Dysregulated Neurotransmitters and CB1 Receptor Dysfunction and Their Roles in Agitation Associated with Alzheimer’s Disease
Abstract
:1. Introduction
2. Gamma-Aminobutyric Acid (GABA)
2.1. Studies in Animal Models of AD
2.2. Clinical Studies of AD
2.3. Effects on Behavior
2.4. GABA-Enhancing Drugs’ Effects on Agitation/Aggression
3. Serotonin
3.1. Clinical Studies in AD
3.2. Effects on Behavior
3.3. Effects of Serotonergic Receptor-Enhancing Drugs on Agitation/Aggression
4. Norepinephrine
4.1. Clinical Studies in AD
4.2. Effects on Behavior
4.3. Drugs Antagonizing Alpha-Adrenergic Receptors and Their Effects on Agitation/Aggression
5. Dopamine
5.1. Clinical Studies of AD
5.2. Drugs Acting on the Dopaminergic System and Their Effects on Agitation/Aggression
5.2.1. Acetylcholine
5.2.2. Clinical Studies in AD
6. Endocannabinoid System
6.1. CB Receptor’s Role in AD and Animal Models of AD
6.2. Role of CBRs in Neuroinflammation Regulation
6.3. Effects on Behavior
7. Discussion
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Pless, A.; Ware, D.; Saggu, S.; Rehman, H.; Morgan, J.; Wang, Q. Understanding neuropsychiatric symptoms in Alzheimer’s disease: Challenges and advances in diagnosis and treatment. Front. Neurosci. 2023, 17, 1263771. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.K.; Zhang, S.K.; Zhang, L.I.; Tao, H.W.; Zhang, G.W. The neural basis of neuropsychiatric symptoms in Alzheimer’s disease. Front. Aging Neurosci. 2024, 16, 1487875. [Google Scholar] [CrossRef] [PubMed]
- Phan, S.V.; Osae, S.; Morgan, J.C.; Inyang, M.; Fagan, S.C. Neuropsychiatric Symptoms in Dementia: Considerations for Pharmacotherapy in the USA. Drugs R D 2019, 19, 93–115. [Google Scholar] [CrossRef]
- Youn, J.C.; Lee, D.Y.; Jhoo, J.H.; Kim, K.W.; Choo, I.H.; Woo, J.I. Prevalence of neuropsychiatric syndromes in Alzheimer’s disease (AD). Arch. Gerontol. Geriatr. 2011, 52, 258–263. [Google Scholar] [CrossRef]
- Senanarong, V.; Cummings, J.L.; Fairbanks, L.; Mega, M.; Masterman, D.M.; O’Connor, S.M.; Strickland, T.L. Agitation in Alzheimer’s disease is a manifestation of frontal lobe dysfunction. Dement. Geriatr. Cogn. Disord. 2004, 17, 14–20. [Google Scholar] [CrossRef]
- Carrarini, C.; Russo, M.; Dono, F.; Barbone, F.; Rispoli, M.G.; Ferri, L.; Di Pietro, M.; Digiovanni, A.; Ajdinaj, P.; Speranza, R.; et al. Agitation and Dementia: Prevention and Treatment Strategies in Acute and Chronic Conditions. Front. Neurol. 2021, 12, 644317. [Google Scholar] [CrossRef]
- Cummings, J.; Mintzer, J.; Brodaty, H.; Sano, M.; Banerjee, S.; Devanand, D.P.; Gauthier, S.; Howard, R.; Lanctot, K.; Lyketsos, C.G.; et al. Agitation in cognitive disorders: International Psychogeriatric Association provisional consensus clinical and research definition. Int. Psychogeriatr. 2015, 27, 7–17. [Google Scholar] [CrossRef]
- Woodward, M.R.; Harper, D.G.; Stolyar, A.; Forester, B.P.; Ellison, J.M. Dronabinol for the treatment of agitation and aggressive behavior in acutely hospitalized severely demented patients with noncognitive behavioral symptoms. Am. J. Geriatr. Psychiatry 2014, 22, 415–419. [Google Scholar] [CrossRef]
- Walther, S.; Schupbach, B.; Seifritz, E.; Homan, P.; Strik, W. Randomized, controlled crossover trial of dronabinol, 2.5 mg, for agitation in 2 patients with dementia. J. Clin. Psychopharmacol. 2011, 31, 256–258. [Google Scholar] [CrossRef]
- Rodriguez-Arias, M.; Navarrete, F.; Daza-Losada, M.; Navarro, D.; Aguilar, M.A.; Berbel, P.; Minarro, J.; Manzanares, J. CB1 cannabinoid receptor-mediated aggressive behavior. Neuropharmacology 2013, 75, 172–180. [Google Scholar] [CrossRef]
- Fernandez-Moncada, I.; Eraso-Pichot, A.; Dalla Tor, T.; Fortunato-Marsol, B.; Marsicano, G. An enquiry to the role of CB1 receptors in neurodegeneration. Neurobiol. Dis. 2023, 184, 106235. [Google Scholar] [CrossRef] [PubMed]
- Lindenmayer, J.P. The pathophysiology of agitation. J. Clin. Psychiatry 2000, 61 (Suppl. S14), 5–10. [Google Scholar] [PubMed]
- Cummings, J.L.; Back, C. The cholinergic hypothesis of neuropsychiatric symptoms in Alzheimer’s disease. Am. J. Geriatr. Psychiatry 1998, 6, S64–S78. [Google Scholar] [CrossRef]
- Tekin, S.; Mega, M.S.; Masterman, D.M.; Chow, T.; Garakian, J.; Vinters, H.V.; Cummings, J.L. Orbitofrontal and anterior cingulate cortex neurofibrillary tangle burden is associated with agitation in Alzheimer disease. Ann. Neurol. 2001, 49, 355–361. [Google Scholar] [CrossRef]
- Esteban de Antonio, E.; Lopez-Alvarez, J.; Rabano, A.; Aguera-Ortiz, L.; Sanchez-Soblechero, A.; Amaya, L.; Portela, S.; Catedra, C.; Olazaran, J. Pathological Correlations of Neuropsychiatric Symptoms in Institutionalized People with Dementia. J. Alzheimer’s Dis. JAD 2020, 78, 1731–1741. [Google Scholar] [CrossRef]
- Hirono, N.; Mega, M.S.; Dinov, I.D.; Mishkin, F.; Cummings, J.L. Left frontotemporal hypoperfusion is associated with aggression in patients with dementia. Arch. Neurol. 2000, 57, 861–866. [Google Scholar] [CrossRef]
