Neuroimaging Biomarkers in Alzheimer’s Disease
Abstract
1. Introduction
2. Molecular Biomarkers
2.1. Molecular Biomarkers with Non-Specific Radiotracers
2.1.1. FDG-PET
2.1.2. SPECT
2.1.3. ECD and HMPAO-SPECT
2.1.4. Dopamine Transporter SPECT
2.2. Molecular Biomarkers with Specific Radiotracers
2.2.1. Amyloid PET
2.2.2. Tau PET
3. Structural Biomarkers
MRI Biomarkers in AD
4. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kanekar, S.; Poot, J.D. Neuroimaging of Vascular Dementia. Radiol. Clin. N. Am. 2014, 52, 383–401. [Google Scholar] [CrossRef] [PubMed]
- Humpel, C. Identifying and Validating Biomarkers for Alzheimer’s Disease. Trends Biotechnol. 2011, 29, 26–32. [Google Scholar] [CrossRef]
- Corrada, M.M.; Brookmeyer, R.; Paganini-Hill, A.; Berlau, D.; Kawas, C.H. Dementia Incidence Continues to Increase with Age in the Oldest Old The 90+ Study. Ann. Neurol. 2010, 67, 114–121. [Google Scholar] [CrossRef]
- Rasmussen, J.; Langerman, H. Alzheimer’s Disease—Why We Need Early Diagnosis. Degener. Neurol. Neuromuscul. Dis. 2019, 9, 123–130. [Google Scholar] [CrossRef]
- Wattamwar, P.R.; Mathuranath, P.S. An Overview of Biomarkers in Alzheimer’s Disease. Ann. Indian Acad. Neurol. 2010, 13, S116–S123. [Google Scholar] [CrossRef]
- Jack, C.R.; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; et al. NIA-AA Research Framework: Toward a Biological Definition of Alzheimer’s Disease. Alzheimers Dement. 2018, 14, 535–562. [Google Scholar] [CrossRef] [PubMed]
- Bachurin, S.O.; Bovina, E.V.; Ustyugov, A.A. Drugs in Clinical Trials for Alzheimer’s Disease: The Major Trends. Med. Res. Rev. 2017, 37, 1186–1225. [Google Scholar] [CrossRef] [PubMed]
- Beshir, S.A.; Hussain, N.; Menon, V.B.; Al Haddad, A.H.I.; Al Zeer, R.A.K.; Elnour, A.A. Advancements and Challenges in Antiamyloid Therapy for Alzheimer’s Disease: A Comprehensive Review. Int. J. Alzheimers Dis. 2024, 2024, 2052142. [Google Scholar] [CrossRef]
- Mattsson, N.; Carrillo, M.C.; Dean, R.A.; Devous, M.D.; Nikolcheva, T.; Pesini, P.; Salter, H.; Potter, W.Z.; Sperling, R.S.; Bateman, R.J.; et al. Revolutionizing Alzheimer’s Disease and Clinical Trials through Biomarkers. Alzheimers Dement. 2015, 1, 412–419. [Google Scholar] [CrossRef]
- Hampel, H.; O’Bryant, S.E.; Durrleman, S.; Younesi, E.; Rojkova, K.; Escott-Price, V.; Corvol, J.-C.; Broich, K.; Dubois, B.; Lista, S.; et al. A Precision Medicine Initiative for Alzheimer’s Disease: The Road Ahead to Biomarker-Guided Integrative Disease Modeling. Climacteric 2017, 20, 107–118. [Google Scholar] [CrossRef]
- McKhann, G.M.; Knopman, D.S.; Chertkow, H.; Hyman, B.T.; Jack, C.R.; Kawas, C.H.; Klunk, W.E.; Koroshetz, W.J.; Manly, J.J.; Mayeux, R.; et al. The Diagnosis of Dementia Due to Alzheimer’s Disease: Recommendations from the National Institute on Aging-Alzheimer’s Association Workgroups on Diagnostic Guidelines for Alzheimer’s Disease. Alzheimers Dement. 2011, 7, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Wong, R.; Luo, Y.; Mok, V.C.; Shi, L. Advances in Computerized MRI-based Biomarkers in Alzheimer’s Disease. Brain Sci. Adv. 2021, 7, 26–43. [Google Scholar] [CrossRef]
- Dubois, B.; Feldman, H.H.; Jacova, C.; Hampel, H.; Molinuevo, J.L.; Blennow, K.; DeKosky, S.T.; Gauthier, S.; Selkoe, D.; Bateman, R.; et al. Advancing Research Diagnostic Criteria for Alzheimer’s Disease: The IWG-2 Criteria. Lancet Neurol. 2014, 13, 614–629. [Google Scholar] [CrossRef]
- Jack, C.R.; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Feldman, H.H.; Frisoni, G.B.; Hampel, H.; Jagust, W.J.; Johnson, K.A.; Knopman, D.S.; et al. A/T/N: An Unbiased Descriptive Classification Scheme for Alzheimer Disease Biomarkers. Neurology 2016, 87, 539–547. [Google Scholar] [CrossRef]
- Lian, P.; Guo, Y.; Yu, J. Biomarkers in Alzheimer’s Disease: Emerging Trends and Clinical Implications. Chin. Med. J. 2025, 138, 1009–1012. [Google Scholar] [CrossRef]
- Ou, Y.-N.; Xu, W.; Li, J.-Q.; Guo, Y.; Cui, M.; Chen, K.-L.; Huang, Y.-Y.; Dong, Q.; Tan, L.; Yu, J.-T.; et al. FDG-PET as an Independent Biomarker for Alzheimer’s Biological Diagnosis: A Longitudinal Study. Alzheimers Res. Ther. 2019, 11, 57. [Google Scholar] [CrossRef] [PubMed]
- Sperling, R.A.; Aisen, P.S.; Beckett, L.A.; Bennett, D.A.; Craft, S.; Fagan, A.M.; Iwatsubo, T.; Jack, C.R.; Kaye, J.; Montine, T.J.; et al. Toward Defining the Preclinical Stages of Alzheimer’s Disease: Recommendations from the National Institute on Aging-Alzheimer’s Association Workgroups on Diagnostic Guidelines for Alzheimer’s Disease. Alzheimers Dement. 2011, 7, 280–292. [Google Scholar] [CrossRef]
- Minoshima, S.; Mosci, K.; Cross, D.; Thientunyakit, T. Brain [F-18]FDG PET for Clinical Dementia Workup: Differential Diagnosis of Alzheimer’s Disease and Other Types of Dementing Disorders. Semin. Nucl. Med. 2021, 51, 230–240. [Google Scholar] [CrossRef]
- Dave, A.; Hansen, N.; Downey, R.; Johnson, C. FDG-PET Imaging of Dementia and Neurodegenerative Disease. Semin. Ultrasound CT MR 2020, 41, 562–571. [Google Scholar] [CrossRef] [PubMed]
- Mosconi, L. Glucose Metabolism in Normal Aging and Alzheimer’s Disease: Methodological and Physiological Considerations for PET Studies. Clin. Transl. Imaging 2013, 1, 217–233. [Google Scholar] [CrossRef]
- Tripathi, M.; Tripathi, M.; Damle, N.; Kushwaha, S.; Jaimini, A.; D’Souza, M.M.; Sharma, R.; Saw, S.; Mondal, A. Differential Diagnosis of Neurodegenerative Dementias Using Metabolic Phenotypes on F-18 FDG PET/CT. Neuroradiol. J. 2014, 27, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Bouter, C.; Henniges, P.; Franke, T.N.; Irwin, C.; Sahlmann, C.O.; Sichler, M.E.; Beindorff, N.; Bayer, T.A.; Bouter, Y. 18F-FDG-PET Detects Drastic Changes in Brain Metabolism in the Tg4-42 Model of Alzheimer’s Disease. Front. Aging Neurosci. 2018, 10, 425. [Google Scholar] [CrossRef] [PubMed]
- Kljajevic, V.; Grothe, M.J.; Ewers, M.; Teipel, S. Alzheimer’s Disease Neuroimaging Initiative Distinct Pattern of Hypometabolism and Atrophy in Preclinical and Predementia Alzheimer’s Disease. Neurobiol. Aging 2014, 35, 1973–1981. [Google Scholar] [CrossRef]
