrossRef]
- Thompson, G.G.; Withers, P.C.; Pianka, E.R.; Thompson, S.A. Assessing Biodiversity with Species Accumulation Curves; Inventories of Small Reptiles by Pit-Trapping in Western Australia. Austral Ecol. 2003, 28, 361–383. [Google Scholar] [CrossRef]
- Stirling, G.; Wilsey, B. Empirical Relationships between Species Richness, Evenness, and Proportional Diversity. Am. Nat. 2001, 158, 286–299. [Google Scholar] [CrossRef]
- Tang, M.; Kaymaz, Y.; Logeman, B.L.; Eichhorn, S.; Liang, Z.S.; Dulac, C.; Sackton, T.B. Evaluating Single-Cell Cluster Stability Using the Jaccard Similarity Index. Bioinformatics 2021, 37, 2212–2214. [Google Scholar] [CrossRef] [PubMed]
- Ugland, K.I.; Gray, J.S.; Ellingsen, K.E. The Species–Accumulation Curve and Estimation of Species Richness. J. Anim. Ecol. 2003, 72, 888–897. [Google Scholar] [CrossRef]
- Elzhov, T.V.; Mullen, K.M.; Spiess, A.N.; Bolker, B.; Mullen, M.K.M.; Suggests, M. Package ‘minpack.lm’. Title R Interface Levenberg-Marquardt Nonlinear Least-Sq. Algorithm Found MINPACK Plus Support Bounds. Available online: http://CRAN.Rproject.org/package=minpack.lm (accessed on 2 April 2024).
- Dorazio, R.M.; Royle, J.A. Estimating Size and Composition of Biological Communities by Modeling the Occurrence of Species. J. Am. Stat. Assoc. 2005, 100, 389–398. [Google Scholar] [CrossRef]
- Gelman, A.; Hwang, J.; Vehtari, A. Understanding Predictive Information Criteria for Bayesian Models. Stat. Comput. 2014, 24, 997–1016. [Google Scholar] [CrossRef]
- Wang, Z. Model Selection Using the Akaike Information Criterion. STATA Tech. Bull. 2000, 9, 57–59. [Google Scholar]
- Zuur, A.F.; Ieno, E.N.; Walker, N.; Saveliev, A.A.; Smith, G.M. Mixed Effects Models and Extensions in Ecology with R; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Anderson, D.R.; Burnham, K.P. Avoiding Pitfalls When Using Information-Theoretic Methods. J. Wildl. Manag. 2002, 66, 912. [Google Scholar] [CrossRef]
- Stewart, P.S.; Stephens, P.A.; Hill, R.A.; Whittingham, M.J.; Dawson, W. Model Selection in Occupancy Models: Inference versus Prediction. Ecology 2023, 104, e3942. [Google Scholar] [CrossRef]
- Ramesh, T.; Kalle, R.; Downs, C.T. Predictors of Mammal Species Richness in KwaZulu-Natal, South Africa. Ecol. Indic. 2016, 60, 385–393. [Google Scholar] [CrossRef]
- Schnetler, A.K.; Radloff, F.G.T.; O’Riain, M.J. Medium and Large Mammal Conservation in the City of Cape Town: Factors Influencing Species Richness in Urban Nature Reserves. Urban Ecosyst. 2021, 24, 215–232. [Google Scholar] [CrossRef]
- Mann, G.K.H.; Lagesse, J.V.; O’Riain, M.J.; Parker, D.M. Beefing Up Species Richness? The Effect of Land-Use on Mammal Diversity in an Arid Biodiversity Hotspot. Afr. J. Wildl. Res. 2015, 45, 321–331. [Google Scholar] [CrossRef]
