First Characterization of Nesting Behaviors of Leatherback Turtles (Dermochelys coriacea) and Hawksbill Turtles (Eretmochelys imbricata) in Martinique and Inter-Species Comparison
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Nesting Monitoring
2.3. Behavior Description
2.4. Data Analyses
3. Results
3.1. Leatherback Turtles
3.1.1. Sampling
3.1.2. Nesting Stages
3.1.3. Factors Affecting Nesting
- a.
- Anthropogenic factors
- b.
- Natural factors
- c.
- Anthropogenic and natural factors
- d.
- Injuries
3.2. Hawksbill Turtles
3.2.1. Sampling
3.2.2. Nesting Stages
3.2.3. Factors Affecting Nesting
- a.
- Anthropogenic Factors
- b.
- Natural Factors
- c.
- Anthropogenic and natural factors
3.3. Comparison Between Species
3.3.1. Proportion of Observation Types and Attempts and Number of Eggs
3.3.2. Means and Percentages of Nesting Behavioral Stages
3.3.3. Factors Affecting Nesting
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, A.; Ku Yaacob, K.K.; Razak, S.A.; Talib, Z. Individual nest site preference of green turtle, Chelonia mydas, on Mak Kepit beach and its relation with hatching emergence success. In Proceedings of the 2nd International symposium on SEASTAR2000 and Asian Bio-logging Science (The 6th SEASTAR2000 Workshop), Bangkok, Thailand, 13–14 December 2005; pp. 45–49. [Google Scholar]
- Peron, C. Dynamique Littorale et Comportement de Ponte des Tortues Marines en Guyane Française. Ph.D. Thesis, Université du Littoral Côte d’Opale, Dunkerque, France, 2014. [Google Scholar]
- Lee, P.L.; Luschi, P.; Hays, G.C. Detecting female precise natal philopatry in green turtles using assignment methods. Mol. Ecol. 2007, 16, 61–74. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.D.; Limpus, C.J.; Godfrey, M.H. Nest site selection, oviposition, eggs, development, hatching, and emergence of loggerhead turtles. Loggerhead Sea Turt. 2003, 8, 125–143. [Google Scholar]
- Nakamura, M.F.; Santos, A.J.B.; Lobão-Soares, B.; Corso, G. Lunar phases and hawksbill sea turtle nesting. J. Ethol. 2019, 37, 307–316. [Google Scholar] [CrossRef]
- Frazer, N.B. Effect of tidal cycles on loggerhead sea turtles (Caretta caretta) emerging from the sea. Copeia 1983, 1983, 516–519. [Google Scholar] [CrossRef]
- Palomino-González, A.; López-Martínez, S.; Rivas, M.L. Influence of climate and tides on the nesting behaviour of sea turtles. J. Exp. Mar. Biol. Ecol. 2020, 527, 151378. [Google Scholar] [CrossRef]
- Pike, D.A. Environmental correlates of nesting in loggerhead turtles, Caretta caretta. Anim. Behav. 2008, 76, 603–610. [Google Scholar] [CrossRef]
- Chen, H.-C.; Cheng, I.-J.; Hong, E. The influence of the beach environment on the digging success and nest site distribution of the green turtle, Chelonia mydas, on Wan-an Island, Penghu Archipelago, Taiwan. J. Coast. Res. 2007, 23, 1277–1286. [Google Scholar] [CrossRef]
- Serafini, T.Z.; Lopez, G.G.; da Rocha, P.L.B. Nest site selection and hatching success of hawksbill and loggerhead sea turtles (Testudines, Cheloniidae) at Arembepe Beach, northeastern Brazil. Phyllomedusa J. Herpetol. 2009, 8, 3–17. [Google Scholar] [CrossRef]
- Maurer, A.S.; Stapleton, S.P.; Layman, C.A.; Reiskind, M.O.B. The Atlantic Sargassum invasion impedes beach access for nesting sea turtles. Clim. Chang. Ecol. 2021, 2, 100034. [Google Scholar] [CrossRef]
- Fowler, L.E. Hatching success and nest predation in the green sea turtle, Chelonia mydas, at Tortuguero, Costa Rica. Ecology 1979, 60, 946–955. [Google Scholar] [CrossRef]
- Silva, E.; Marco, A.; da Graça, J.; Pérez, H.; Abella, E.; Patino-Martinez, J.; Martins, S.; Almeida, C. Light pollution affects nesting behavior of loggerhead turtles and predation risk of nests and hatchlings. J. Photochem. Photobiol. B Biol. 2017, 173, 240–249. [Google Scholar] [CrossRef]
