How Natural Therapies Can Combat Neoplastic Disease by Targeting Key Survival Mechanisms and Signaling Pathways
Abstract
:1. Introduction to Natural Therapies
2. Effect of Natural Therapies on Disease
2.1. Ajwa Date Variety and Cancer
2.2. Curcumin and Cancer
2.3. Ginseng and Cancer
2.4. Lycopene and Cancer
2.5. Ursolic Acid and Cancer
2.6. Approved Anticancer Drugs from Medicinal Plants
2.6.1. Anticancer Natural Products
2.6.2. Potential Side Effects of Natural Products
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2020: Globocan Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Khan, F.; Khan, T.J.; Kalamegam, G.; Pushparaj, P.N.; Chaudhary, A.; Abuzenadah, A.; Kumosani, T.; Barbour, E.; Al-Qahtani, M. Anti-Cancer Effects of AJWA Dates (Phoenix dactylifera L.) in Diethylnitrosamine Induced Hepatocellular Carcinoma in Wistar Rats. BMC Complement. Altern. Med. 2017, 17, 1–10. [Google Scholar] [CrossRef]
- Siddiqui, S.; Ahmad, R.; Khan, M.A.; Upadhyay, S.; Husain, I.; Srivastava, A.N. Cytostatic and Anti-Tumor Potential of Ajwa Date Pulp against Human Hepatocellular Carcinoma HepG2 Cells. Sci. Rep. 2019, 9, 245. [Google Scholar] [CrossRef] [PubMed]
- Godugu, K.; El-Far, A.H.; Al Jaouni, S.; Mousa, S.A. Nanoformulated Ajwa (Phoenix dactylifera) Bioactive Compounds Improve the Safety of Doxorubicin without Compromising Its Anticancer Efficacy in Breast Cancer. Molecules 2020, 25, 2597. [Google Scholar] [CrossRef]
- Khan, F.; Ahmed, F.; Pushparaj, P.N.; Abuzenadah, A.; Kumosani, T.; Barbour, E.; AlQahtani, M. Ajwa Date (Phoenix dactylifera L.) Extract Inhibits Human Breast Adenocarcinoma (MCF7) Cells in Vitro by Inducing Apoptosis and Cell Cycle Arrest. PLoS ONE 2016, 11, e0158963. [Google Scholar] [CrossRef]
- Khan, M.A.; Siddiqui, S.; Ahmad, I.; Singh, R.; Mishra, D.P.; Srivastava, A.N.; Ahmad, R. Phytochemicals from Ajwa Dates Pulp Extract Induce Apoptosis in Human Triple-Negative Breast Cancer by Inhibiting AKT/Mtor Pathway and Modulating Bcl-2 Family Proteins. Sci. Rep. 2021, 11, 10322. [Google Scholar] [CrossRef] [PubMed]
- Mirza, M.B.; Elkady, A.I.; Al-Attar, A.M.; Syed, F.Q.; Mohammed, F.A.; Hakeem, K.R. Induction of Apoptosis and Cell Cycle Arrest by Ethyl Acetate Fraction of Phoenix dactylifera L. (Ajwa Dates) in Prostate Cancer Cells. J. Ethnopharmacol. 2018, 218, 35–44. [Google Scholar] [CrossRef]
- Al Jaouni, S.K.; Hussein, A.; Alghamdi, N.; Qari, M.; El Hossary, D.; Almuhayawi, M.S.; Olwi, D.; Al-Raddadi, R.; Harakeh, S.; Mousa, S.A. Effects of Phoenix dactylifera Ajwa on Infection, Hospitalization, and Survival among Pediatric Cancer Patients in a University Hospital: A Nonrandomized Controlled Trial. Integr. Cancer Ther. 2018, 18, 153473541982883. [Google Scholar] [CrossRef]
- Nakhjavani, M.; Smith, E.; Townsend, A.R.; Price, T.J.; Hardingham, J.E. Anti-Angiogenic Properties of Ginsenoside RG3. Molecules 2020, 25, 4905. [Google Scholar] [CrossRef]