- Tshabalala, T.; McManus, J.; Treves, A.; Masocha, V.; Faulconbridge, S.; Schurch, M.; Goets, S.; Smuts, B. Leopards and Mesopredators as Indicators of Mammalian Species Richness across Diverse Landscapes of South Africa. Ecol. Indic. 2021, 121, 107201. [Google Scholar] [CrossRef]
- Sandom, C.; Dalby, L.; Fløjgaard, C.; Kissling, W.D.; Lenoir, J.; Sandel, B.; Trøjelsgaard, K.; Ejrnæs, R.; Svenning, J.-C. Mammal Predator and Prey Species Richness Are Strongly Linked at Macroscales. Ecology 2013, 94, 1112–1122. [Google Scholar] [CrossRef] [PubMed]
- Caravaggi, A.; Zaccaroni, M.; Riga, F.; Schai-Braun, S.C.; Dick, J.T.A.; Montgomery, W.I.; Reid, N. An Invasive-Native Mammalian Species Replacement Process Captured by Camera Trap Survey Random Encounter Models. Remote Sens. Ecol. Conserv. 2016, 2, 45–58. [Google Scholar] [CrossRef]
- Pebsworth, P.A.; MacIntosh, A.J.J.; Morgan, H.R.; Huffman, M.A. Factors Influencing the Ranging Behavior of Chacma Baboons (Papio Hamadryas Ursinus) Living in a Human-Modified Habitat. Int. J. Primatol. 2012, 33, 872–887. [Google Scholar] [CrossRef]
- Pyšková, K.; Kauzál, O.; Storch, D.; Horáček, I.; Pergl, J.; Pyšek, P. Carnivore Distribution across Habitats in a Central-European Landscape: A Camera Trap Study. Zookeys 2018, 770, 227–246. [Google Scholar] [CrossRef]
- Banks-Leite, C.; Pardini, R.; Boscolo, D.; Cassano, C.R.; Püttker, T.; Barros, C.S.; Barlow, J. Assessing the Utility of Statistical Adjustments for Imperfect Detection in Tropical Conservation Science. J. Appl. Ecol. 2014, 51, 849–859. [Google Scholar] [CrossRef] [PubMed]
- Lele, S.R.; Moreno, M.; Bayne, E. Dealing with Detection Error in Site Occupancy Surveys: What Can We Do with a Single Survey? J. Plant Ecol. 2012, 5, 22–31. [Google Scholar] [CrossRef]
- Woodgate, Z.; Distiller, G.; O’Riain, J. Variation in Mammal Species Richness and Relative Abundance in the Karoo. Afr. J. Range Forage Sci. 2018, 35, 325–334. [Google Scholar] [CrossRef]
- Burton, A.C.; Neilson, E.; Moreira, D.; Ladle, A.; Steenweg, R.; Fisher, J.T.; Bayne, E.; Boutin, S. Wildlife Camera Trapping: A Review and Recommendations for Linking Surveys to Ecological Processes. J. Appl. Ecol. 2015, 52, 675–685. [Google Scholar] [CrossRef]
- Morris, E.K.; Caruso, T.; Buscot, F.; Fischer, M.; Hancock, C.; Maier, T.S.; Meiners, T.; Müller, C.; Obermaier, E.; Prati, D.; et al. Choosing and Using Diversity Indices: Insights for Ecological Applications from the German Biodiversity Exploratories. Ecol. Evol. 2014, 4, 3514–3524. [Google Scholar] [CrossRef] [PubMed]
- Marion, S.; Curveira Santos, G.; Herdman, E.; Hubbs, A.; Kearney, S.P.; Burton, A.C. Mammal Responses to Human Recreation Depend on Landscape Context. PLoS ONE 2024, 19, e0300870. [Google Scholar] [CrossRef] [PubMed]
- Meek, P.D.; Ballard, G.A.; Falzon, G. The Higher You Go the Less You Will Know: Placing Camera Traps High to Avoid Theft Will Affect Detection. Remote Sens. Ecol. Conserv. 2016, 2, 204–211. [Google Scholar] [CrossRef]