- Attum, O.; Nagy, A. Patterns of light pollution on sea turtle nesting beaches in the Egyptian Red Sea. Mar. Pollut. Bull. 2024, 201, 116246. [Google Scholar] [CrossRef] [PubMed]
- Siqueira-Silva, I.S.; Arantes, M.O.; Hackradt, C.W.; Schiavetti, A. Environmental and anthropogenic factors affecting nesting site selection by sea turtles. Mar. Environ. Res. 2020, 162, 105090. [Google Scholar] [CrossRef]
- James, M.C.; Sherrill-Mix, S.A.; Myers, R.A. Population characteristics and seasonal migrations of leatherback sea turtles at high latitudes. Mar. Ecol. Prog. Ser. 2007, 337, 245–254. [Google Scholar] [CrossRef]
- Hendrickson, J.R. The green sea turtle, Chelonia mydas (Linn.) in Malaya and Sarawak. In Proceedings of the Zoological Society of London; Wiley Online Library: Hoboken, NJ, USA, 1958; Volume 130, pp. 455–535. [Google Scholar]
- Bustard, H.R.; Greenham, P. Nesting Behavior of the Green Sea Turtle on a Great Barrier Reef Island. Herpetologica 1969, 25, 93–102. [Google Scholar]
- Hailman, J.P.; Elowson, A.M. Ethogram of the nesting female loggerhead (Caretta caretta). Herpetologica 1992, 48, 1–30. [Google Scholar]
- Lindborg, R.; Neidhardt, E.; Smith, J.R.; Schwartz, B.; Hernandez, V.; Savage, A.; Witherington, B. An ethogram describing the nesting behavior of green sea turtles (Chelonia mydas). Herpetologica 2019, 75, 114–122. [Google Scholar] [CrossRef]
- Burns, T.J.; Thomson, R.R.; McLaren, R.A.; Rawlinson, J.; McMillan, E.; Davidson, H.; Kennedy, M.W. Buried treasure—Marine turtles do not ‘disguise’ or ‘camouflage’ their nests but avoid them and create a decoy trail. R. Soc. Open Sci. 2020, 7, 200327. [Google Scholar] [CrossRef]
- Carr, A.F.; Ogren, L.H. Dermochelys in Costa Rica. In The Ecology and Migrations of Sea Turtles; American Museum novitates; no. 1958; American Museum novitates: USA, 1959. [Google Scholar]
- Bacon, P.R. Studies on the Leatherback Turtle, Dermochelys coriacea (L.), in Trinidad, West Indies. Biol. Conserv. 1970, 2, 213–217. [Google Scholar] [CrossRef]
- Pritchard, P. The Leatherback or Leathery Turtle, Dermochelys coriacea; International Union for Conservation of Nature and Natural Resources: Morges, Switzerland, 1971; Volume 1980, pp. 741–747. [Google Scholar]
- Zug, G.R.; Parham, J.F. Age and growth in leatherback turtles, Dermochelys coriacea (Testudines: Dermochelyidae): A skeletochronological analysis. Chelonian Conserv. Biol. 1996, 2, 244–249. [Google Scholar]
- Whitmore, C.P.; Dutton, P.H. Infertility, embryonic mortality and nest-site selection in leatherback and green sea turtles in Suriname. Biol. Conserv. 1985, 34, 251–272. [Google Scholar] [CrossRef]
- Miller, J. Reproduction in sea turtles. In The Biology of Sea Turtles; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar]
- Chevalier, J.; Lartiges, A. Les Tortues Marines des Antilles; CNERA Faune d’Outre Mer; Office National de La Chasse et de la Faune Sauvage: Paris, France, 2001; 59p. [Google Scholar]
- Kamel, S.J.; Delcroix, E. Nesting ecology of the hawksbill turtle, Eretmochelys imbricata, in Guadeloupe, French West Indies from 2000–07. J. Herpetol. 2009, 43, 367–376. [Google Scholar] [CrossRef]
- Munhofen, J.; Ramirez, S. Tagging and Nesting Research on Hawksbill Turtles (Eretmochelys imbricata) at Jumby Bay, Long Island, Antigua, West Indies. In Annual Report. Wider Caribbean Sea Turtle Network; University of Georgia: Athens, GA, USA, 2007. [Google Scholar]
- Ernst, C.H.; Lovich, J.E. Turtles of the united states and Canada; JHU Press: Baltimore, MD, USA, 2009. [Google Scholar]