- Matsunari, I.; Samuraki, M.; Chen, W.-P.; Yanase, D.; Takeda, N.; Ono, K.; Yoshita, M.; Matsuda, H.; Yamada, M.; Kinuya, S. Comparison of 18F-FDG PET and Optimized Voxel-Based Morphometry for Detection of Alzheimer’s Disease: Aging Effect on Diagnostic Performance. J. Nucl. Med. 2007, 48, 1961–1970. [Google Scholar] [CrossRef]
- Salmon, E.; Collette, F.; Bastin, C. Cerebral Glucose Metabolism in Alzheimer’s Disease. Cortex 2024, 179, 50–61. [Google Scholar] [CrossRef]
- Martin-Macintosh, E.L.; Broski, S.M.; Johnson, G.B.; Hunt, C.H.; Cullen, E.L.; Peller, P.J. Multimodality Imaging of Neurodegenerative Processes: Part 1, The Basics and Common Dementias. AJR Am. J. Roentgenol. 2016, 207, 871–882. [Google Scholar] [CrossRef]
- Tripathi, S.M.; Murray, A.D. Alzheimer’s Dementia: The Emerging Role of Positron Emission Tomography. Neuroscientist 2021, 28, 507–519. [Google Scholar] [CrossRef]
- Brown, R.K.J.; Bohnen, N.I.; Wong, K.K.; Minoshima, S.; Frey, K.A. Brain PET in Suspected Dementia: Patterns of Altered FDG Metabolism. RadioGraphics 2014, 34, 684–701. [Google Scholar] [CrossRef]
- Bailly, M.; Destrieux, C.; Hommet, C.; Mondon, K.; Cottier, J.-P.; Beaufils, E.; Vierron, E.; Vercouillie, J.; Ibazizene, M.; Voisin, T.; et al. Precuneus and Cingulate Cortex Atrophy and Hypometabolism in Patients with Alzheimer’s Disease and Mild Cognitive Impairment: MRI and 18F-FDG PET Quantitative Analysis Using FreeSurfer. BioMed Res. Int. 2015, 2015, 583931. [Google Scholar] [CrossRef]
- Ishii, K.; Imamura, T.; Sasaki, M.; Yamaji, S.; Sakamoto, S.; Kitagaki, H.; Hashimoto, M.; Hirono, N.; Shimomura, T.; Mori, E. Regional Cerebral Glucose Metabolism in Dementia with Lewy Bodies and Alzheimer’s Disease. Neurology 1998, 51, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.A.; Deng, J.; Neuhaus, J.; Sible, I.J.; Sias, A.C.; Lee, S.E.; Kornak, J.; Marx, G.A.; Karydas, A.M.; Spina, S.; et al. Patient-Tailored, Connectivity-Based Forecasts of Spreading Brain Atrophy. Neuron 2019, 104, 856–868.e5. [Google Scholar] [CrossRef]
- Mosconi, L.; Tsui, W.H.; Herholz, K.; Pupi, A.; Drzezga, A.; Lucignani, G.; Reiman, E.M.; Holthoff, V.; Kalbe, E.; Sorbi, S.; et al. Multicenter Standardized 18F-FDG PET Diagnosis of Mild Cognitive Impairment, Alzheimer’s Disease, and Other Dementias. J. Nucl. Med. 2008, 49, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Marcus, C.; Mena, E.; Subramaniam, R.M. Brain PET in the Diagnosis of Alzheimer’s Disease. Clin. Nucl. Med. 2014, 39, e413–e426. [Google Scholar] [CrossRef] [PubMed]
- Dubois, B.; von Arnim, C.A.F.; Burnie, N.; Bozeat, S.; Cummings, J. Biomarkers in Alzheimer’s Disease: Role in Early and Differential Diagnosis and Recognition of Atypical Variants. Alzheimers Res. Ther. 2023, 15, 175. [Google Scholar] [CrossRef]
- Heyer, S.; Simon, M.; Doyen, M.; Mortada, A.; Roch, V.; Jeanbert, E.; Thilly, N.; Malaplate, C.; Kearney-Schwartz, A.; Jonveaux, T.; et al. 18F-FDG PET Can Effectively Rule out Conversion to Dementia and the Presence of CSF Biomarker of Neurodegeneration: A Real-World Data Analysis. Alzheimers Res. Ther. 2024, 16, 182. [Google Scholar] [CrossRef]
- Landau, S.M.; Harvey, D.; Madison, C.M.; Koeppe, R.A.; Reiman, E.M.; Foster, N.L.; Weiner, M.W.; Jagust, W.J. Alzheimer’s Disease Neuroimaging Initiative. Associations between Cognitive, Functional, and FDG-PET Measures of Decline in AD and MCI. Neurobiol. Aging 2011, 32, 1207–1218. [Google Scholar] [CrossRef]
- Zhang, W.; Arteaga, J.; Cashion, D.K.; Chen, G.; Gangadharmath, U.; Gomez, L.F.; Kasi, D.; Lam, C.; Liang, Q.; Liu, C.; et al. A Highly Selective and Specific PET Tracer for Imaging of Tau Pathologies. J. Alzheimers Dis. 2012, 31, 601–612. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Langbaum, J.B.S.; Fleisher, A.S.; Ayutyanont, N.; Reschke, C.; Lee, W.; Liu, X.; Bandy, D.; Alexander, G.E.; Thompson, P.M.; et al. Twelve-Month Metabolic Declines in Probable Alzheimer’s Disease and Amnestic Mild Cognitive Impairment Assessed Using an Empirically Pre-Defined Statistical Region-of-Interest: Findings from the Alzheimer’s Disease Neuroimaging Initiative. Neuroimage 2010, 51, 654–664. [Google Scholar] [CrossRef]
- Høilund-Carlsen, P.F.; Revheim, M.-E.; Costa, T.; Kepp, K.P.; Castellani, R.J.; Perry, G.; Alavi, A.; Barrio, J.R. FDG-PET versus Amyloid-PET Imaging for Diagnosis and Response Evaluation in Alzheimer’s Disease: Benefits and Pitfalls. Diagnostics 2023, 13, 2254. [Google Scholar] [CrossRef]
- Chow, T.W.; Fam, D.; Graff-Guerrero, A.; Verhoeff, N.P.G.; Tang-Wai, D.F.; Masellis, M.; Black, S.E.; Wilson, A.A.; Houle, S.; Pollock, B.G. Fluorodeoxyglucose Positron Emission Tomography in Semantic Dementia after 6 Months of Memantine: An Open-Label Pilot Study. Int. J. Geriatr. Psychiatry 2013, 28, 319–325. [Google Scholar] [CrossRef]
- Potkin, S.G.; Anand, R.; Fleming, K.; Alva, G.; Keator, D.; Carreon, D.; Messina, J.; Wu, J.C.; Hartman, R.; Fallon, J.H. Brain Metabolic and Clinical Effects of Rivastigmine in Alzheimer’s Disease. Int. J. Neuropsychopharmacol. 2001, 4, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Sharp, P.F.; Gemmell, H.G.; Murray, A.D. (Eds.) Practical Nuclear Medicine, 3rd ed.; Springer: London, UK; New York, NY, USA, 2005; ISBN 978-1-85233-875-6. [Google Scholar]
- Antonini, A.; Leenders, K.L.; Vontobel, P.; Maguire, R.P.; Missimer, J.; Psylla, M.; Günther, I. Complementary PET Studies of Striatal Neuronal Function in the Differential Diagnosis between Multiple System Atrophy and Parkinson’s Disease. Brain 1997, 120, 2187–2195. [Google Scholar] [CrossRef] [PubMed]
- Holman, B.L.; Johnson, K.A.; Gerada, B.; Carvalho, P.A.; Satlin, A. The Scintigraphic Appearance of Alzheimer’s Disease: A Prospective Study Using Technetium-99m-HMPAO SPECT. J. Nucl. Med. 1992, 33, 181–185. [Google Scholar]
- Catafau, A.M. Brain SPECT in Clinical Practice. Part I: Perfusion. J. Nucl. Med. 2001, 42, 259–271. [Google Scholar]
- Devous, M.D. Single-Photon Emission Computed Tomography in Neurotherapeutics. NeuroRx 2005, 2, 237–249. [Google Scholar] [CrossRef]