- Wevers, J.; Beenaerts, N.; Casaer, J.; Zimmermann, F.; Artois, T.; Fattebert, J. Modelling Species Distribution from Camera Trap By-catch Using a Scale-optimized Occupancy Approach. Remote Sens. Ecol. Conserv. 2021, 7, 534–549. [Google Scholar] [CrossRef]
- Jacobs, C.E.; Ausband, D.E. An Evaluation of Camera Trap Performance—What Are We Missing and Does Deployment Height Matter? Remote Sens. Ecol. Conserv. 2018, 4, 352–360. [Google Scholar] [CrossRef]
- Morant, J.; González-Oreja, J.A.; Martínez, J.E.; López-López, P.; Zuberogoitia, I. Applying Economic and Ecological Criteria to Design Cost-Effective Monitoring for Elusive Species. Ecol. Indic. 2020, 115, 106366. [Google Scholar] [CrossRef]
- Seidlitz, A.; Bryant, K.A.; Armstrong, N.J.; Calver, M.; Wayne, A.F. Optimising Camera Trap Height and Model Increases Detection and Individual Identification Rates for a Small Mammal, the Numbat. Aust. Mammal. 2020, 43, 226–234. [Google Scholar] [CrossRef]
- Apps, P.; McNutt, J.W. Are Camera Traps Fit for Purpose? A Rigorous, Reproducible and Realistic Test of Camera Trap Performance. Afr. J. Ecol. 2018, 56, 710–720. [Google Scholar] [CrossRef]
- Meek, P.D.; Ballard, G.; Claridge, A.; Kays, R.; Moseby, K.; O’Brien, T.; O’Connell, A.; Sanderson, J.; Swann, D.E.; Tobler, M.; et al. Recommended Guiding Principles for Reporting on Camera Trapping Research. Biodivers. Conserv. 2014, 23, 2321–2343. [Google Scholar] [CrossRef]
- O’Brien, T.G.; Baillie, J.E.M.; Krueger, L.; Cuke, M. The Wildlife Picture Index: Monitoring Top Trophic Levels. Anim. Conserv. 2010, 13, 335–343. [Google Scholar] [CrossRef]
- Meek, P.D.; Pittet, A. User-Based Design Specifications for the Ultimate Camera Trap for Wildlife Research. Wildl. Res. 2012, 39, 649–660. [Google Scholar] [CrossRef]
- Hofmeester, T.R.; Thorsen, N.H.; Cromsigt, J.P.G.M.; Kindberg, J.; Andrén, H.; Linnell, J.D.C.; Odden, J. Effects of Camera-trap Placement and Number on Detection of Members of a Mammalian Assemblage. Ecosphere 2021, 12, e03662. [Google Scholar] [CrossRef]
- Mann, G.K.H.; O’Riain, M.J.; Parker, D.M. The Road Less Travelled: Assessing Variation in Mammal Detection Probabilities with Camera Traps in a Semi-Arid Biodiversity Hotspot. Biodivers. Conserv. 2015, 24, 531–545. [Google Scholar] [CrossRef]
- Trolliet, F.; Huynen, M.-C.; Vermeulen, C.; Hambuckers, A. Use of Camera Traps for Wildlife Studies. A Review. Biotechnol. Agron. Soc. Environ. 2014, 18, 446–454. [Google Scholar]
- Tanwar, K.S.; Sadhu, A.; Jhala, Y.V. Camera Trap Placement for Evaluating Species Richness, Abundance, and Activity. Sci. Rep. 2021, 11, 23050. [Google Scholar] [CrossRef]
- Wearn, O.R.; Glover-Kapfer, P. Camera-Trapping for Conservation: A Guide to Best-Practices. In WWF Conservation Technology Series 1. Woking; WWF-UK: Woking, UK, 2017. [Google Scholar]
- Reece, S.J.; Radloff, F.G.T.; Leslie, A.J.; Amin, R.; Tambling, C.J. A Camera Trap Appraisal of Species Richness and Community Composition of Medium and Large Mammals in a Miombo Woodland Reserve. Afr. J. Ecol. 2021, 59, 898–911. [Google Scholar] [CrossRef]