- Weissberger, G.H.; Melrose, R.J.; Narvaez, T.A.; Harwood, D.; Mandelkern, M.A.; Sultzer, D.L. (18)F-Fluorodeoxyglucose Positron Emission Tomography Cortical Metabolic Activity Associated with Distinct Agitation Behaviors in Alzheimer Disease. Am. J. Geriatr. Psychiatry 2017, 25, 569–579. [Google Scholar] [CrossRef]
- Valotassiou, V.; Sifakis, N.; Tzavara, C.; Lykou, E.; Tsinia, N.; Kamtsadeli, V.; Sali, D.; Angelidis, G.; Psimadas, D.; Tsougos, I.; et al. Correlation of Neuropsychiatric Symptoms in Dementia with Brain Perfusion: A 99mTc-SPECT-HMPAO Study with Brodmann Areas Analysis. Curr. Alzheimer Res. 2021, 18, 970–983. [Google Scholar] [CrossRef]
- Yasuno, F.; Kimura, Y.; Ogata, A.; Ikenuma, H.; Abe, J.; Minami, H.; Nihashi, T.; Yokoi, K.; Hattori, S.; Shimoda, N.; et al. Involvement of inflammation in the medial temporal region in the development of agitation in Alzheimer’s disease: An in vivo positron emission tomography study. Psychogeriatrics 2023, 23, 126–135. [Google Scholar] [CrossRef]
- Gonzalez, B.; Paz, F.; Floran, L.; Aceves, J.; Erlij, D.; Floran, B. Cannabinoid agonists stimulate [3H]GABA release in the globus pallidus of the rat when G(i) protein-receptor coupling is restricted: Role of dopamine D2 receptors. J. Pharmacol. Exp. Ther 2009, 328, 822–828. [Google Scholar] [CrossRef]
- Johnson, K.M.; Ho, B.T.; Dewey, W.L. Effects of delta9-tetrahydrocannabinol on neurotransmitter accumulation and release mechanisms in rat forebrain synaptosomes. Life Sci. 1976, 19, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Thathiah, A. Regulation of neuronal communication by G protein-coupled receptors. FEBS Lett. 2015, 589, 1607–1619. [Google Scholar] [CrossRef] [PubMed]
- Cathel, A.M.; Reyes, B.A.; Wang, Q.; Palma, J.; Mackie, K.; Van Bockstaele, E.J.; Kirby, L.G. Cannabinoid modulation of alpha2 adrenergic receptor function in rodent medial prefrontal cortex. Eur. J. Neurosci. 2014, 40, 3202–3214. [Google Scholar] [CrossRef]
- Russo-Neustadt, A.; Cotman, C.W. Adrenergic receptors in Alzheimer’s disease brain: Selective increases in the cerebella of aggressive patients. J. Neurosci. 1997, 17, 5573–5580. [Google Scholar] [CrossRef]
- Ismail, R.; Parbo, P.; Madsen, L.S.; Hansen, A.K.; Hansen, K.V.; Schaldemose, J.L.; Kjeldsen, P.L.; Stokholm, M.G.; Gottrup, H.; Eskildsen, S.F.; et al. The relationships between neuroinflammation, beta-amyloid and tau deposition in Alzheimer’s disease: A longitudinal PET study. J. Neuroinflamm. 2020, 17, 151. [Google Scholar] [CrossRef]
- Miller, A.H. Norman Cousins Lecture. Mechanisms of cytokine-induced behavioral changes: Psychoneuroimmunology at the translational interface. Brain Behav. Immun. 2009, 23, 149–158. [Google Scholar] [CrossRef]
- Akyuz, E.; Arulsamy, A.; Aslan, F.S.; Sarisozen, B.; Guney, B.; Hekimoglu, A.; Yilmaz, B.N.; Retinasamy, T.; Shaikh, M.F. An Expanded Narrative Review of Neurotransmitters on Alzheimer’s Disease: The Role of Therapeutic Interventions on Neurotransmission. Mol. Neurobiol. 2024, 62, 1631–1674. [Google Scholar] [CrossRef]
- Zhang, C.; Qi, H.; Jia, D.; Zhao, J.; Xu, C.; Liu, J.; Cui, Y.; Zhang, J.; Wang, M.; Chen, M.; et al. Cognitive impairment in Alzheimer’s disease FAD(4T) mouse model: Synaptic loss facilitated by activated microglia via C1qA. Life Sci. 2024, 340, 122457. [Google Scholar] [CrossRef]
- Devanand, D.P.; Lee, S.; Huey, E.D.; Goldberg, T.E. Associations Between Neuropsychiatric Symptoms and Neuropathological Diagnoses of Alzheimer Disease and Related Dementias. JAMA Psychiatry 2022, 79, 359–367. [Google Scholar] [CrossRef]
- D’Amelio, M.; Puglisi-Allegra, S.; Mercuri, N. The role of dopaminergic midbrain in Alzheimer’s disease: Translating basic science into clinical practice. Pharmacol. Res. 2018, 130, 414–419. [Google Scholar] [CrossRef]
- Saggu, S.; Bai, A.; Aida, M.; Rehman, H.; Pless, A.; Ware, D.; Deak, F.; Jiao, K.; Wang, Q. Monoamine alterations in Alzheimer’s disease and their implications in comorbid neuropsychiatric symptoms. Geroscience 2024, 47, 457–482. [Google Scholar] [CrossRef] [PubMed]
- Schwertner, E.; Pereira, J.B.; Xu, H.; Secnik, J.; Winblad, B.; Eriksdotter, M.; Nagga, K.; Religa, D. Behavioral and Psychological Symptoms of Dementia in Different Dementia Disorders: A Large-Scale Study of 10,000 Individuals. J. Alzheimer’s Dis. JAD 2022, 87, 1307–1318. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Balado, J.; Eich, T.S. GABAergic dysfunction, neural network hyperactivity and memory impairments in human aging and Alzheimer’s disease. Semin. Cell Dev. Biol. 2021, 116, 146–159. [Google Scholar] [CrossRef] [PubMed]
- Fon, E.A.; Edwards, R.H. Molecular mechanisms of neurotransmitter release. Muscle Nerve 2001, 24, 581–601. [Google Scholar] [CrossRef]
- Tao, R.; Auerbach, S.B. Regulation of serotonin release by GABA and excitatory amino acids. J. Psychopharmacol. 2000, 14, 100–113. [Google Scholar] [CrossRef]
- Lanctot, K.L.; Herrmann, N.; Mazzotta, P.; Khan, L.R.; Ingber, N. GABAergic function in Alzheimer’s disease: Evidence for dysfunction and potential as a therapeutic target for the treatment of behavioural and psychological symptoms of dementia. Can. J. Psychiatry 2004, 49, 439–453. [Google Scholar] [CrossRef]