- Bass, A.L. Genetic Analysis to Elucidate the Natural History and Behavior of Hawksbill Turtles(Eretmochelys imbricata) in the Wider Caribbean: A Review and Re-Analysis. Chelonian Conserv. Biol. 1999, 3, 195–199. [Google Scholar]
- Mortimer, J.A.; Donnelly, M. Eretmochelys imbricata. In The IUCN Red List of Threatened Species 2008; IUCN: Gland, Switzerland, 2008. [Google Scholar]
- Wallace, B.; Tiwari, M.; Girondot, M. Dermochelys coriacea. In The IUCN Red List of Threatened Species 2013; IUCN: Gland, Switzerland, 2013. [Google Scholar]
- Valin, C.; Ortolé, C.; Duporge, N.; Safi, M.; De Montgolfier, B. Suivi des Traces de Pontes des Tortues Marines en Martinique, Saison 2023; Aquasearch, 2023; p. 27. [Google Scholar]
- Brunel, M.; Chabrolle, A.; Delcroix, É. Hiérarchisation des Sites de Pontes des Tortues Marines sur L’archipel de la Guadeloupe et Mesures de Protection; ONCFS: Guadeloupe, France, 2013; 56p. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical; R Core Team: Vienna, Austria, 2020. [Google Scholar]
- Najwa-Sawawi, S.; Azman, N.M.; Rusli, M.U.; Ahmad, A.; Fahmi-Ahmad, M.; Fadzly, N. How deep is deep enough? Analysis of sea turtle eggs nest relocation procedure at Chagar Hutang Turtle Sanctuary. Saudi J. Biol. Sci. 2021, 28, 5053–5060. [Google Scholar] [CrossRef] [PubMed]
- Lyons, E.; Alessandro, E.D.; Shivlani, M.; Pollock, C.; Ewen, K. Factors regulating incubation temperature and thermal stress in hawksbills in St. Croix, USVI. Endanger. Species Res. 2024, 53, 247–260. [Google Scholar] [CrossRef]
- Wood, D.W.; Bjorndal, K.A. Relation of temperature, moisture, salinity, and slope to nest site selection in loggerhead sea turtles. Copeia 2000, 2000, 119. [Google Scholar] [CrossRef]
- Kamel, S.J.; Mrosovsky, N. Repeatability of nesting preferences in the hawksbill sea turtle, Eretmochelys imbricata, and their fitness consequences. Anim. Behav. 2005, 70, 819–828. [Google Scholar] [CrossRef]
- Eckert, K.L. Environmental unpredictability and leatherback sea turtle (Dermochelys coriacea) nest loss. Herpetologica 1987, 43, 315–323. [Google Scholar]
- Burns, T.J.; Davidson, H.; Kennedy, M.W. Large-scale investment in the excavation and “camouflaging” phases by nesting Leatherback Turtles (Dermochelys coriacea). Can. J. Zool. 2016, 94, 443–448. [Google Scholar] [CrossRef]
- Hu, Z.; Hu, H.; Huang, Y. Association between nighttime artificial light pollution and sea turtle nest density along Florida coast: A geospatial study using VIIRS remote sensing data. Environ. Pollut. 2018, 239, 30–42. [Google Scholar] [CrossRef]
- Bjorndal, K.A.; Bolten, A.B.; Koike, B.; Schroeder, B.A.; Shaver, D.J.; Teas, W.G.; Wayne, N. Witzell Somatic growth function for immature loggerhead sea turtles, Caretta caretta, in southeastern U.S. waters. Fish. Bull. 2001, 99, 240. [Google Scholar]
- Dodd, C.K. Synopsis of the Biological Data on the Loggerhead Sea Turtle: Caretta caretta (Linnaeus, 1758); Fish and Wildlife Service, US Department of the Interior: Washington, DC, USA, 1988; Volume 88. [Google Scholar]
- Niethammer, K.R.; Balazs, G.H.; Hatfield, J.S.; Nakai, G.L.; Megyesu, J.L. Reproductive Biology of the Green Turtle (Chelonia mydas) at Tern Island; USGS French Frigate Shoals: HI, USA, 1997. [Google Scholar]
- Carr, A. Notes on the behavioral ecology of sea turtles. Biol. Conserv. Sea Turt. 1982, 1, 19–26. [Google Scholar]
Behaviors | Description |
---|---|
Ascent | The turtle emerges from the water and moves along the beach using all four limbs simultaneously until it finds the site for its egg-laying. The turtle may take short breaks. |
Body pitting | The female moves the sand, mainly using its front flippers in pairs and its rear flippers alternately. The animal may move slightly forward or change the angle of its body. |