- Si, X.; Kays, R.; Ding, P. How Long Is Enough to Detect Terrestrial Animals? Estimating the Minimum Trapping Effort on Camera Traps. PeerJ 2014, 2, e374. [Google Scholar] [CrossRef]
Latin Name | Common Name | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 |
---|---|---|---|---|---|---|---|
Orycteropus afer | aardvark | 30.00 (16.00) | 28.00 (14.00) | 14.00 (0.00) | 26.00 (12.00) | 24.00 (10.00) | 30.00 (16.00) |
Proteles cristata | aardwolf | 42.55 (16.00) | 41.21 (14.65) | 26.55 (0.00) | 40.69 (14.13) | 38.71 (12.16) | 42.55 (16.00) |
Felis silvestris lybica | African wild cat | 30.00 (16.00) | 28.00 (14.00) | 14.00 (0.00) | 26.00 (12.00) | 24.00 (10.00) | 30.00 (16.00) |
Papio ursinus | baboon | 30.00 (16.00) | 28.00 (14.00) | 14.00 (0.00) | 26.00 (12.00) | 24.00 (10.00) | 30.00 (16.00) |
Otocyon megalotis | bat-eared fox | 30.00 (16.00) | 28.00 (14.00) | 14.00 (0.00) | 26.00 (12.00) | 24.00 (10.00) | 30.00 (16.00) |
Canis mesomelas | black backed jackal | 30.00 (16.00) | 28.00 (14.00) | 14.00 (0.00) | 26.00 (12.00) | 24.00 (10.00) | 30.00 (16.00) |
Damaliscus pygargus | bontebok | 30.00 (16.00) | 28.00 (14.00) | 14.00 (0.00) | 26.00 (12.00) | 24.00 (10.00) | 30.00 (16.00) |
Tragelaphus sylvaticus | bushbuck | 30.00 (16.00) | 78.44 (64.44) | 14.00 (0.00) | 83.14 (69.14) | 111.64 (97.64) | 30.00 (16.00) |
Potamochoerus larvatus | bushpig | 47.06 (15.87) | 45.40 (14.21) | 31.19 (0.00) | 43.74 (12.55) | 42.32 (11.13) | 47.06 (15.87) |
Syncerus caffer | cape buffalo | 62.72 (10.28) | 69.80 (17.35) | 52.44 (0.00) | 61.66 (9.21) | 57.90 (5.46) | 62.72 (10.28) |
Caracal caracal | caracal | 45.95 (14.37) | 68.18 (36.60) | 31.58 (0.00) | 42.36 (10.77) | 46.96 (15.37) | 45.95 (14.37) |
Taurotragus oryx | eland | 30.00 (16.00) | 28.00 (14.00) | 14.00 (0.00) | 26.00 (12.00) | 24.00 (10.00) | 30.00 (16.00) |
Oryx gazella | gemsbok | 30.00 (16.00) | 31.82 (17.82) | 14.00 (0.00) | 26.00 (12.00) | 24.00 (10.00) | 30.00 (16.00) |
Sylvicapra grimmia | grey duiker | 30.00 (16.00) | 28.00 (14.00) | 14.00 (0.00) | 26.00 (12.00) | 24.00 (10.00) | 30.00 (16.00) |
Herpestes pulverulentus | grey mongoose | 54.90 (15.61) | 59.68 (20.39) | 39.29 (0.00) | 51.51 (12.22) | 50.14 (10.86) | 54.90 (15.61) |
Pelea capreolus | grey rhebok | 30.00 (16.00) | 28.00 (14.00) | 14.00 (0.00) | 26.00 (12.00) | 24.00 (10.00) | 30.00 (16.00) |
Raphicerus melanotis | grysbok | 822.96 (796.07) | 79.41 (52.52) | 26.89 (0.00) | 69.68 (42.79) | 672.79 (645.89) | 822.96 (796.07) |
Mellivora capensis | honey badger | 30.00 (16.00) | 28.00 (14.00) | 14.00 (0.00) | 26.00 (12.00) | 24.00 (10.00) | 30.00 (16.00) |
Aepyceros melampus | impala | 30.00 (16.00) | 28.00 (14.00) | 14.00 (0.00) | 26.00 (12.00) | 24.00 (10.00) | 30.00 (16.00) |