- Elhemeidy, R.M.M.; Lyrawati, D.; Widjajanto, E. Date Fruit Extract (Phoenix dactylifera, AJWA) Modulates NK Cells and TNF—Alpha in DMBA-Induced Mammary Cancer Sprague-Dawley Rats. J. Trop. Life Sci. 2018, 8, 227–235. [Google Scholar] [CrossRef]
- Han, X.; Yang, C.; Guo, C.; Xu, Y.; Liu, X.; Xie, R.; Meng, X.; Cheng, Z.; Fu, X. Bioinformatics Analysis to Screen Key Targets of Curcumin against Colorectal Cancer and the Correlation with Tumor-Infiltrating Immune Cells. Evid. Based Complement. Altern. Med. 2021, 2021, 9132608. [Google Scholar] [CrossRef]
- Vallée, A.; Lecarpentier, Y.; Vallée, J.N. Curcumin: A Therapeutic Strategy in Cancers by Inhibiting the Canonical Wnt/β-Catenin Pathway. J. Exp. Clin. Cancer Res. 2019, 38, 323. [Google Scholar] [CrossRef] [PubMed]
- Tamaddoni, A.; Mohammadi, E.; Sedaghat, F.; Qujeq, D.; As’Habi, A. The Anticancer Effects of Curcumin via Targeting the Mammalian Target of Rapamycin Complex 1 (mtorc1) Signaling Pathway. Pharmacol. Res. 2020, 156, 104798. [Google Scholar] [CrossRef]
- Ye, C.; Wang, W.; Xia, G.; Yu, C.; Yi, Y.; Hua, C.; Tu, F.; Shen, L.; Chen, C.; Sun, W.; et al. A Novel Curcumin Derivative CL-6 Exerts Antitumor Effect in Human Gastric Cancer Cells by Inducing Apoptosis through Hippo–Yap Signaling Pathway. OncoTargets Ther. 2019, 12, 2259–2269. [Google Scholar] [CrossRef] [PubMed]
- Lim, W.; Jeong, M.; Bazer, F.W.; Song, G. Curcumin Suppresses Proliferation and Migration and Induces Apoptosis on Human Placental Choriocarcinoma Cells via ERK1/2 and SAPK/JNK MAPK Signaling Pathways. Biol. Reprod. 2016, 95, 83. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, Z.; Han, L.; Zhao, L.; Weng, J.; Yang, H.; Wu, S.; Chen, K.; Wu, L.; Chen, T. A Curcumin Derivative, WZ35, Suppresses Hepatocellular Cancer Cell Growthviadownregulating Yap-Mediated Autophagy. Food Funct. 2019, 10, 3748–3757. [Google Scholar] [CrossRef]
- Wang, M.; Jiang, S.; Zhou, L.; Yu, F.; Ding, H.; Li, P.; Zhou, M.; Wang, K. Potential Mechanisms of Action of Curcumin for Cancer Prevention: Focus on Cellular Signaling Pathways and Mirnas. Int. J. Biol. Sci. 2019, 15, 1200–1214. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lu, J.; Jiang, B.; Guo, J. The Roles of Curcumin in Regulating the Tumor Immunosuppressive Microenvironment (Review). Oncol. Lett. 2020, 19, 3059–3070. [Google Scholar] [CrossRef]
- Farghadani, R.; Rakesh, N. Curcumin: Modulator of Key Molecular Signaling Pathways in Hormone-Independent Breast Cancer. Cancers 2021, 13, 3427. [Google Scholar] [CrossRef]
- Rahmani, A.H.; Al Zohairy, M.A.; Aly, S.M.; Khan, M.A. Curcumin: A Potential Candidate in Prevention of Cancer via Modulation of Molecular Pathways. BioMed Res. Int. 2014, 2014, 761608. [Google Scholar] [CrossRef]