Digging | The turtle uses its hind flippers alternately to dig its nest. |
Egg laying | The female has its two hind flippers on either side of its tail, covering the egg chamber while it lays. Generally, it makes no flipper movements during this phase. |
Covering | The turtle uses its hind flippers alternately to move sand and fill the nest. It may use one flipper several times in succession before switching to the other. |
Camouflaging | The animal disperses sand, mainly using its front flippers in pairs and its rear flippers alternately. The female may move away from the nesting site and repeat this action several times [21]. |
Descent | The turtle advances towards the sea using all four limbs simultaneously until it reaches the water. The turtle may take short breaks. |
Leatherback turtles | Hawksbill turtles | |||||||
---|---|---|---|---|---|---|---|---|
Nesting stages | n | ± SD (min) | Range (min) | Percent (%) | n | ± SD (min) | Range (min) | Percent (%) |
Ascent | 9 | 10.33 ± 4.03 | 5.00–18.00 | 10.18 | 11 | 12.73 ± 7.30 | 5.00–26.00 | 11.62 |
Body pitting | 11 | 8.45 ± 4.30 | 2.00–16.00 | 8.33 | 14 | 5.86 ± 3.46 | 2.00–15.00 | 5.35 |
Digging | 16 | 23.19 ± 8.52 | 10.00–40.00 | 22.85 | 35 | 34.69 ± 14.22 | 6.00–60.00 | 31.68 |
Egg laying | 17 | 9.94 ± 2.11 | 5.00–13.00 | 9.79 | 46 | 19.65 ± 6.43 | 9.00–42.00 | 17.95 |
Covering | 16 | 16.19 ± 9.12 | 8.00–35.00 | 15.95 | 42 | 16.71 ± 6.39 | 4.00–34.00 | 15.27 |
Camouflaging | 13 | 27.46 ± 11.98 | 11.00–55.00 | 27.06 | 39 | 17.51 ± 11.25 | 3.00–68.00 | 15.99 |
Descent | 15 | 5.93 ± 2.22 | 3.00–11.00 | 5.85 | 44 | 2.34 ± 4.03 | 0.00–25.00 | 2.14 |
Total active nesting time | 17 | 85.23 ± 7.20 | 36.00–159.00 | 83.97 | 46 | 94.42 ± 8.35 | 24.00–219.00 | 86.24 |
Total nesting time | 17 | 101.50 ± 6.04 | 44.00–188.00 | 100 | 46 | 109.49 ± 7.58 | 29.00–270.00 | 100 |
Nesting Stage | Caretta caretta (n = 16) | Chelonia mydas (n = 14) | Dermochelys coriacea (n = 17) | Eretmochelys imbricata (n = 46) |
---|---|---|---|---|
Ascent | 7.30 | 9.90 | 10.33 | 12.73 |
Body pitting | 5.50 | 30.20 | 8.45 | 5.86 |
Digging | 12.90 | 29.30 | 23.19 | 34.69 |
Egg laying | 12.30 | 22.30 | 9.94 | 19.65 |
Covering | 10.50 | 10.50 | 16.19 | 16.71 |
Camouflaging | 12.60 | 62.30 | 27.46 | 17.51 |
Descent | 5.80 | 4.10 | 5.93 | 2.34 |
Total active | 54.80 | 145.60 | 85.23 | 94.42 |
Total | 63.00 | X | 101.50 | 109.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossi, M.; Safi, M.; de Montgolfier, B. First Characterization of Nesting Behaviors of Leatherback Turtles (Dermochelys coriacea) and Hawksbill Turtles (Eretmochelys imbricata) in Martinique and Inter-Species Comparison. Wild 2025, 2, 12. https://doi.org/10.3390/wild2020012
Rossi M, Safi M, de Montgolfier B. First Characterization of Nesting Behaviors of Leatherback Turtles (Dermochelys coriacea) and Hawksbill Turtles (Eretmochelys imbricata) in Martinique and Inter-Species Comparison. Wild. 2025; 2(2):12. https://doi.org/10.3390/wild2020012
Chicago/Turabian StyleRossi, Matéa, Morjane Safi, and Benjamin de Montgolfier. 2025. "First Characterization of Nesting Behaviors of Leatherback Turtles (Dermochelys coriacea) and Hawksbill Turtles (Eretmochelys imbricata) in Martinique and Inter-Species Comparison" Wild 2, no. 2: 12. https://doi.org/10.3390/wild2020012
APA StyleRossi, M., Safi, M., & de Montgolfier, B. (2025). First Characterization of Nesting Behaviors of Leatherback Turtles (Dermochelys coriacea) and Hawksbill Turtles (Eretmochelys imbricata) in Martinique and Inter-Species Comparison. Wild, 2(2), 12. https://doi.org/10.3390/wild2020012