Oreotragus oreotragus | klipspringer | 30.00 (16.00) | 28.00 (14.00) | 14.00 (0.00) | 34.77 (20.77) | 26.77 (12.77) | 30.00 (16.00) |
Tragelaphus strepsiceros | kudu | 55.41 (7.47) | 53.43 (5.49) | 47.94 (0.00) | 56.76 (8.82) | 55.29 (7.35) | 55.41 (7.47) |
Genetta tigrina | large-spotted genet | 30.00 (16.00) | 31.82 (17.82) | 14.00 (0.00) | 26.00 (12.00) | 24.00 (10.00) | 30.00 (16.00) |
Panthera pardus | leopard | 82.75 (8.82) | 81.82 (7.90) | 73.93 (0.00) | 152.43 (78.50) | 78.13 (4.20) | 82.75 (8.82) |
Redunca fulvorufula | mountain reedbuck | 30.00 (16.00) | 28.00 (14.00) | 14.00 (0.00) | 26.00 (12.00) | 24.00 (10.00) | 30.00 (16.00) |
Equus zebra | mountain zebra | 30.00 (16.00) | 28.00 (14.00) | 14.00 (0.00) | 45.04 (31.04) | 24.00 (10.00) | 30.00 (16.00) |
Aonyx capensis | otter | 35.33 (14.64) | 34.28 (13.59) | 20.69 (0.00) | 36.42 (15.73) | 32.81 (12.12) | 35.33 (14.64) |
Ictonyx striatus | polecat | 30.00 (16.00) | 28.00 (14.00) | 14.00 (0.00) | 26.00 (12.00) | 24.00 (10.00) | 30.00 (16.00) |
Hystrix africaeaustralis | porcupine | 60.27 (14.30) | 68.25 (22.28) | 45.97 (0.00) | 56.59 (10.62) | 55.44 (9.47) | 60.27 (14.30) |
Alcelaphus buselaphus | red hartebeest | 30.00 (16.00) | 28.00 (14.00) | 14.00 (0.00) | 26.00 (12.00) | 24.00 (10.00) | 30.00 (16.00) |
Pronolagus saundersiae | red rock hare | 30.00 (16.00) | 28.00 (14.00) | 14.00 (0.00) | 26.00 (12.00) | 24.00 (10.00) | 30.00 (16.00) |
Procavia capensis | rock hyrax | 30.00 (16.00) | 28.00 (14.00) | 14.00 (0.00) | 36.27 (22.27) | 26.77 (12.77) | 30.00 (16.00) |
Lepus saxatilis | scrub hare | 32.77 (16.00) | 34.28 (17.51) | 16.77 (0.00) | 34.57 (17.80) | 34.66 (17.89) | 32.77 (16.00) |
Antidorcas marsupialis | springbok | 30.00 (16.00) | 28.00 (14.00) | 14.00 (0.00) | 26.00 (12.00) | 24.00 (10.00) | 30.00 (16.00) |
Chlorocebus pygerythrus | vervet monkey | 84.00 (4.54) | 82.76 (3.31) | 79.46 (0.00) | 139.20 (59.74) | 108.76 (29.30) | 84.00 (4.54) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beukes, M.; Perry, T.; Parker, D.M.; Mgqatsa, N. Refining Camera Trap Surveys for Mammal Detection and Diversity Assessment in the Baviaanskloof Catchment, South Africa. Wild 2025, 2, 15. https://doi.org/10.3390/wild2020015
Beukes M, Perry T, Parker DM, Mgqatsa N. Refining Camera Trap Surveys for Mammal Detection and Diversity Assessment in the Baviaanskloof Catchment, South Africa. Wild. 2025; 2(2):15. https://doi.org/10.3390/wild2020015
Chicago/Turabian StyleBeukes, Maya, Travis Perry, Daniel M. Parker, and Nokubonga Mgqatsa. 2025. "Refining Camera Trap Surveys for Mammal Detection and Diversity Assessment in the Baviaanskloof Catchment, South Africa" Wild 2, no. 2: 15. https://doi.org/10.3390/wild2020015
APA StyleBeukes, M., Perry, T., Parker, D. M., & Mgqatsa, N. (2025). Refining Camera Trap Surveys for Mammal Detection and Diversity Assessment in the Baviaanskloof Catchment, South Africa. Wild, 2(2), 15. https://doi.org/10.3390/wild2020015