- Brass, L.M.; Walovitch, R.C.; Joseph, J.L.; Léveillé, J.; Marchand, L.; Hellman, R.S.; Tikofsky, R.S.; Masdeu, J.C.; Hall, K.M.; Van Heertum, R.L. The Role of Single Photon Emission Computed Tomography Brain Imaging with 99mTc-Bicisate in the Localization and Definition of Mechanism of Ischemic Stroke. J. Cereb. Blood Flow. Metab. 1994, 14 (Suppl. S1), S91–S98. [Google Scholar]
- Waldemar, G.; Walovitch, R.C.; Andersen, A.R.; Hasselbalch, S.G.; Bigelow, R.; Joseph, J.L.; Paulson, O.B.; Lassen, N.A. 99mTc-Bicisate (Neurolite) SPECT Brain Imaging and Cognitive Impairment in Dementia of the Alzheimer Type: A Blinded Read of Image Sets from a Multicenter SPECT Trial. J. Cereb. Blood Flow. Metab. 1994, 14 (Suppl. S1), S99–S105. [Google Scholar]
- Dougall, N.J.; Bruggink, S.; Ebmeier, K.P. Systematic Review of the Diagnostic Accuracy of 99mTc-HMPAO-SPECT in Dementia. Am. J. Geriatr. Psychiatry 2004, 12, 554–570. [Google Scholar] [CrossRef]
- Imokawa, T.; Yokoyama, K.; Takahashi, K.; Oyama, J.; Tsuchiya, J.; Sanjo, N.; Tateishi, U. Brain Perfusion SPECT in Dementia: What Radiologists Should Know. Jpn. J. Radiol. 2024, 42, 1215–1230. [Google Scholar] [CrossRef]
- Talbot, P.R.; Lloyd, J.J.; Snowden, J.S.; Neary, D.; Testa, H.J. A Clinical Role for 99mTc-HMPAO SPECT in the Investigation of Dementia? J. Neurol. Neurosurg. Psychiatry 1998, 64, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Bouchareb, Y.; AlSaadi, A.; Zabah, J.; Jain, A.; Al-Jabri, A.; Phiri, P.; Shi, J.Q.; Delanerolle, G.; Sirasanagandla, S.R. Technological Advances in SPECT and SPECT/CT Imaging. Diagnostics 2024, 14, 1431. [Google Scholar] [CrossRef]
- Matsuda, H.; Mizumura, S.; Nagao, T.; Ota, T.; Iizuka, T.; Nemoto, K.; Takemura, N.; Arai, H.; Homma, A. Automated Discrimination between Very Early Alzheimer Disease and Controls Using an Easy Z-Score Imaging System for Multicenter Brain Perfusion Single-Photon Emission Tomography. AJNR Am. J. Neuroradiol. 2007, 28, 731–736. [Google Scholar]
- Jang, J.-W.; Kim, S.; Na, H.Y.; Ahn, S.; Lee, S.J.; Kwak, K.-H.; Lee, M.-A.; Hsiung, G.-Y.R.; Choi, B.-S.; Youn, Y.C. Effect of White Matter Hyperintensity on Medial Temporal Lobe Atrophy in Alzheimer’s Disease. Eur. Neurol. 2013, 69, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Valotassiou, V.; Sifakis, N.; Papatriantafyllou, J.; Angelidis, G.; Georgoulias, P. The Clinical Use of SPECT and PET Molecular Imaging in Alzheimer’s Disease; IntechOpen: London, UK, 2011; ISBN 978-953-307-993-6. [Google Scholar]
- Nitrini, R.; Buchpiguel, C.A.; Caramelli, P.; Bahia, V.S.; Mathias, S.C.; Nascimento, C.M.; Degenszajn, J.; Caixeta, L. SPECT in Alzheimer’s Disease: Features Associated with Bilateral Parietotemporal Hypoperfusion. Acta Neurol. Scand. 2000, 101, 172–176. [Google Scholar] [CrossRef] [PubMed]
- Kemp, P.M.; Holmes, C.; Hoffmann, S.M.A.; Bolt, L.; Holmes, R.; Rowden, J.; Fleming, J.S. Alzheimer’s Disease: Differences in Technetium-99m HMPAO SPECT Scan Findings between Early Onset and Late Onset Dementia. J. Neurol. Neurosurg. Psychiatry 2003, 74, 715–719. [Google Scholar] [CrossRef]
- Rodriguez, G.; Nobili, F.; Copello, F.; Vitali, P.; Gianelli, M.V.; Taddei, G.; Catsafados, E.; Mariani, G. 99mTc-HMPAO Regional Cerebral Blood Flow and Quantitative Electroencephalography in Alzheimer’s Disease: A Correlative Study. J. Nucl. Med. 1999, 40, 522–529. [Google Scholar] [PubMed]
- Nishimura, T.; Hashikawa, K.; Fukuyama, H.; Kubota, T.; Kitamura, S.; Matsuda, H.; Hanyu, H.; Nabatame, H.; Oku, N.; Tanabe, H.; et al. Decreased Cerebral Blood Flow and Prognosis of Alzheimer’s Disease: A Multicenter HMPAO-SPECT Study. Ann. Nucl. Med. 2007, 21, 15–23. [Google Scholar] [CrossRef]
- Claus, J.J.; Walstra, G.J.; Hijdra, A.; Van Royen, E.A.; Verbeeten, B.; van Gool, W.A. Measurement of Temporal Regional Cerebral Perfusion with Single-Photon Emission Tomography Predicts Rate of Decline in Language Function and Survival in Early Alzheimer’s Disease. Eur. J. Nucl. Med. 1999, 26, 265–271. [Google Scholar] [CrossRef]
- Gunes, S.; Aizawa, Y.; Sugashi, T.; Sugimoto, M.; Rodrigues, P.P. Biomarkers for Alzheimer’s Disease in the Current State: A Narrative Review. Int. J. Mol. Sci. 2022, 23, 4962. [Google Scholar] [CrossRef]
- Ito, K.; Inui, Y.; Kizawa, T.; Kimura, Y.; Kato, T. Current and future prospects of nuclear medicine in dementia. Rinsho Shinkeigaku 2017, 57, 479–484. [Google Scholar] [CrossRef]
- Valotassiou, V.; Malamitsi, J.; Papatriantafyllou, J.; Dardiotis, E.; Tsougos, I.; Psimadas, D.; Alexiou, S.; Hadjigeorgiou, G.; Georgoulias, P. SPECT and PET Imaging in Alzheimer’s Disease. Ann. Nucl. Med. 2018, 32, 583–593. [Google Scholar] [CrossRef]
- Scherfler, C.; Nocker, M. Dopamine Transporter SPECT: How to Remove Subjectivity? Mov. Disord. 2009, 24 (Suppl. S2), S721–S724. [Google Scholar] [CrossRef]
- Vaamonde-Gamo, J.; Flores-Barragán, J.M.; Ibáñez, R.; Gudín, M.; Hernández, A. DaT-SCAN SPECT in the differential diagnosis of dementia with Lewy bodies and Alzheimer’s disease. Rev. Neurol. 2005, 41, 276–279. [Google Scholar]
- Akdemir, Ü.Ö.; Bora Tokçaer, A.; Atay, L.Ö. Dopamine Transporter SPECT Imaging in Parkinson’s Disease and Parkinsonian Disorders. Turk. J. Med. Sci. 2021, 51, 400–410. [Google Scholar] [CrossRef] [PubMed]
- Plotkin, M.; Amthauer, H.; Klaffke, S.; Kühn, A.; Lüdemann, L.; Arnold, G.; Wernecke, K.-D.; Kupsch, A.; Felix, R.; Venz, S. Combined 123I-FP-CIT and 123I-IBZM SPECT for the Diagnosis of Parkinsonian Syndromes: Study on 72 Patients. J. Neural Transm. 2005, 112, 677–692. [Google Scholar] [CrossRef] [PubMed]
- Brigo, F.; Matinella, A.; Erro, R.; Tinazzi, M. [123I]FP-CIT SPECT (DaTSCAN) May Be a Useful Tool to Differentiate between Parkinson’s Disease and Vascular or Drug-Induced Parkinsonisms: A Meta-Analysis. Eur. J. Neurol. 2014, 21, 1369-e90. [Google Scholar] [CrossRef] [PubMed]
- Klunk, W.E.; Engler, H.; Nordberg, A.; Wang, Y.; Blomqvist, G.; Holt, D.P.; Bergström, M.; Savitcheva, I.; Huang, G.; Estrada, S.; et al. Imaging Brain Amyloid in Alzheimer’s Disease with Pittsburgh Compound-B. Ann. Neurol. 2004, 55, 306–319. [Google Scholar] [CrossRef] [PubMed]