- Ulrich, D. Amyloid-beta Impairs Synaptic Inhibition via GABA(A) Receptor Endocytosis. J. Neurosci. 2015, 35, 9205–9210. [Google Scholar] [CrossRef]
- Krantic, S.; Isorce, N.; Mechawar, N.; Davoli, M.A.; Vignault, E.; Albuquerque, M.; Chabot, J.G.; Moyse, E.; Chauvin, J.P.; Aubert, I.; et al. Hippocampal GABAergic neurons are susceptible to amyloid-beta toxicity in vitro and are decreased in number in the Alzheimer’s disease TgCRND8 mouse model. J. Alzheimer’s Dis. JAD 2012, 29, 293–308. [Google Scholar] [CrossRef]
- Ramos, B.; Baglietto-Vargas, D.; del Rio, J.C.; Moreno-Gonzalez, I.; Santa-Maria, C.; Jimenez, S.; Caballero, C.; Lopez-Tellez, J.F.; Khan, Z.U.; Ruano, D.; et al. Early neuropathology of somatostatin/NPY GABAergic cells in the hippocampus of a PS1xAPP transgenic model of Alzheimer’s disease. Neurobiol. Aging 2006, 27, 1658–1672. [Google Scholar] [CrossRef]
- Martin-Belmonte, A.; Aguado, C.; Alfaro-Ruiz, R.; Moreno-Martinez, A.E.; de la Ossa, L.; Martinez-Hernandez, J.; Buisson, A.; Fruh, S.; Bettler, B.; Shigemoto, R.; et al. Reduction in the neuronal surface of post and presynaptic GABA(B) receptors in the hippocampus in a mouse model of Alzheimer’s disease. Brain Pathol. 2020, 30, 554–575. [Google Scholar] [CrossRef]
- Levenga, J.; Krishnamurthy, P.; Rajamohamedsait, H.; Wong, H.; Franke, T.F.; Cain, P.; Sigurdsson, E.M.; Hoeffer, C.A. Tau pathology induces loss of GABAergic interneurons leading to altered synaptic plasticity and behavioral impairments. Acta Neuropathol. Commun. 2013, 1, 34. [Google Scholar] [CrossRef] [PubMed]
- Lowe, S.L.; Francis, P.T.; Procter, A.W.; Palmer, A.M.; Davison, A.N.; Bowen, D.M. Gamma-aminobutyric acid concentration in brain tissue at two stages of Alzheimer’s disease. Brain 1988, 111 Pt 4, 785–799. [Google Scholar] [CrossRef] [PubMed]
- Schwab, C.; Yu, S.; Wong, W.; McGeer, E.G.; McGeer, P.L. GAD65, GAD67, and GABAT immunostaining in human brain and apparent GAD65 loss in Alzheimer’s disease. J. Alzheimer’s Dis. JAD 2013, 33, 1073–1088. [Google Scholar] [CrossRef]
- Manyevitch, R.; Protas, M.; Scarpiello, S.; Deliso, M.; Bass, B.; Nanajian, A.; Chang, M.; Thompson, S.M.; Khoury, N.; Gonnella, R.; et al. Evaluation of Metabolic and Synaptic Dysfunction Hypotheses of Alzheimer’s Disease (AD): A Meta-Analysis of CSF Markers. Curr. Alzheimer Res. 2018, 15, 164–181. [Google Scholar] [CrossRef]
- Siever, L.J. Neurobiology of aggression and violence. Am. J. Psychiatry 2008, 165, 429–442. [Google Scholar] [CrossRef]
- Fish, E.W.; De Bold, J.F.; Miczek, K.A. Aggressive behavior as a reinforcer in mice: Activation by allopregnanolone. Psychopharmacology 2002, 163, 459–466. [Google Scholar] [CrossRef]
- Velez, L.; Sokoloff, G.; Miczek, K.A.; Palmer, A.A.; Dulawa, S.C. Differences in aggressive behavior and DNA copy number variants between BALB/cJ and BALB/cByJ substrains. Behav. Genet. 2010, 40, 201–210. [Google Scholar] [CrossRef]
- Jager, A.; Amiri, H.; Bielczyk, N.; van Heukelum, S.; Heerschap, A.; Aschrafi, A.; Poelmans, G.; Buitelaar, J.K.; Kozicz, T.; Glennon, J.C. Cortical control of aggression: GABA signalling in the anterior cingulate cortex. Eur. Neuropsychopharmacol. 2020, 30, 5–16. [Google Scholar] [CrossRef]
- Baillon, S.F.; Narayana, U.; Luxenberg, J.S.; Clifton, A.V. Valproate preparations for agitation in dementia. Cochrane Database Syst. Rev. 2018, 10, CD003945. [Google Scholar] [CrossRef]
- Supasitthumrong, T.; Bolea-Alamanac, B.M.; Asmer, S.; Woo, V.L.; Abdool, P.S.; Davies, S.J.C. Gabapentin and pregabalin to treat aggressivity in dementia: A systematic review and illustrative case report. Br. J. Clin. Pharmacol. 2019, 85, 690–703. [Google Scholar] [CrossRef]
- Gallagher, D.; Herrmann, N. Antiepileptic drugs for the treatment of agitation and aggression in dementia: Do they have a place in therapy? Drugs 2014, 74, 1747–1755. [Google Scholar] [CrossRef] [PubMed]
- Sommer, O.H.; Aga, O.; Cvancarova, M.; Olsen, I.C.; Selbaek, G.; Engedal, K. Effect of oxcarbazepine in the treatment of agitation and aggression in severe dementia. Dement. Geriatr. Cogn. Disord. 2009, 27, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Mowla, A.; Pani, A. Comparison of topiramate and risperidone for the treatment of behavioral disturbances of patients with Alzheimer disease: A double-blind, randomized clinical trial. J. Clin. Psychopharmacol. 2010, 30, 40–43. [Google Scholar] [CrossRef]
- Defrancesco, M.; Marksteiner, J.; Fleischhacker, W.W.; Blasko, I. Use of Benzodiazepines in Alzheimer’s Disease: A Systematic Review of Literature. Int. J. Neuropsychopharmacol. 2015, 18, pyv055. [Google Scholar] [CrossRef]
- Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Alsayegh, A.A.; Abusudah, W.F.; Almohmadi, N.H.; Eldahshan, O.A.; Ahmed, E.A.; Batiha, G.E. Insights on benzodiazepines’ potential in Alzheimer’s disease. Life Sci. 2023, 320, 121532. [Google Scholar] [CrossRef]
- Chung, J.K.; Nakajima, S.; Shinagawa, S.; Plitman, E.; Chakravarty, M.M.; Iwata, Y.; Caravaggio, F.; Pollock, B.G.; Gerretsen, P.; Graff-Guerrero, A.; et al. Benzodiazepine Use Attenuates Cortical beta-Amyloid and is Not Associated with Progressive Cognitive Decline in Nondemented Elderly Adults: A Pilot Study Using F(18)-Florbetapir Positron Emission Tomography. Am. J. Geriatr. Psychiatry 2016, 24, 1028–1039. [Google Scholar] [CrossRef]