- Heng, M.C.Y. Curcumin Targeted Signaling Pathways: Basis for Anti-Photoaging and Anti-Carcinogenic Therapy. Int. J. Dermatol. 2010, 49, 608–622. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Zhang, M.; Dai, E.; Luo, Y. Molecular Targets of Curcumin in Breast Cancer (Review). Mol. Med. Rep. 2018, 19, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Giordano, A.; Tommonaro, G. Curcumin and Cancer. Nutrients 2019, 11, 2376. [Google Scholar] [CrossRef]
- Shaikh, S.; Shaikh, J.; Naba, Y.S.; Doke, K.; Ahmed, K.; Yusufi, M. Curcumin: Reclaiming the Lost Ground Against Cancer Resistance. Cancer Drug Resist. 2021, 4, 298. [Google Scholar] [CrossRef]
- Zhu, J.; Zhao, B.; Xiong, P.; Wang, C.; Zhang, J.; Tian, X.; Huang, Y. Curcumin Induces Autophagy via Inhibition of YES-Associated Protein (YAP) in Human Colon Cancer Cells. Med. Sci. Monit. 2018, 24, 7035–7042. [Google Scholar] [CrossRef] [PubMed]
- Colzani, M.; Altomare, A.; Caliendo, M.; Aldini, G.; Righetti, P.G.; Fasoli, E. The Secrets of Oriental Panacea: Panax Ginseng. J. Proteom. 2016, 130, 150–159. [Google Scholar] [CrossRef]
- Irfan, M.; Kwak, Y.S.; Han, C.K.; Hyun, S.H.; Rhee, M.H. Adaptogenic Effects of Panax Ginseng on Modulation of Cardiovascular Functions. J. Ginseng Res. 2020, 44, 538–543. [Google Scholar] [CrossRef]
- Jegal, J.; Jeong, E.J.; Yang, M.H. A Review of the Different Methods Applied in Ginsenoside Extraction from Panax Ginseng and Panax Quinquefolius Roots. Nat. Prod. Commun. 2019, 14, 1934578X19868393. [Google Scholar] [CrossRef]
- Liang, L.D.; He, T.; Du, T.W.; Fan, Y.G.; Chen, D.S.; Wang, Y. Ginsenoside-RG5 Induces Apoptosis and DNA Damage in Human Cervical Cancer Cells. Mol. Med. Rep. 2014, 11, 940–946. [Google Scholar] [CrossRef]
- Dai, Y.; Wang, W.; Sun, Q.; Tuohayi, J. Ginsenoside RG3 Promotes the Antitumor Activity of Gefitinib in Lung Cancer Cell Lines. Exp. Ther. Med. 2018, 17, 953–959. [Google Scholar] [CrossRef]
- Aassila, H.; Bourguet-Kondracki, M.L.; Rifai, S.; Fassouane, A.; Guyot, M. Identification of Harman as the Antibiotic Compound Produced by a Tunicate-Associated Bacterium. Mar. Biotechnol. 2003, 5, 163–166. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.J.; Lee, J.J.; Jin, C.M.; Lim, S.C.; Lee, M.K. The Harman and Norharman Reduced Dopamine Content and Induced Cytotoxicity in PC12 Cells. Biomol. Ther. 2008, 16, 106–112. [Google Scholar] [CrossRef]
- Ikram, M.; Ullah, R.; Khan, A.; Kim, M.O. Ongoing Research on the Role of Gintonin in the Management of Neurodegenerative Disorders. Cells 2020, 9, 1464. [Google Scholar] [CrossRef]
- Ham, S.W.; Kim, J.K.; Jeon, H.Y.; Kim, E.J.; Jin, X.; Eun, K.; Park, C.G.; Lee, S.Y.; Seo, S.; Kim, J.Y.; et al. Korean Red Ginseng Extract Inhibits Glioblastoma Propagation by Blocking the Wnt Signaling Pathway. J. Ethnopharmacol. 2019, 236, 393–400. [Google Scholar] [CrossRef]
- Lee, H.R.; Jung, J.M.; Seo, J.Y.; Chang, S.E.; Song, Y. Anti-Melanogenic Property of Ginsenoside RF from Panax Ginseng via Inhibition of CREB/MITF Pathway in Melanocytes and Ex Vivo Human Skin. J. Ginseng Res. 2021, 45, 555–564. [Google Scholar] [CrossRef]