- Villemagne, V.L.; Burnham, S.; Bourgeat, P.; Brown, B.; Ellis, K.A.; Salvado, O.; Szoeke, C.; Macaulay, S.L.; Martins, R.; Maruff, P.; et al. Amyloid β Deposition, Neurodegeneration, and Cognitive Decline in Sporadic Alzheimer’s Disease: A Prospective Cohort Study. Lancet Neurol. 2013, 12, 357–367. [Google Scholar] [CrossRef]
- Jack, C.R.; Knopman, D.S.; Jagust, W.J.; Petersen, R.C.; Weiner, M.W.; Aisen, P.S.; Shaw, L.M.; Vemuri, P.; Wiste, H.J.; Weigand, S.D.; et al. Tracking Pathophysiological Processes in Alzheimer’s Disease: An Updated Hypothetical Model of Dynamic Biomarkers. Lancet Neurol. 2013, 12, 207–216. [Google Scholar] [CrossRef]
- Elman, J.A.; Panizzon, M.S.; Gustavson, D.E.; Franz, C.E.; Sanderson-Cimino, M.E.; Lyons, M.J.; Kremen, W.S. Amyloid-β Positivity Predicts Cognitive Decline but Cognition Predicts Progression to Amyloid-β Positivity. Biol. Psychiatry 2020, 87, 819–828. [Google Scholar] [CrossRef]
- Johnson, K.A.; Minoshima, S.; Bohnen, N.I.; Donohoe, K.J.; Foster, N.L.; Herscovitch, P.; Karlawish, J.H.; Rowe, C.C.; Carrillo, M.C.; Hartley, D.M.; et al. Appropriate Use Criteria for Amyloid PET: A Report of the Amyloid Imaging Task Force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer’s Association. Alzheimers Dement. 2013, 9, E1–E16. [Google Scholar] [CrossRef]
- Kim, Y.; Rosenberg, P.; Oh, E. A Review of Diagnostic Impact of Amyloid Positron Emission Tomography Imaging in Clinical Practice. Dement. Geriatr. Cogn. Disord. 2018, 46, 154–167. [Google Scholar] [CrossRef]
- Rabinovici, G.D.; Jagust, W.J. Amyloid Imaging in Aging and Dementia: Testing the Amyloid Hypothesis in Vivo. Behav. Neurol. 2009, 21, 117–128. [Google Scholar] [CrossRef]
- Clark, C.M.; Schneider, J.A.; Bedell, B.J.; Beach, T.G.; Bilker, W.B.; Mintun, M.A.; Pontecorvo, M.J.; Hefti, F.; Carpenter, A.P.; Flitter, M.L.; et al. Use of Florbetapir-PET for Imaging Beta-Amyloid Pathology. JAMA 2011, 305, 275–283. [Google Scholar] [CrossRef]
- Filippi, L.; Chiaravalloti, A.; Bagni, O.; Schillaci, O. 18F-Labeled Radiopharmaceuticals for the Molecular Neuroimaging of Amyloid Plaques in Alzheimer’s Disease. Am. J. Nucl. Med. Mol. Imaging 2018, 8, 268–281. [Google Scholar]
- Rabinovici, G.D.; Rosen, H.J.; Alkalay, A.; Kornak, J.; Furst, A.J.; Agarwal, N.; Mormino, E.C.; O’Neil, J.P.; Janabi, M.; Karydas, A.; et al. Amyloid vs FDG-PET in the Differential Diagnosis of AD and FTLD. Neurology 2011, 77, 2034–2042. [Google Scholar] [CrossRef] [PubMed]
- Jansen, W.J.; Ossenkoppele, R.; Knol, D.L.; Tijms, B.M.; Scheltens, P.; Verhey, F.R.J.; Visser, P.J.; Amyloid Biomarker Study Group; Aalten, P.; Aarsland, D.; et al. Prevalence of Cerebral Amyloid Pathology in Persons without Dementia: A Meta-Analysis. JAMA 2015, 313, 1924–1938. [Google Scholar] [CrossRef]
- Bhogal, P.; Mahoney, C.; Graeme-Baker, S.; Roy, A.; Shah, S.; Fraioli, F.; Cowley, P.; Jäger, H.R. The Common Dementias: A Pictorial Review. Eur. Radiol. 2013, 23, 3405–3417. [Google Scholar] [CrossRef] [PubMed]
- Wolk, D.A.; Klunk, W.E. Update on Amyloid Imaging: From Healthy Aging to Alzheimer’s Disease. Curr. Neurol. Neurosci. Rep. 2009, 9, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Echeveste, B.; Prieto, E.; Guillén, E.F.; Jimenez, A.; Montoya, G.; Villino, R.; Riverol, M.; Arbizu, J. Combination of Amyloid and FDG PET for the Prediction of Short-Term Conversion from MCI to Alzheimer´s Disease in the Clinical Practice. Eur. J. Nucl. Med. Mol. Imaging 2025, 52, 3567–3577. [Google Scholar] [CrossRef]
- Nordberg, A.; Carter, S.F.; Rinne, J.; Drzezga, A.; Brooks, D.J.; Vandenberghe, R.; Perani, D.; Forsberg, A.; Långström, B.; Scheinin, N.; et al. A European Multicentre PET Study of Fibrillar Amyloid in Alzheimer’s Disease. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 104–114. [Google Scholar] [CrossRef]
- Okello, A.; Koivunen, J.; Edison, P.; Archer, H.A.; Turkheimer, F.E.; Någren, K.; Bullock, R.; Walker, Z.; Kennedy, A.; Fox, N.C.; et al. Conversion of Amyloid Positive and Negative MCI to AD over 3 Years. Neurology 2009, 73, 754–760. [Google Scholar] [CrossRef]
- Huijbers, W.; Mormino, E.C.; Schultz, A.P.; Wigman, S.; Ward, A.M.; Larvie, M.; Amariglio, R.E.; Marshall, G.A.; Rentz, D.M.; Johnson, K.A.; et al. Amyloid-β Deposition in Mild Cognitive Impairment Is Associated with Increased Hippocampal Activity, Atrophy and Clinical Progression. Brain 2015, 138, 1023–1035. [Google Scholar] [CrossRef]
- Wahlster, P.; Niederländer, C.; Kriza, C.; Schaller, S.; Kolominsky-Rabas, P.L. Clinical Assessment of Amyloid Imaging in Alzheimer’s Disease: A Systematic Review of the Literature. Dement. Geriatr. Cogn. Disord. 2013, 36, 263–278. [Google Scholar] [CrossRef] [PubMed]
- Rosen, W.G.; Mohs, R.C.; Davis, K.L. A New Rating Scale for Alzheimer’s Disease. Am. J. Psychiatry 1984, 141, 1356–1364. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.C.; Ernesto, C.; Schafer, K.; Coats, M.; Leon, S.; Sano, M.; Thal, L.J.; Woodbury, P. Clinical Dementia Rating Training and Reliability in Multicenter Studies: The Alzheimer’s Disease Cooperative Study Experience. Neurology 1997, 48, 1508–1510. [Google Scholar] [CrossRef]
- Podhorna, J.; Krahnke, T.; Shear, M.; Harrison, J.E.; Alzheimer’s Disease Neuroimaging Initiative. Alzheimer’s Disease Assessment Scale-Cognitive Subscale Variants in Mild Cognitive Impairment and Mild Alzheimer’s Disease: Change over Time and the Effect of Enrichment Strategies. Alzheimers Res. Ther. 2016, 8, 8. [Google Scholar] [CrossRef]
- Stern, Y. Cognitive Reserve in Ageing and Alzheimer’s Disease. Lancet Neurol. 2012, 11, 1006–1012. [Google Scholar] [CrossRef]
- Sevigny, J.; Chiao, P.; Bussière, T.; Weinreb, P.H.; Williams, L.; Maier, M.; Dunstan, R.; Salloway, S.; Chen, T.; Ling, Y.; et al. The Antibody Aducanumab Reduces Aβ Plaques in Alzheimer’s Disease. Nature 2016, 537, 50–56. [Google Scholar] [CrossRef]
- Oxford, A.E.; Stewart, E.S.; Rohn, T.T. Clinical Trials in Alzheimer’s Disease: A Hurdle in the Path of Remedy. Int. J. Alzheimers Dis. 2020, 2020, 5380346. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, H.; Li, R.; Sterling, K.; Song, W. Amyloid β-Based Therapy for Alzheimer’s Disease: Challenges, Successes and Future. Signal Transduct. Target. Ther. 2023, 8, 248. [Google Scholar] [CrossRef]