- Voyer, P.; Roussel, M.E.; Berbiche, D.; Preville, M. Effectively detect dependence on benzodiazepines among community-dwelling seniors by asking only two questions. J. Psychiatr. Ment. Health Nurs. 2010, 17, 328–334. [Google Scholar] [CrossRef]
- Gowin, J.L.; Green, C.E.; Alcorn, J.L.; Swann, A.C.; Moeller, F.G.; Lane, S.D. Chronic tiagabine administration and aggressive responding in individuals with a history of substance abuse and antisocial behavior. J. Psychopharmacol. 2012, 26, 982–993. [Google Scholar] [CrossRef]
- Sousa, V.C.; Assaife-Lopes, N.; Ribeiro, J.A.; Pratt, J.A.; Brett, R.R.; Sebastiao, A.M. Regulation of hippocampal cannabinoid CB1 receptor actions by adenosine A1 receptors and chronic caffeine administration: Implications for the effects of Delta9-tetrahydrocannabinol on spatial memory. Neuropsychopharmacology 2011, 36, 472–487. [Google Scholar] [CrossRef]
- Herrmann, N.; Ruthirakuhan, M.; Gallagher, D.; Verhoeff, N.; Kiss, A.; Black, S.E.; Lanctot, K.L. Randomized Placebo-Controlled Trial of Nabilone for Agitation in Alzheimer’s Disease. Am. J. Geriatr. Psychiatry 2019, 27, 1161–1173. [Google Scholar] [CrossRef]
- Shelef, A.; Barak, Y.; Berger, U.; Paleacu, D.; Tadger, S.; Plopsky, I.; Baruch, Y. Safety and Efficacy of Medical Cannabis Oil for Behavioral and Psychological Symptoms of Dementia: An-Open Label, Add-On, Pilot Study. J. Alzheimer’s Dis. JAD 2016, 51, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Lennon, J.C.; Malkaram, S.A.; Zeng, Y.; Fisher, D.W.; Dong, H. Serotonergic system, cognition, and BPSD in Alzheimer’s disease. Neurosci. Lett. 2019, 704, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Rubin, R.D.; Watson, P.D.; Duff, M.C.; Cohen, N.J. The role of the hippocampus in flexible cognition and social behavior. Front. Hum. Neurosci. 2014, 8, 742. [Google Scholar] [CrossRef]
- Clark, L.; Cools, R.; Robbins, T.W. The neuropsychology of ventral prefrontal cortex: Decision-making and reversal learning. Brain Cogn. 2004, 55, 41–53. [Google Scholar] [CrossRef]
- Lanctot, K.L.; Herrmann, N.; Mazzotta, P. Role of serotonin in the behavioral and psychological symptoms of dementia. J. Neuropsychiatry Clin. Neurosci. 2001, 13, 5–21. [Google Scholar] [CrossRef]
- Cummings, J.L.; Brubaker, M.; Selzler, K.J.; Gonzalez, S.T.; Patel, M.; Stahl, S.M. An overview of the pathophysiology of agitation in Alzheimer’s dementia with a focus on neurotransmitters and circuits. CNS Spectr. 2024, 29, 316–325. [Google Scholar] [CrossRef]
- Olivier, B. Serotonin and aggression. Ann. N. Y. Acad. Sci. 2004, 1036, 382–392. [Google Scholar] [CrossRef]
- da Cunha-Bang, S.; Mc Mahon, B.; Fisher, P.M.; Jensen, P.S.; Svarer, C.; Knudsen, G.M. High trait aggression in men is associated with low 5-HT levels, as indexed by 5-HT4 receptor binding. Soc. Cogn. Affect. Neurosci. 2016, 11, 548–555. [Google Scholar] [CrossRef]
- Ueki, A.; Ueno, H.; Sato, N.; Shinjo, H.; Morita, Y. Serotonin transporter gene polymorphism and BPSD in mild Alzheimer’s disease. J. Alzheimer’s Dis. JAD 2007, 12, 245–253. [Google Scholar] [CrossRef]
- Sato, S.; Mizukami, K.; Asada, T. A preliminary open-label study of 5-HT1A partial agonist tandospirone for behavioural and psychological symptoms associated with dementia. Int. J. Neuropsychopharmacol. 2007, 10, 281–283. [Google Scholar] [CrossRef]
- Wilkins, J.M.; Forester, B.P. Update on SSRI Treatment for Neuropsychiatric Symptoms of Dementia. Curr. Psychiatry Rep. 2016, 18, 14. [Google Scholar] [CrossRef] [PubMed]
- Mo, M.; Abzhandadze, T.; Hoang, M.T.; Sacuiu, S.; Jurado, P.G.; Pereira, J.B.; Naia, L.; Kele, J.; Maioli, S.; Xu, H.; et al. Antidepressant use and cognitive decline in patients with dementia: A national cohort study. BMC Med. 2025, 23, 82. [Google Scholar] [CrossRef] [PubMed]
- Bambico, F.R.; Katz, N.; Debonnel, G.; Gobbi, G. Cannabinoids elicit antidepressant-like behavior and activate serotonergic neurons through the medial prefrontal cortex. J. Neurosci. 2007, 27, 11700–11711. [Google Scholar] [CrossRef]
- Hussain, L.S.; Reddy, V.; Maani, C.V. Physiology, Noradrenergic Synapse. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Herrmann, N.; Lanctot, K.L.; Khan, L.R. The role of norepinephrine in the behavioral and psychological symptoms of dementia. J. Neuropsychiatry Clin. Neurosci. 2004, 16, 261–276. [Google Scholar] [CrossRef]
- Sara, S.J.; Bouret, S. Orienting and reorienting: The locus coeruleus mediates cognition through arousal. Neuron 2012, 76, 130–141. [Google Scholar] [CrossRef]
- Raskind, M.A.; Peskind, E.R.; Halter, J.B.; Jimerson, D.C. Norepinephrine and MHPG levels in CSF and plasma in Alzheimer’s disease. Arch. Gen. Psychiatry 1984, 41, 343–346. [Google Scholar] [CrossRef]
- Nazarali, A.J.; Reynolds, G.P. Monoamine neurotransmitters and their metabolites in brain regions in Alzheimer’s disease: A postmortem study. Cell. Mol. Neurobiol. 1992, 12, 581–587. [Google Scholar] [CrossRef]