- Jang, Y.; Lee, W.J.; Hong, G.S.; Shim, W.S. Red Ginseng Extract Blocks Histamine-Dependent Itch by Inhibition of H1R/TRPV1 Pathway in Sensory Neurons. J. Ginseng Res. 2015, 39, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Bae, H.M.; Cho, O.S.; Kim, S.J.; Im, B.O.; Cho, S.H.; Lee, S.; Kim, M.G.; Kim, K.T.; Leem, K.H.; Ko, S.K. Inhibitory Effects of Ginsenoside Re Isolated from Ginseng Berry on Histamine and Cytokine Release in Human Mast Cells and Human Alveolar Epithelial Cells. J. Ginseng Res. 2012, 36, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Van Breemen, R.B.; Pajkovic, N. Multitargeted Therapy of Cancer by Lycopene. Cancer Lett. 2008, 269, 339–351. [Google Scholar] [CrossRef]
- Suwanaruang, T. Analyzing Lycopene Content in Fruits. Agric. Agric. Sci. Procedia 2016, 11, 46–48. [Google Scholar] [CrossRef]
- Teodoro, A.J.; Oliveira, F.L.; Martins, N.B.; Maia Gde, A.; Martucci, R.B.; Borojevic, R. Effect of Lycopene on Cell Viability and Cell Cycle Progression in Human Cancer Cell Lines. Cancer Cell Int. 2012, 12, 36. [Google Scholar] [CrossRef]
- Jeong, Y.; Lim, J.W.; Kim, H. Lycopene Inhibits Reactive Oxygen Species-Mediated NF-ΚB Signaling and Induces Apoptosis in Pancreatic Cancer Cells. Nutrients 2019, 11, 762. [Google Scholar] [CrossRef] [PubMed]
- McIlwain, D.R.; Berger, T.; Mak, T.W. Caspase Functions in Cell Death and Disease. Cold Spring Harb. Perspect. Biol. 2013, 5, a008656. [Google Scholar] [CrossRef] [PubMed]
- Tjahjodjati, T.; Sugandi, S.; Umbas, R.; Satari, M. The Effect of Lycopene on Cancer Cell Apoptosis by Caspase-9 Concentration Measurement in Indonesian Human Prostate Cancer Cell Culture. Open Access Maced. J. Med. Sci. 2020, 8, 952–956. [Google Scholar] [CrossRef]
- Salman, H.; Bergman, M.; Djaldetti, M.; Bessler, H. Lycopene Affects Proliferation and Apoptosis of Four Malignant Cell Lines. Biomed. Pharmacother. 2007, 61, 366–369. [Google Scholar] [CrossRef]
- Seo, D.Y.; Lee, S.R.; Heo, J.W.; No, M.H.; Rhee, B.D.; Ko, K.S.; Kwak, H.B.; Han, J. Ursolic Acid in Health and Disease. Korean J. Physiol. Pharmacol. 2018, 22, 235. [Google Scholar] [CrossRef] [PubMed]
- Chan, E.W.C.; Soon, C.Y.; Tan, J.B.L.; Wong, S.K.; Hui, Y.W. Ursolic Acid: An Overview on Its Cytotoxic Activities against Breast and Colorectal Cancer Cells. J. Integr. Med. 2019, 17, 155–160. [Google Scholar] [CrossRef]
- Woźniak, Ł.; Skąpska, S.; Marszałek, K. Ursolic Acid—A Pentacyclic Triterpenoid with a Wide Spectrum of Pharmacological Activities. Molecules 2015, 20, 20614–20641. [Google Scholar] [CrossRef]
- Shan, J.Z.; Xuan, Y.Y.; Zheng, S.; Dong, Q.; Zhang, S.Z. Ursolic Acid Inhibits Proliferation and Induces Apoptosis of HT-29 Colon Cancer Cells by Inhibiting the EGFR/MAPK Pathway. J. Zhejiang Univ. Sci. B 2009, 10, 668–674. [Google Scholar] [CrossRef]