- Takeda, S. Tau Propagation as a Diagnostic and Therapeutic Target for Dementia: Potentials and Unanswered Questions. Front. Neurosci. 2019, 13, 1274. [Google Scholar] [CrossRef] [PubMed]
- Arriagada, P.V.; Growdon, J.H.; Hedley-Whyte, E.T.; Hyman, B.T. Neurofibrillary Tangles but Not Senile Plaques Parallel Duration and Severity of Alzheimer’s Disease. Neurology 1992, 42, 631–639. [Google Scholar] [CrossRef]
- Bierer, L.M.; Hof, P.R.; Purohit, D.P.; Carlin, L.; Schmeidler, J.; Davis, K.L.; Perl, D.P. Neocortical Neurofibrillary Tangles Correlate with Dementia Severity in Alzheimer’s Disease. Arch. Neurol. 1995, 52, 81–88. [Google Scholar] [CrossRef]
- Braak, H.; Braak, E. Neuropathological Stageing of Alzheimer-Related Changes. Acta Neuropathol. 1991, 82, 239–259. [Google Scholar] [CrossRef]
- Whitwell, J.L.; Josephs, K.A.; Murray, M.E.; Kantarci, K.; Przybelski, S.A.; Weigand, S.D.; Vemuri, P.; Senjem, M.L.; Parisi, J.E.; Knopman, D.S.; et al. MRI Correlates of Neurofibrillary Tangle Pathology at Autopsy: A Voxel-Based Morphometry Study. Neurology 2008, 71, 743–749. [Google Scholar] [CrossRef]
- Nelson, P.T.; Alafuzoff, I.; Bigio, E.H.; Bouras, C.; Braak, H.; Cairns, N.J.; Castellani, R.J.; Crain, B.J.; Davies, P.; Del Tredici, K.; et al. Correlation of Alzheimer Disease Neuropathologic Changes with Cognitive Status: A Review of the Literature. J. Neuropathol. Exp. Neurol. 2012, 71, 362–381. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhi, W.; Wang, L. Role of Tau Protein in Neurodegenerative Diseases and Development of Its Targeted Drugs: A Literature Review. Molecules 2024, 29, 2812. [Google Scholar] [CrossRef]
- Yoshida, K.; Hata, Y.; Ichimata, S.; Nishida, N. Tau and Amyloid-β Pathology in Japanese Forensic Autopsy Series Under 40 Years of Age: Prevalence and Association with APOE Genotype and Suicide Risk. J. Alzheimers Dis. 2019, 72, 641–652. [Google Scholar] [CrossRef] [PubMed]
- Fleisher, A.S.; Pontecorvo, M.J.; Devous, M.D.; Lu, M.; Arora, A.K.; Truocchio, S.P.; Aldea, P.; Flitter, M.; Locascio, T.; Devine, M.; et al. Positron Emission Tomography Imaging with [18F]Flortaucipir and Postmortem Assessment of Alzheimer Disease Neuropathologic Changes. JAMA Neurol. 2020, 77, 829–839. [Google Scholar] [CrossRef]
- Leuzy, A.; Chiotis, K.; Lemoine, L.; Gillberg, P.-G.; Almkvist, O.; Rodriguez-Vieitez, E.; Nordberg, A. Tau PET Imaging in Neurodegenerative Tauopathies—Still a Challenge. Mol. Psychiatry 2019, 24, 1112–1134. [Google Scholar] [CrossRef]
- Harrison, T.M.; Du, R.; Klencklen, G.; Baker, S.L.; Jagust, W.J. Distinct Effects of Beta-Amyloid and Tau on Cortical Thickness in Cognitively Healthy Older Adults. Alzheimers Dement. 2021, 17, 1085–1096. [Google Scholar] [CrossRef]
- Ossenkoppele, R.; Smith, R.; Ohlsson, T.; Strandberg, O.; Mattsson, N.; Insel, P.S.; Palmqvist, S.; Hansson, O. Associations between Tau, Aβ, and Cortical Thickness with Cognition in Alzheimer Disease. Neurology 2019, 92, e601–e612. [Google Scholar] [CrossRef]
- Agdeppa, E.D.; Kepe, V.; Liu, J.; Flores-Torres, S.; Satyamurthy, N.; Petric, A.; Cole, G.M.; Small, G.W.; Huang, S.C.; Barrio, J.R. Binding Characteristics of Radiofluorinated 6-Dialkylamino-2-Naphthylethylidene Derivatives as Positron Emission Tomography Imaging Probes for Beta-Amyloid Plaques in Alzheimer’s Disease. J. Neurosci. 2001, 21, RC189. [Google Scholar] [CrossRef] [PubMed]
- Shoghi-Jadid, K.; Small, G.W.; Agdeppa, E.D.; Kepe, V.; Ercoli, L.M.; Siddarth, P.; Read, S.; Satyamurthy, N.; Petric, A.; Huang, S.-C.; et al. Localization of Neurofibrillary Tangles and Beta-Amyloid Plaques in the Brains of Living Patients with Alzheimer Disease. Am. J. Geriatr. Psychiatry 2002, 10, 24–35. [Google Scholar] [CrossRef]
- Villemagne, V.L.; Furumoto, S.; Fodero-Tavoletti, M.; Harada, R.; Mulligan, R.S.; Kudo, Y.; Masters, C.L.; Yanai, K.; Rowe, C.C.; Okamura, N. The Challenges of Tau Imaging. Future Neurol. 2012, 7, 409–421. [Google Scholar] [CrossRef]
- Fodero-Tavoletti, M.T.; Okamura, N.; Furumoto, S.; Mulligan, R.S.; Connor, A.R.; McLean, C.A.; Cao, D.; Rigopoulos, A.; Cartwright, G.A.; O’Keefe, G.; et al. 18F-THK523: A Novel in Vivo Tau Imaging Ligand for Alzheimer’s Disease. Brain 2011, 134, 1089–1100. [Google Scholar] [CrossRef] [PubMed]
- Villemagne, V.L.; Furumoto, S.; Fodero-Tavoletti, M.T.; Mulligan, R.S.; Hodges, J.; Harada, R.; Yates, P.; Piguet, O.; Pejoska, S.; Doré, V.; et al. In Vivo Evaluation of a Novel Tau Imaging Tracer for Alzheimer’s Disease. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 816–826. [Google Scholar] [CrossRef] [PubMed]
- Okamura, N.; Furumoto, S.; Fodero-Tavoletti, M.T.; Mulligan, R.S.; Harada, R.; Yates, P.; Pejoska, S.; Kudo, Y.; Masters, C.L.; Yanai, K.; et al. Non-Invasive Assessment of Alzheimer’s Disease Neurofibrillary Pathology Using 18F-THK5105 PET. Brain 2014, 137, 1762–1771. [Google Scholar] [CrossRef]
- Harada, R.; Okamura, N.; Furumoto, S.; Furukawa, K.; Ishiki, A.; Tomita, N.; Hiraoka, K.; Watanuki, S.; Shidahara, M.; Miyake, M.; et al. [(18)F]THK-5117 PET for Assessing Neurofibrillary Pathology in Alzheimer’s Disease. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 1052–1061. [Google Scholar] [CrossRef]
- Harada, R.; Okamura, N.; Furumoto, S.; Furukawa, K.; Ishiki, A.; Tomita, N.; Tago, T.; Hiraoka, K.; Watanuki, S.; Shidahara, M.; et al. 18F-THK5351: A Novel PET Radiotracer for Imaging Neurofibrillary Pathology in Alzheimer Disease. J. Nucl. Med. 2016, 57, 208–214. [Google Scholar] [CrossRef]
- Chien, D.T.; Bahri, S.; Szardenings, A.K.; Walsh, J.C.; Mu, F.; Su, M.-Y.; Shankle, W.R.; Elizarov, A.; Kolb, H.C. Early Clinical PET Imaging Results with the Novel PHF-Tau Radioligand [F-18]-T807. J. Alzheimers Dis. 2013, 34, 457–468. [Google Scholar] [CrossRef]
- Marquié, M.; Chong, M.S.T.; Antón-Fernández, A.; Verwer, E.E.; Sáez-Calveras, N.; Meltzer, A.C.; Ramanan, P.; Amaral, A.C.; Gonzalez, J.; Normandin, M.D.; et al. [F-18]-AV-1451 Binding Correlates with Postmortem Neurofibrillary Tangle Braak Staging. Acta Neuropathol. 2017, 134, 619–628. [Google Scholar] [CrossRef]