- Braak, H.; Thal, D.R.; Ghebremedhin, E.; Del Tredici, K. Stages of the pathologic process in Alzheimer disease: Age categories from 1 to 100 years. J. Neuropathol. Exp. Neurol. 2011, 70, 960–969. [Google Scholar] [CrossRef]
- Elrod, R.; Peskind, E.R.; DiGiacomo, L.; Brodkin, K.I.; Veith, R.C.; Raskind, M.A. Effects of Alzheimer’s disease severity on cerebrospinal fluid norepinephrine concentration. Am. J. Psychiatry 1997, 154, 25–30. [Google Scholar] [CrossRef]
- Szot, P.; White, S.S.; Greenup, J.L.; Leverenz, J.B.; Peskind, E.R.; Raskind, M.A. Compensatory changes in the noradrenergic nervous system in the locus ceruleus and hippocampus of postmortem subjects with Alzheimer’s disease and dementia with Lewy bodies. J. Neurosci. 2006, 26, 467–478. [Google Scholar] [CrossRef]
- Szot, P.; White, S.S.; Greenup, J.L.; Leverenz, J.B.; Peskind, E.R.; Raskind, M.A. Changes in adrenoreceptors in the prefrontal cortex of subjects with dementia: Evidence of compensatory changes. Neuroscience 2007, 146, 471–480. [Google Scholar] [CrossRef] [PubMed]
- McMillan, P.J.; White, S.S.; Franklin, A.; Greenup, J.L.; Leverenz, J.B.; Raskind, M.A.; Szot, P. Differential response of the central noradrenergic nervous system to the loss of locus coeruleus neurons in Parkinson’s disease and Alzheimer’s disease. Brain Res. 2011, 1373, 240–252. [Google Scholar] [CrossRef] [PubMed]
- Matthews, K.L.; Chen, C.P.; Esiri, M.M.; Keene, J.; Minger, S.L.; Francis, P.T. Noradrenergic changes, aggressive behavior, and cognition in patients with dementia. Biol. Psychiatry 2002, 51, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Ehrenberg, A.J.; Suemoto, C.K.; Franca Resende, E.P.; Petersen, C.; Leite, R.E.P.; Rodriguez, R.D.; Ferretti-Rebustini, R.E.L.; You, M.; Oh, J.; Nitrini, R.; et al. Neuropathologic Correlates of Psychiatric Symptoms in Alzheimer’s Disease. J. Alzheimer’s Dis. JAD 2018, 66, 115–126. [Google Scholar] [CrossRef]
- Vermeiren, Y.; Le Bastard, N.; Van Hemelrijck, A.; Drinkenburg, W.H.; Engelborghs, S.; De Deyn, P.P. Behavioral correlates of cerebrospinal fluid amino acid and biogenic amine neurotransmitter alterations in dementia. Alzheimers Dement. 2013, 9, 488–498. [Google Scholar] [CrossRef]
- Sharp, S.I.; Ballard, C.G.; Chen, C.P.; Francis, P.T. Aggressive behavior and neuroleptic medication are associated with increased number of alpha1-adrenoceptors in patients with Alzheimer disease. Am. J. Geriatr. Psychiatry 2007, 15, 435–437. [Google Scholar] [CrossRef]
- Peskind, E.R.; Elrod, R.; Dobie, D.J.; Pascualy, M.; Petrie, E.; Jensen, C.; Brodkin, K.; Murray, S.; Veith, R.C.; Raskind, M.A. Cerebrospinal fluid epinephrine in Alzheimer’s disease and normal aging. Neuropsychopharmacology 1998, 19, 465–471. [Google Scholar] [CrossRef]
- Herrmann, N.; Lanctot, K.L.; Eryavec, G.; Van Reekum, R.; Khan, L.R. Growth hormone response to clonidine predicts aggression in Alzheimer’s disease. Psychoneuroendocrinology 2004, 29, 1192–1197. [Google Scholar] [CrossRef]
- Arnsten, A.F.; Raskind, M.A.; Taylor, F.B.; Connor, D.F. The Effects of Stress Exposure on Prefrontal Cortex: Translating Basic Research into Successful Treatments for Post-Traumatic Stress Disorder. Neurobiol. Stress 2015, 1, 89–99. [Google Scholar] [CrossRef]
- Cecchi, M.; Khoshbouei, H.; Morilak, D.A. Modulatory effects of norepinephrine, acting on alpha 1 receptors in the central nucleus of the amygdala, on behavioral and neuroendocrine responses to acute immobilization stress. Neuropharmacology 2002, 43, 1139–1147. [Google Scholar] [CrossRef]
- Gu, Y.; Piper, W.T.; Branigan, L.A.; Vazey, E.M.; Aston-Jones, G.; Lin, L.; LeDoux, J.E.; Sears, R.M. A brainstem-central amygdala circuit underlies defensive responses to learned threats. Mol. Psychiatry 2020, 25, 640–654. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.Y.; Shofer, J.B.; Rohde, K.; Hart, K.L.; Hoff, D.J.; McFall, Y.H.; Raskind, M.A.; Peskind, E.R. Prazosin for the treatment of behavioral symptoms in patients with Alzheimer disease with agitation and aggression. Am. J. Geriatr. Psychiatry 2009, 17, 744–751. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Slomkowski, M.; Hefting, N.; Chen, D.; Larsen, K.G.; Kohegyi, E.; Hobart, M.; Cummings, J.L.; Grossberg, G.T. Brexpiprazole for the Treatment of Agitation in Alzheimer Dementia: A Randomized Clinical Trial. JAMA Neurol. 2023, 80, 1307–1316. [Google Scholar] [CrossRef]
- Menkes, D.B.; Baraban, J.M.; Aghajanian, G.K. Prazosin selectively antagonizes neuronal responses mediated by alpha1-adrenoceptors in brain. Naunyn Schmiedeb. Arch. Pharmacol. 1981, 317, 273–275. [Google Scholar] [CrossRef]
- Maeda, K.; Sugino, H.; Akazawa, H.; Amada, N.; Shimada, J.; Futamura, T.; Yamashita, H.; Ito, N.; McQuade, R.D.; Mork, A.; et al. Brexpiprazole I: In vitro and in vivo characterization of a novel serotonin-dopamine activity modulator. J. Pharmacol. Exp. Ther. 2014, 350, 589–604. [Google Scholar] [CrossRef]
- Mitchell, R.A.; Herrmann, N.; Lanctot, K.L. The role of dopamine in symptoms and treatment of apathy in Alzheimer’s disease. CNS Neurosci. Ther. 2011, 17, 411–427. [Google Scholar] [CrossRef]
- Liu, K.Y.; Stringer, A.E.; Reeves, S.J.; Howard, R.J. The neurochemistry of agitation in Alzheimer’s disease: A systematic review. Ageing Res. Rev. 2018, 43, 99–107. [Google Scholar] [CrossRef]
- Seo, D.; Patrick, C.J.; Kennealy, P.J. Role of Serotonin and Dopamine System Interactions in the Neurobiology of Impulsive Aggression and its Comorbidity with other Clinical Disorders. Aggress. Violent Behav. 2008, 13, 383–395. [Google Scholar] [CrossRef]
- Minger, S.L.; Esiri, M.M.; McDonald, B.; Keene, J.; Carter, J.; Hope, T.; Francis, P.T. Cholinergic deficits contribute to behavioral disturbance in patients with dementia. Neurology 2000, 55, 1460–1467. [Google Scholar] [CrossRef]
- Bierer, L.M.; Knott, P.J.; Schmeidler, J.M.; Marin, D.B.; Ryan, T.M.; Haroutunian, V.; Purohit, D.P.; Perl, D.P.; Mohs, R.C.; Davis, K.L. Post-mortem examination of dopaminergic parameters in Alzheimer’s disease: Relationship to noncognitive symptoms. Psychiatry Res. 1993, 49, 211–217. [Google Scholar] [CrossRef]
- Vermeiren, Y.; Van Dam, D.; Aerts, T.; Engelborghs, S.; De Deyn, P.P. Monoaminergic neurotransmitter alterations in postmortem brain regions of depressed and aggressive patients with Alzheimer’s disease. Neurobiol. Aging 2014, 35, 2691–2700. [Google Scholar] [CrossRef] [PubMed]
- Engelborghs, S.; Vloeberghs, E.; Le Bastard, N.; Van Buggenhout, M.; Marien, P.; Somers, N.; Nagels, G.; Pickut, B.A.; De Deyn, P.P. The dopaminergic neurotransmitter system is associated with aggression and agitation in frontotemporal dementia. Neurochem. Int. 2008, 52, 1052–1060. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, A.L.; Ratcliffe, L.; Sorour, E.; Haque, S.; Holder, R.; Bentham, P.; Lendon, C.L. Investigation of dopamine receptors in susceptibility to behavioural and psychological symptoms in Alzheimer’s disease. Int. J. Geriatr. Psychiatry 2009, 24, 1020–1025. [Google Scholar] [CrossRef]
- Tampi, R.R.; Tampi, D.J.; Balachandran, S.; Srinivasan, S. Antipsychotic use in dementia: A systematic review of benefits and risks from meta-analyses. Ther. Adv. Chronic Dis. 2016, 7, 229–245. [Google Scholar] [CrossRef]
- Chen, Z.R.; Huang, J.B.; Yang, S.L.; Hong, F.F. Role of Cholinergic Signaling in Alzheimer’s Disease. Molecules 2022, 27, 1816. [Google Scholar] [CrossRef]
- Gotti, C.; Moretti, M.; Gaimarri, A.; Zanardi, A.; Clementi, F.; Zoli, M. Heterogeneity and complexity of native brain nicotinic receptors. Biochem. Pharmacol. 2007, 74, 1102–1111. [Google Scholar] [CrossRef]
- Volpicelli, L.A.; Levey, A.I. Muscarinic acetylcholine receptor subtypes in cerebral cortex and hippocampus. Prog. Brain Res. 2004, 145, 59–66. [Google Scholar] [CrossRef]
- Mahmoudi, R.; Novella, J.L.; Laurent-Badr, S.; Boulahrouz, S.; Tran, D.; Morrone, I.; Jaidi, Y. Cholinergic Antagonists and Behavioral Disturbances in Neurodegenerative Diseases. Int. J. Mol. Sci. 2023, 24, 6921. [Google Scholar] [CrossRef]
- Sultzer, D.L.; Mahler, M.E.; Mandelkern, M.A.; Cummings, J.L.; Van Gorp, W.G.; Hinkin, C.H.; Berisford, M.A. The relationship between psychiatric symptoms and regional cortical metabolism in Alzheimer’s disease. J. Neuropsychiatry Clin. Neurosci. 1995, 7, 476–484. [Google Scholar] [CrossRef]
- Sunderland, T.; Tariot, P.N.; Cohen, R.M.; Weingartner, H.; Mueller, E.A., 3rd; Murphy, D.L. Anticholinergic sensitivity in patients with dementia of the Alzheimer type and age-matched controls. A dose-response study. Arch. Gen. Psychiatry 1987, 44, 418–426. [Google Scholar] [CrossRef]
- Bodick, N.C.; Offen, W.W.; Levey, A.I.; Cutler, N.R.; Gauthier, S.G.; Satlin, A.; Shannon, H.E.; Tollefson, G.D.; Rasmussen, K.; Bymaster, F.P.; et al. Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease. Arch. Neurol. 1997, 54, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Alloza, M.; Gil-Bea, F.J.; Diez-Ariza, M.; Chen, C.P.; Francis, P.T.; Lasheras, B.; Ramirez, M.J. Cholinergic-serotonergic imbalance contributes to cognitive and behavioral symptoms in Alzheimer’s disease. Neuropsychologia 2005, 43, 442–449. [Google Scholar] [CrossRef] [PubMed]
- Bittner, N.; Funk, C.S.M.; Schmidt, A.; Bermpohl, F.; Brandl, E.J.; Algharably, E.E.A.; Kreutz, R.; Riemer, T.G. Psychiatric Adverse Events of Acetylcholinesterase Inhibitors in Alzheimer’s Disease and Parkinson’s Dementia: Systematic Review and Meta-Analysis. Drugs Aging 2023, 40, 953–964. [Google Scholar] [CrossRef]
- Jutras-Aswad, D.; DiNieri, J.A.; Harkany, T.; Hurd, Y.L. Neurobiological consequences of maternal cannabis on human fetal development and its neuropsychiatric outcome. Eur. Arch. Psychiatry Clin. Neurosci. 2009, 259, 395–412. [Google Scholar] [CrossRef]
- Rao, J.S.; Tangarife, M.A.; Mukunda, R. Neurobiological alteration in agitation in Alzheimer’s disease and possible interventions. Front. Psychiatry 2024, 15, 1412901. [Google Scholar] [CrossRef]
- Innocenzi, E.; De Domenico, E.; Ciccarone, F.; Zampieri, M.; Rossi, G.; Cicconi, R.; Bernardini, R.; Mattei, M.; Grimaldi, P. Paternal activation of CB(2) cannabinoid receptor impairs placental and embryonic growth via an epigenetic mechanism. Sci. Rep. 2019, 9, 17034. [Google Scholar] [CrossRef]