- Cho, H.; Choi, J.Y.; Hwang, M.S.; Lee, J.H.; Kim, Y.J.; Lee, H.M.; Lyoo, C.H.; Ryu, Y.H.; Lee, M.S. Tau PET in Alzheimer Disease and Mild Cognitive Impairment. Neurology 2016, 87, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Barthel, H. First Tau PET Tracer Approved: Toward Accurate In Vivo Diagnosis of Alzheimer Disease. J. Nucl. Med. 2020, 61, 1409–1410. [Google Scholar] [CrossRef]
- Chen, S.-D.; Lu, J.-Y.; Li, H.-Q.; Yang, Y.-X.; Jiang, J.-H.; Cui, M.; Zuo, C.-T.; Tan, L.; Dong, Q.; Yu, J.-T.; et al. Staging Tau Pathology with Tau PET in Alzheimer’s Disease: A Longitudinal Study. Transl. Psychiatry 2021, 11, 483. [Google Scholar] [CrossRef]
- Maruyama, M.; Shimada, H.; Suhara, T.; Shinotoh, H.; Ji, B.; Maeda, J.; Zhang, M.-R.; Trojanowski, J.Q.; Lee, V.M.-Y.; Ono, M.; et al. Imaging of Tau Pathology in a Tauopathy Mouse Model and in Alzheimer Patients Compared to Normal Controls. Neuron 2013, 79, 1094–1108. [Google Scholar] [CrossRef] [PubMed]
- Hostetler, E.D.; Walji, A.M.; Zeng, Z.; Miller, P.; Bennacef, I.; Salinas, C.; Connolly, B.; Gantert, L.; Haley, H.; Holahan, M.; et al. Preclinical Characterization of 18F-MK-6240, a Promising PET Tracer for In Vivo Quantification of Human Neurofibrillary Tangles. J. Nucl. Med. 2016, 57, 1599–1606. [Google Scholar] [CrossRef]
- Kimura, Y.; Endo, H.; Ichise, M.; Shimada, H.; Seki, C.; Ikoma, Y.; Shinotoh, H.; Yamada, M.; Higuchi, M.; Zhang, M.-R.; et al. A New Method to Quantify Tau Pathologies with (11)C-PBB3 PET Using Reference Tissue Voxels Extracted from Brain Cortical Gray Matter. EJNMMI Res. 2016, 6, 24. [Google Scholar] [CrossRef] [PubMed]
- Gobbi, L.C.; Knust, H.; Körner, M.; Honer, M.; Czech, C.; Belli, S.; Muri, D.; Edelmann, M.R.; Hartung, T.; Erbsmehl, I.; et al. Identification of Three Novel Radiotracers for Imaging Aggregated Tau in Alzheimer’s Disease with Positron Emission Tomography. J. Med. Chem. 2017, 60, 7350–7370. [Google Scholar] [CrossRef]
- Sanabria Bohórquez, S.; Marik, J.; Ogasawara, A.; Tinianow, J.N.; Gill, H.S.; Barret, O.; Tamagnan, G.; Alagille, D.; Ayalon, G.; Manser, P.; et al. [18F]GTP1 (Genentech Tau Probe 1), a Radioligand for Detecting Neurofibrillary Tangle Tau Pathology in Alzheimer’s Disease. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 2077–2089. [Google Scholar] [CrossRef] [PubMed]
- Declercq, L.; Rombouts, F.; Koole, M.; Fierens, K.; Mariën, J.; Langlois, X.; Andrés, J.I.; Schmidt, M.; Macdonald, G.; Moechars, D.; et al. Preclinical Evaluation of 18F-JNJ64349311, a Novel PET Tracer for Tau Imaging. J. Nucl. Med. 2017, 58, 975–981. [Google Scholar] [CrossRef] [PubMed]
- Lockhart, S.N.; Schöll, M.; Baker, S.L.; Ayakta, N.; Swinnerton, K.N.; Bell, R.K.; Mellinger, T.J.; Shah, V.D.; O’Neil, J.P.; Janabi, M.; et al. Amyloid and Tau PET Demonstrate Region-Specific Associations in Normal Older People. Neuroimage 2017, 150, 191–199. [Google Scholar] [CrossRef]
- Pontecorvo, M.J.; Devous, M.D.; Navitsky, M.; Lu, M.; Salloway, S.; Schaerf, F.W.; Jennings, D.; Arora, A.K.; McGeehan, A.; Lim, N.C.; et al. Relationships between Flortaucipir PET Tau Binding and Amyloid Burden, Clinical Diagnosis, Age and Cognition. Brain 2017, 140, 748–763. [Google Scholar] [CrossRef]
- Wuestefeld, A.; Pichet Binette, A.; Berron, D.; Spotorno, N.; van Westen, D.; Stomrud, E.; Mattsson-Carlgren, N.; Strandberg, O.; Smith, R.; Palmqvist, S.; et al. Age-Related and Amyloid-Beta-Independent Tau Deposition and Its Downstream Effects. Brain 2023, 146, 3192–3205. [Google Scholar] [CrossRef]
- Kuwabara, H.; Comley, R.A.; Borroni, E.; Honer, M.; Kitmiller, K.; Roberts, J.; Gapasin, L.; Mathur, A.; Klein, G.; Wong, D.F. Evaluation of 18F-RO-948 PET for Quantitative Assessment of Tau Accumulation in the Human Brain. J. Nucl. Med. 2018, 59, 1877–1884. [Google Scholar] [CrossRef] [PubMed]
- Ossenkoppele, R.; Smith, R.; Mattsson-Carlgren, N.; Groot, C.; Leuzy, A.; Strandberg, O.; Palmqvist, S.; Olsson, T.; Jögi, J.; Stormrud, E.; et al. Accuracy of Tau Positron Emission Tomography as a Prognostic Marker in Preclinical and Prodromal Alzheimer Disease: A Head-to-Head Comparison Against Amyloid Positron Emission Tomography and Magnetic Resonance Imaging. JAMA Neurol. 2021, 78, 961–971. [Google Scholar] [CrossRef]
- Groot, C.; Villeneuve, S.; Smith, R.; Hansson, O.; Ossenkoppele, R. Tau PET Imaging in Neurodegenerative Disorders. J. Nucl. Med. 2022, 63, 20S–26S. [Google Scholar] [CrossRef]
- Duchesne, S.; Caroli, A.; Geroldi, C.; Barillot, C.; Frisoni, G.B.; Collins, D.L. MRI-Based Automated Computer Classification of Probable AD versus Normal Controls. IEEE Trans. Med. Imaging 2008, 27, 509–520. [Google Scholar] [CrossRef] [PubMed]
- Varghese, T.; Sheelakumari, R.; James, J.S.; Mathuranath, P. A Review of Neuroimaging Biomarkers of Alzheimer’s Disease. Neurol. Asia 2013, 18, 239–248. [Google Scholar]
- Dickerson, B.C.; Stoub, T.R.; Shah, R.C.; Sperling, R.A.; Killiany, R.J.; Albert, M.S.; Hyman, B.T.; Blacker, D.; Detoledo-Morrell, L. Alzheimer-Signature MRI Biomarker Predicts AD Dementia in Cognitively Normal Adults. Neurology 2011, 76, 1395–1402. [Google Scholar] [CrossRef]
- Georgakas, J.E.; Howe, M.D.; Thompson, L.I.; Riera, N.M.; Riddle, M.C. Biomarkers of Alzheimer’s Disease: Past, Present and Future Clinical Use. Biomark. Neuropsychiatry 2023, 8, 100063. [Google Scholar] [CrossRef]
- Johnson, K.A.; Fox, N.C.; Sperling, R.A.; Klunk, W.E. Brain Imaging in Alzheimer Disease. Cold Spring Harb. Perspect. Med. 2012, 2, a006213. [Google Scholar] [CrossRef]
- National Institute for Health and Care Excellence (UK). Dementia: Assessment, Management and Support for People Living with Dementia and Their Carers; National Institute for Health and Care Excellence: Clinical Guidelines; National Institute for Health and Care Excellence (UK): London, UK, 2018; ISBN 978-1-4731-2978-8. [Google Scholar]