- Manuel, I.; Gonzalez de San Roman, E.; Giralt, M.T.; Ferrer, I.; Rodriguez-Puertas, R. Type-1 cannabinoid receptor activity during Alzheimer’s disease progression. J. Alzheimer’s Dis. JAD 2014, 42, 761–766. [Google Scholar] [CrossRef]
- Di Marzo, V.; Stella, N.; Zimmer, A. Endocannabinoid signalling and the deteriorating brain. Nat. Rev. Neurosci. 2015, 16, 30–42. [Google Scholar] [CrossRef]
- Mulder, J.; Zilberter, M.; Pasquare, S.J.; Alpar, A.; Schulte, G.; Ferreira, S.G.; Kofalvi, A.; Martin-Moreno, A.M.; Keimpema, E.; Tanila, H.; et al. Molecular reorganization of endocannabinoid signalling in Alzheimer’s disease. Brain 2011, 134, 1041–1060. [Google Scholar] [CrossRef]
- Maroof, N.; Ravipati, S.; Pardon, M.C.; Barrett, D.A.; Kendall, D.A. Reductions in endocannabinoid levels and enhanced coupling of cannabinoid receptors in the striatum are accompanied by cognitive impairments in the AbetaPPswe/PS1DeltaE9 mouse model of Alzheimer’s disease. J. Alzheimer’s Dis. JAD 2014, 42, 227–245. [Google Scholar] [CrossRef]
- Esposito, G.; De Filippis, D.; Steardo, L.; Scuderi, C.; Savani, C.; Cuomo, V.; Iuvone, T. CB1 receptor selective activation inhibits beta-amyloid-induced iNOS protein expression in C6 cells and subsequently blunts tau protein hyperphosphorylation in co-cultured neurons. Neurosci. Lett. 2006, 404, 342–346. [Google Scholar] [CrossRef] [PubMed]
- Palmisano, M.; Gargano, A.; Olabiyi, B.F.; Lutz, B.; Bilkei-Gorzo, A. Hippocampal Deletion of CB1 Receptor Impairs Social Memory and Leads to Age-Related Changes in the Hippocampus of Adult Mice. Int. J. Mol. Sci. 2022, 24, 26. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hong, Y.; Yan, J.; Brown, B.; Lin, X.; Zhang, X.; Shen, N.; Li, M.; Cai, J.; Gordon, M.; et al. Low-Dose Delta-9-Tetrahydrocannabinol as Beneficial Treatment for Aged APP/PS1 Mice. Int. J. Mol. Sci. 2022, 23, 2757. [Google Scholar] [CrossRef] [PubMed]
- Brunt, T.M.; Bossong, M.G. The neuropharmacology of cannabinoid receptor ligands in central signaling pathways. Eur. J. Neurosci. 2022, 55, 909–921. [Google Scholar] [CrossRef]
- Rojo-Bustamante, E.; Inigo-Marco, I.; Abellanas, M.A.; Vinueza-Gavilanes, R.; Baltanas, A.; Luquin, E.; Arrasate, M.; Aymerich, M.S. CB2 Receptors and Neuron-Glia Interactions Modulate Neurotoxicity Generated by MAGL Inhibition. Biomolecules 2020, 10, 1198. [Google Scholar] [CrossRef]
- Hernangomez, M.; Carrillo-Salinas, F.J.; Mecha, M.; Correa, F.; Mestre, L.; Loria, F.; Feliu, A.; Docagne, F.; Guaza, C. Brain innate immunity in the regulation of neuroinflammation: Therapeutic strategies by modulating CD200-CD200R interaction involve the cannabinoid system. Curr. Pharm. Des. 2014, 20, 4707–4722. [Google Scholar] [CrossRef]
- Lou, Z.Y.; Cheng, J.; Wang, X.R.; Zhao, Y.F.; Gan, J.; Zhou, G.Y.; Liu, Z.G.; Xiao, B.G. The inhibition of CB(1) receptor accelerates the onset and development of EAE possibly by regulating microglia/macrophages polarization. J. Neuroimmunol. 2018, 317, 37–44. [Google Scholar] [CrossRef]
- Wolf, S.A.; Tauber, S.; Ullrich, O. CNS immune surveillance and neuroinflammation: Endocannabinoids keep control. Curr. Pharm. Des. 2008, 14, 2266–2278. [Google Scholar] [CrossRef]
- Liang, T.; Zhang, Y.; Wu, S.; Chen, Q.; Wang, L. The Role of NLRP3 Inflammasome in Alzheimer’s Disease and Potential Therapeutic Targets. Front. Pharmacol. 2022, 13, 845185. [Google Scholar] [CrossRef]
- Yu, Q.; Liu, M.; Dai, W.; Xiong, Y.; Mu, X.; Xia, M.; Li, Y.; Ma, S.; Su, Y.; Wu, J.; et al. The NLRP3 inflammasome is involved in resident intruder paradigm-induced aggressive behaviors in mice. Front. Pharmacol. 2023, 14, 974905. [Google Scholar] [CrossRef]
- Suryavanshi, S.V.; Zaiachuk, M.; Pryimak, N.; Kovalchuk, I.; Kovalchuk, O. Cannabinoids Alleviate the LPS-Induced Cytokine Storm via Attenuating NLRP3 Inflammasome Signaling and TYK2-Mediated STAT3 Signaling Pathways In Vitro. Cells 2022, 11, 1391. [Google Scholar] [CrossRef] [PubMed]
- Miczek, K.A. delta9-tetrahydrocannabinol: Antiaggressive effects in mice, rats, and squirrel monkeys. Science 1978, 199, 1459–1461. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, B.J.; Cao, Y.; Xu, W.Q.; Sun, D.S.; Li, M.Z.; Shi, F.X.; Li, M.; Tian, Q.; Wang, J.Z.; et al. Deletion of Type-2 Cannabinoid Receptor Induces Alzheimer’s Disease-Like Tau Pathology and Memory Impairment Through AMPK/GSK3beta Pathway. Mol. Neurobiol. 2018, 55, 4731–4744. [Google Scholar] [CrossRef]
- Aso, E.; Juves, S.; Maldonado, R.; Ferrer, I. CB2 cannabinoid receptor agonist ameliorates Alzheimer-like phenotype in AbetaPP/PS1 mice. J. Alzheimer’s Dis. JAD 2013, 35, 847–858. [Google Scholar] [CrossRef]
- Li, C.; Shi, J.; Wang, B.; Li, J.; Jia, H. CB2 cannabinoid receptor agonist ameliorates novel object recognition but not spatial memory in transgenic APP/PS1 mice. Neurosci. Lett. 2019, 707, 134286. [Google Scholar] [CrossRef]
- Martin-Moreno, A.M.; Brera, B.; Spuch, C.; Carro, E.; Garcia-Garcia, L.; Delgado, M.; Pozo, M.A.; Innamorato, N.G.; Cuadrado, A.; de Ceballos, M.L. Prolonged oral cannabinoid administration prevents neuroinflammation, lowers beta-amyloid levels and improves cognitive performance in Tg APP 2576 mice. J. Neuroinflamm. 2012, 9, 8. [Google Scholar] [CrossRef]
- Rakotoarivelo, V.; Mayer, T.Z.; Simard, M.; Flamand, N.; Di Marzo, V. The Impact of the CB(2) Cannabinoid Receptor in Inflammatory Diseases: An Update. Molecules 2024, 29, 3381. [Google Scholar] [CrossRef]
- Shao, B.Z.; Wei, W.; Ke, P.; Xu, Z.Q.; Zhou, J.X.; Liu, C. Activating cannabinoid receptor 2 alleviates pathogenesis of experimental autoimmune encephalomyelitis via activation of autophagy and inhibiting NLRP3 inflammasome. CNS Neurosci. Ther. 2014, 20, 1021–1028. [Google Scholar] [CrossRef]
- Govaerts, S.J.; Hermans, E.; Lambert, D.M. Comparison of cannabinoid ligands affinities and efficacies in murine tissues and in transfected cells expressing human recombinant cannabinoid receptors. Eur. J. Pharm. Sci. 2004, 23, 233–243. [Google Scholar] [CrossRef]
- Fernandez-Martinez, M.; Molano, A.; Castro, J.; Zarranz, J.J. Prevalence of neuropsychiatric symptoms in mild cognitive impairment and Alzheimer’s disease, and its relationship with cognitive impairment. Curr. Alzheimer Res. 2010, 7, 517–526. [Google Scholar] [CrossRef]
- Siafarikas, N.; Selbaek, G.; Fladby, T.; Saltyte Benth, J.; Auning, E.; Aarsland, D. Frequency and subgroups of neuropsychiatric symptoms in mild cognitive impairment and different stages of dementia in Alzheimer’s disease. Int. Psychogeriatr. 2018, 30, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Volicer, L.; Stelly, M.; Morris, J.; McLaughlin, J.; Volicer, B.J. Effects of dronabinol on anorexia and disturbed behavior in patients with Alzheimer’s disease. Int. J. Geriatr. Psychiatry 1997, 12, 913–919. [Google Scholar] [CrossRef]
- Walther, S.; Mahlberg, R.; Eichmann, U.; Kunz, D. Delta-9-tetrahydrocannabinol for nighttime agitation in severe dementia. Psychopharmacology 2006, 185, 524–528. [Google Scholar] [CrossRef]
- Carlson, G.; Wang, Y.; Alger, B.E. Endocannabinoids facilitate the induction of LTP in the hippocampus. Nat. Neurosci. 2002, 5, 723–724. [Google Scholar] [CrossRef]
- Komorowska-Muller, J.A.; Gellner, A.K.; Ravichandran, K.A.; Bilkei-Gorzo, A.; Zimmer, A.; Stein, V. Chronic low-dose Delta(9)-tetrahydrocannabinol (THC) treatment stabilizes dendritic spines in 18-month-old mice. Sci. Rep. 2023, 13, 1390. [Google Scholar] [CrossRef]
- Bilkei-Gorzo, A.; Albayram, O.; Draffehn, A.; Michel, K.; Piyanova, A.; Oppenheimer, H.; Dvir-Ginzberg, M.; Racz, I.; Ulas, T.; Imbeault, S.; et al. A chronic low dose of Delta(9)-tetrahydrocannabinol (THC) restores cognitive function in old mice. Nat. Med. 2017, 23, 782–787. [Google Scholar] [CrossRef]
- Tzavara, E.T.; Wade, M.; Nomikos, G.G. Biphasic effects of cannabinoids on acetylcholine release in the hippocampus: Site and mechanism of action. J. Neurosci. 2003, 23, 9374–9384. [Google Scholar] [CrossRef]
- Ruver-Martins, A.C.; Bicca, M.A.; de Araujo, F.S.; de Noronha Sales Maia, B.H.L.; Pamplona, F.A.; da Silva, E.G.; Nascimento, F.P. Cannabinoid extract in microdoses ameliorates mnemonic and nonmnemonic Alzheimer’s disease symptoms: A case report. J. Med. Case Rep. 2022, 16, 277. [Google Scholar] [CrossRef]
- Buchwald, D.; Schmidt, C.; Buchwald, D.; Winter, K.I.; Nielsen, I.B.; Klostergaard, K.; Melgaard, D.; Fagerberg, S.K.; Leutscher, P.D.C. Impact of Low-Dose Dronabinol Therapy on Cognitive Function in Cancer Patients Receiving Palliative Care: A Case-Series Intervention Study. Palliat. Med. Rep. 2023, 4, 326–333. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rao, J.S.; Tangarife, M.A.; Rodríguez-Soacha, D.A.; Arbelaez, M.J.; Venegas, M.M.; Delgado-Murillo, L.; Shahnawaz, S.; Grimaldi, C.; Gutiérrez, E.; Mukunda, R. Dysregulated Neurotransmitters and CB1 Receptor Dysfunction and Their Roles in Agitation Associated with Alzheimer’s Disease. J. Dement. Alzheimer's Dis. 2025, 2, 15. https://doi.org/10.3390/jdad2020015
Rao JS, Tangarife MA, Rodríguez-Soacha DA, Arbelaez MJ, Venegas MM, Delgado-Murillo L, Shahnawaz S, Grimaldi C, Gutiérrez E, Mukunda R. Dysregulated Neurotransmitters and CB1 Receptor Dysfunction and Their Roles in Agitation Associated with Alzheimer’s Disease. Journal of Dementia and Alzheimer's Disease. 2025; 2(2):15. https://doi.org/10.3390/jdad2020015
Chicago/Turabian StyleRao, Jagadeesh S., María Alejandra Tangarife, Diego A. Rodríguez-Soacha, María Juanita Arbelaez, María Margarita Venegas, Laura Delgado-Murillo, Saadia Shahnawaz, Claudia Grimaldi, Evelyn Gutiérrez, and Ram Mukunda. 2025. "Dysregulated Neurotransmitters and CB1 Receptor Dysfunction and Their Roles in Agitation Associated with Alzheimer’s Disease" Journal of Dementia and Alzheimer's Disease 2, no. 2: 15. https://doi.org/10.3390/jdad2020015
APA StyleRao, J. S., Tangarife, M. A., Rodríguez-Soacha, D. A., Arbelaez, M. J., Venegas, M. M., Delgado-Murillo, L., Shahnawaz, S., Grimaldi, C., Gutiérrez, E., & Mukunda, R. (2025). Dysregulated Neurotransmitters and CB1 Receptor Dysfunction and Their Roles in Agitation Associated with Alzheimer’s Disease. Journal of Dementia and Alzheimer's Disease, 2(2), 15. https://doi.org/10.3390/jdad2020015