- Frisoni, G.B.; Pievani, M.; Testa, C.; Sabattoli, F.; Bresciani, L.; Bonetti, M.; Beltramello, A.; Hayashi, K.M.; Toga, A.W.; Thompson, P.M. The Topography of Grey Matter Involvement in Early and Late Onset Alzheimer’s Disease. Brain 2007, 130, 720–730. [Google Scholar] [CrossRef]
- Harper, L.; Bouwman, F.; Burton, E.J.; Barkhof, F.; Scheltens, P.; O’Brien, J.T.; Fox, N.C.; Ridgway, G.R.; Schott, J.M. Patterns of Atrophy in Pathologically Confirmed Dementias: A Voxelwise Analysis. J. Neurol. Neurosurg. Psychiatry 2017, 88, 908–916. [Google Scholar] [CrossRef] [PubMed]
- Haller, S.; Vernooij, M.W.; Kuijer, J.P.A.; Larsson, E.-M.; Jäger, H.R.; Barkhof, F. Cerebral Microbleeds: Imaging and Clinical Significance. Radiology 2018, 287, 11–28. [Google Scholar] [CrossRef] [PubMed]
- Kälin, A.M.; Park, M.T.M.; Chakravarty, M.M.; Lerch, J.P.; Michels, L.; Schroeder, C.; Broicher, S.D.; Kollias, S.; Nitsch, R.M.; Gietl, A.F.; et al. Subcortical Shape Changes, Hippocampal Atrophy and Cortical Thinning in Future Alzheimer’s Disease Patients. Front. Aging Neurosci. 2017, 9, 38. [Google Scholar] [CrossRef]
- Hill, D.L.G.; Schwarz, A.J.; Isaac, M.; Pani, L.; Vamvakas, S.; Hemmings, R.; Carrillo, M.C.; Yu, P.; Sun, J.; Beckett, L.; et al. Coalition Against Major Diseases/European Medicines Agency Biomarker Qualification of Hippocampal Volume for Enrichment of Clinical Trials in Predementia Stages of Alzheimer’s Disease. Alzheimers Dement. 2014, 10, 421–429.e3. [Google Scholar] [CrossRef]
- Dickerson, B.C.; Bakkour, A.; Salat, D.H.; Feczko, E.; Pacheco, J.; Greve, D.N.; Grodstein, F.; Wright, C.I.; Blacker, D.; Rosas, H.D.; et al. The Cortical Signature of Alzheimer’s Disease: Regionally Specific Cortical Thinning Relates to Symptom Severity in Very Mild to Mild AD Dementia and Is Detectable in Asymptomatic Amyloid-Positive Individuals. Cereb. Cortex 2009, 19, 497–510. [Google Scholar] [CrossRef] [PubMed]
- Keuss, S.E.; Coath, W.; Cash, D.M.; Barnes, J.; Nicholas, J.M.; Lane, C.A.; Parker, T.D.; Keshavan, A.; Buchanan, S.M.; Wagen, A.Z.; et al. Rates of Cortical Thinning in Alzheimer’s Disease Signature Regions Associate with Vascular Burden but Not with β-Amyloid Status in Cognitively Normal Adults at Age 70. J. Neurol. Neurosurg. Psychiatry 2024, 95, 748–752. [Google Scholar] [CrossRef]
- Wang, J.; Ekin, A.; de Haan, G. Shape Analysis of Brain Ventricles for Improved Classification of Alzheimer’s Patients. In Proceedings of the 2008 15th IEEE International Conference on Image Processing, San Diego, CA, USA, 12–15 October 2008; IEEE: San Diego, CA, USA, 2008; pp. 2252–2255. [Google Scholar]
- Hohenfeld, C.; Werner, C.J.; Reetz, K. Resting-State Connectivity in Neurodegenerative Disorders: Is There Potential for an Imaging Biomarker? Neuroimage Clin. 2018, 18, 849–870. [Google Scholar] [CrossRef]
- Bakker, A.; Albert, M.S.; Krauss, G.; Speck, C.L.; Gallagher, M. Response of the Medial Temporal Lobe Network in Amnestic Mild Cognitive Impairment to Therapeutic Intervention Assessed by fMRI and Memory Task Performance. Neuroimage Clin. 2015, 7, 688–698. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, B.; Suppiah, S.; Ibrahim, N.; Mohamad, M.; Hassan, H.A.; Nasser, N.S.; Saripan, M.I. Diagnostic Power of Resting-state fMRI for Detection of Network Connectivity in Alzheimer’s Disease and Mild Cognitive Impairment: A Systematic Review. Hum. Brain Mapp. 2021, 42, 2941–2968. [Google Scholar] [CrossRef]
- Khazaee, A.; Ebrahimzadeh, A.; Babajani-Feremi, A. Identifying Patients with Alzheimer’s Disease Using Resting-State fMRI and Graph Theory. Clin. Neurophysiol. 2015, 126, 2132–2141. [Google Scholar] [CrossRef]
- Chen, G.; Ward, B.D.; Xie, C.; Li, W.; Wu, Z.; Jones, J.L.; Franczak, M.; Antuono, P.; Li, S.-J. Classification of Alzheimer Disease, Mild Cognitive Impairment, and Normal Cognitive Status with Large-Scale Network Analysis Based on Resting-State Functional MR Imaging. Radiology 2011, 259, 213–221. [Google Scholar] [CrossRef]
- Greicius, M.D.; Srivastava, G.; Reiss, A.L.; Menon, V. Default-Mode Network Activity Distinguishes Alzheimer’s Disease from Healthy Aging: Evidence from Functional MRI. Proc. Natl. Acad. Sci. USA 2004, 101, 4637–4642. [Google Scholar] [CrossRef] [PubMed]
- Dickerson, B.C.; Salat, D.H.; Bates, J.F.; Atiya, M.; Killiany, R.J.; Greve, D.N.; Dale, A.M.; Stern, C.E.; Blacker, D.; Albert, M.S.; et al. Medial Temporal Lobe Function and Structure in Mild Cognitive Impairment. Ann. Neurol. 2004, 56, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Esrael, S.M.A.M.; Hamed, A.M.M.; Khedr, E.M.; Soliman, R.K. Application of Diffusion Tensor Imaging in Alzheimer’s Disease: Quantification of White Matter Microstructural Changes. Egypt. J. Radiol. Nucl. Med. 2021, 52, 89. [Google Scholar] [CrossRef]
- Kim, K.W.; MacFall, J.R.; Payne, M.E. Classification of White Matter Lesions on Magnetic Resonance Imaging in Elderly Persons. Biol. Psychiatry 2008, 64, 273–280. [Google Scholar] [CrossRef]
- Bendlin, B.B.; Carlsson, C.M.; Johnson, S.C.; Zetterberg, H.; Blennow, K.; Willette, A.A.; Okonkwo, O.C.; Sodhi, A.; Ries, M.L.; Birdsill, A.C.; et al. CSF T-Tau/Aβ42 Predicts White Matter Microstructure in Healthy Adults at Risk for Alzheimer’s Disease. PLoS ONE 2012, 7, e37720. [Google Scholar] [CrossRef]
- Raghavan, S.; Przybelski, S.A.; Reid, R.I.; Lesnick, T.G.; Ramanan, V.K.; Botha, H.; Matchett, B.J.; Murray, M.E.; Reichard, R.R.; Knopman, D.S.; et al. White Matter Damage Due to Vascular, Tau, and TDP-43 Pathologies and Its Relevance to Cognition. Acta Neuropathol. Commun. 2022, 10, 16. [Google Scholar] [CrossRef] [PubMed]
- Siger, M.; Schuff, N.; Zhu, X.; Miller, B.L.; Weiner, M.W. Regional Myo-Inositol Concentration in Mild Cognitive Impairment Using 1H Magnetic Resonance Spectroscopic Imaging. Alzheimer Dis. Assoc. Disord. 2009, 23, 57–62. [Google Scholar] [CrossRef]
- Croall, I.D.; Lohner, V.; Moynihan, B.; Khan, U.; Hassan, A.; O’Brien, J.T.; Morris, R.G.; Tozer, D.J.; Cambridge, V.C.; Harkness, K.; et al. Using DTI to Assess White Matter Microstructure in Cerebral Small Vessel Disease (SVD) in Multicentre Studies. Clin. Sci. 2017, 131, 1361–1373. [Google Scholar] [CrossRef]
- Kehoe, E.G.; McNulty, J.P.; Mullins, P.G.; Bokde, A.L.W. Advances in MRI Biomarkers for the Diagnosis of Alzheimer’s Disease. Biomark. Med. 2014, 8, 1151–1169. [Google Scholar] [CrossRef]
- Xue, C.; Kowshik, S.S.; Lteif, D.; Puducheri, S.; Jasodanand, V.H.; Zhou, O.T.; Walia, A.S.; Guney, O.B.; Zhang, J.D.; Poésy, S.; et al. AI-Based Differential Diagnosis of Dementia Etiologies on Multimodal Data. Nat. Med. 2024, 30, 2977–2989. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, L.; Igel, C.; Liv Hansen, N.; Osler, M.; Lauritzen, M.; Rostrup, E.; Nielsen, M.; Alzheimer’s Disease Neuroimaging Initiative and the Australian Imaging Biomarkers and Lifestyle Flagship Study of Ageing. Early Detection of Alzheimer’s Disease Using MRI Hippocampal Texture. Hum. Brain Mapp. 2016, 37, 1148–1161. [Google Scholar] [CrossRef]
- Chincarini, A.; Bosco, P.; Calvini, P.; Gemme, G.; Esposito, M.; Olivieri, C.; Rei, L.; Squarcia, S.; Rodriguez, G.; Bellotti, R.; et al. Local MRI Analysis Approach in the Diagnosis of Early and Prodromal Alzheimer’s Disease. Neuroimage 2011, 58, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Diogo, V.S.; Ferreira, H.A.; Prata, D.; for the Alzheimer’s Disease Neuroimaging Initiative. Early Diagnosis of Alzheimer’s Disease Using Machine Learning: A Multi-Diagnostic, Generalizable Approach. Alzheimers Res. Ther. 2022, 14, 107. [Google Scholar] [CrossRef]
- Lebedev, A.V.; Westman, E.; Beyer, M.K.; Kramberger, M.G.; Aguilar, C.; Pirtosek, Z.; Aarsland, D. Multivariate Classification of Patients with Alzheimer’s and Dementia with Lewy Bodies Using High-Dimensional Cortical Thickness Measurements: An MRI Surface-Based Morphometric Study. J. Neurol. 2013, 260, 1104–1115. [Google Scholar] [CrossRef]
- Yu, Q.; Mai, Y.; Ruan, Y.; Luo, Y.; Zhao, L.; Fang, W.; Cao, Z.; Li, Y.; Liao, W.; Xiao, S.; et al. An MRI-Based Strategy for Differentiation of Frontotemporal Dementia and Alzheimer’s Disease. Alzheimers Res. Ther. 2021, 13, 23. [Google Scholar] [CrossRef]
- Blanco, K.; Salcidua, S.; Orellana, P.; Sauma-Pérez, T.; León, T.; Steinmetz, L.C.L.; Ibañez, A.; Duran-Aniotz, C.; de la Cruz, R. Systematic Review: Fluid Biomarkers and Machine Learning Methods to Improve the Diagnosis from Mild Cognitive Impairment to Alzheimer’s Disease. Alzheimers Res. Ther. 2023, 15, 176. [Google Scholar] [CrossRef] [PubMed]
Biomarkers | Relevance to AD | Strengths | Limitations |
---|---|---|---|
Molecular biomarkers (Non-specific Tracers) | |||
| Characteristic temporo-parietal hypo-metabolism can be seen on FDG-PET even before structural changes in people with AD. | Reduced cerebral blood glucose uptake on FDG-PET in the areas of neurodegeneration, can help distinguishing AD from other causes of dementia. | Despite higher sensitivity of 99%, the specificity of FDG-PET to distinguish AD from other causes of dementia, including DLB and FTD were reported to be 71% and 65%, respectively. |
| SPECT is being widely used for cerebral blood flow (CBF) studies and help identify functional abnormalities relevant to AD. | It has greater specificity in comparison to the clinical criteria in differentiating AD from other dementias and can help in differential diagnosis of AD. | The sensitivity and specificity of SPECT in differentiating AD from other conditions is a bit low. Sensitivity and specificity of differentiating AD from VaD are 74.5% and 72.4%, AD from FTD are 79.7% and 79.9%, and AD from DLB are 70.2% and 76.2%, respectively. |
Molecular biomarkers (Specific Tracers) | |||
| Amyloid PET has a prognostic value as people with MCI having positive findings on amyloid PET have higher chances of conversion to AD, while those who are negative on amyloid PET have higher negative predictive value for conversion to AD from MCI. | Amyloid PET has been found to be more sensitive than FDG-PET in distinguishing AD from other causes of dementia such as FTD. | It has also been consistently found in cognitively healthy people, raising the question of whether amyloid deposition is a pathognomonic or necessary feature for the diagnosis of AD and Amyloid PET can be used as the biomarker for AD. |
| A variety of PET ligands have ability to detect tau aggregates formed in AD with a high affinity. | Tau PET is considered to be better than amyloid PET and MRI in predicting cognitive change and has a role as a prognostic biomarker in preclinical and prodromal stages of AD. | Propensity of the off-target binding of tau PET tracers to amyloid deposits and monoamine oxidase B hampers the specificity of these tracers to detect tau pathology. |
Structural Biomarkers | |||
| It helps elucidate cortical atrophy and ventricular enlargement in AD. | CT is less expensive, faster, and more widely available, even in underprivileged nations than other imaging modalities. | Cortical atrophy and ventricular enlargement detected on CT scan are very late structural changes in AD and hence limit the use of CT as a biomarker for AD. |
| Advancement in voxel-based morphometry to extract brain volume, has led to recognition of various biomarkers based on MRI in AD. | Shape and volume analysis of sub-structural changes in the hippocampus can distinguish AD from other causes of dementia. | MRI may not be able to detect subtle functional changes or molecular abnormalities that occur in early AD. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tripathi, S.M.; Chutia, P.; Murray, A.D. Neuroimaging Biomarkers in Alzheimer’s Disease. J. Dement. Alzheimer's Dis. 2025, 2, 37. https://doi.org/10.3390/jdad2040037
Tripathi SM, Chutia P, Murray AD. Neuroimaging Biomarkers in Alzheimer’s Disease. Journal of Dementia and Alzheimer's Disease. 2025; 2(4):37. https://doi.org/10.3390/jdad2040037
Chicago/Turabian StyleTripathi, Shailendra Mohan, Porimita Chutia, and Alison D. Murray. 2025. "Neuroimaging Biomarkers in Alzheimer’s Disease" Journal of Dementia and Alzheimer's Disease 2, no. 4: 37. https://doi.org/10.3390/jdad2040037
APA StyleTripathi, S. M., Chutia, P., & Murray, A. D. (2025). Neuroimaging Biomarkers in Alzheimer’s Disease. Journal of Dementia and Alzheimer's Disease, 2(4), 37. https://doi.org/10.3390/jdad2040037