- Kim, G.H.; Kan, S.Y.; Kang, H.; Lee, S.; Ko, H.M.; Kim, J.H.; Lim, J.H. Ursolic Acid Suppresses Cholesterol Biosynthesis and Exerts Anti-Cancer Effects in Hepatocellular Carcinoma Cells. Int. J. Mol. Sci. 2019, 20, 4767. [Google Scholar] [CrossRef]
- Kim, K.; Shin, E.A.; Jung, J.H.; Park, J.E.; Kim, D.S.; Shim, B.S.; Kim, S.H. Ursolic Acid Induces Apoptosis in Colorectal Cancer Cells Partially via Upregulation of MicroRNA-4500 and Inhibition of JAK2/STAT3 Phosphorylation. Int. J. Mol. Sci. 2018, 20, 114. [Google Scholar] [CrossRef]
- Kim, S.H.; Jin, H.; Meng, R.Y.; Kim, D.Y.; Liu, Y.C.; Chai, O.H.; Park, B.H.; Kim, S.M. Activating Hippo Pathway via RASSF1 by Ursolic Acid Suppresses the Tumorigenesis of Gastric Cancer. Int. J. Mol. Sci. 2019, 20, 4709. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Cai, Q.Y.; Liu, J.; Peng, J.; Chen, Y.Q.; Sferra, T.J.; Lin, J.M. Ursolic Acid Suppresses the Invasive Potential of Colorectal Cancer Cells by Regulating the Tgf β1/zeb1/Mir 200c Signaling Pathway. Oncol. Lett. 2019, 18, 3274–3282. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, L.; Shi, H.; Chen, H.; Tao, J.; Shen, R.; Wang, T. Ursolic Acid Enhances the Therapeutic Effects of Oxaliplatin in Colorectal Cancer by Inhibition of Drug Resistance. Cancer Sci. 2017, 109, 94–102. [Google Scholar] [CrossRef]
- Cai, Q.; Lin, J.; Zhang, L.; Lin, J.; Wang, L.; Chen, D.; Peng, J. Comparative Proteomics—Network Analysis of Proteins Responsible for Ursolic Acid–Induced Cytotoxicity in Colorectal Cancer Cells. Tumor Biol. 2017, 39, 101042831769501. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Fu, H.; Wang, Z.; Yin, F.; Li, J.; Hua, Y.; Cai, Z. A new synthetic ursolic acid derivative IUA with anti-tumor efficacy against osteosarcoma cells via inhibition of JNK signaling pathway. Cell Physiol Biochem. 2014, 34, 724–733. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; He, J.; Huang, B.; Liu, S.; Zhu, H.; Xu, T. Emerging Role of the Hippo Pathway in Autophagy. Cell Death Dis. 2020, 11, 880. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, L.; Qiu, H.; Zhang, X.; Guo, W.; Chen, W.; Tian, Y.; Fu, L.; Shi, D.; Cheng, J.; et al. Ursolic Acid Simultaneously Targets Multiple Signaling Pathways to Suppress Proliferation and Induce Apoptosis in Colon Cancer Cells. PLoS ONE 2013, 8, e63872. [Google Scholar] [CrossRef]
- Wang, X.; Wang, T.; Yi, F.; Duan, C.; Wang, Q.; He, N.; Zhu, L.; Li, Q.; Deng, W. Ursolic Acid Inhibits Tumor Growth via Epithelial-to-Mesenchymal Transition in Colorectal Cancer Cells. Biol. Pharm. Bull. 2019, 42, 685–691. [Google Scholar] [CrossRef]
- Kim, E.O.; Cha, K.H.; Lee, E.H.; Kim, S.M.; Choi, S.W.; Pan, C.H.; Um, B.H. Bioavailability of Ginsenosides from White and Red Ginsengs in the Simulated Digestion Model. J. Agric. Food Chem. 2014, 62, 10055–10063. [Google Scholar] [CrossRef]
- Kim, H.; Lee, J.H.; Kim, J.E.; Kim, Y.S.; Ryu, C.H.; Lee, H.J.; Kim, H.M.; Jeon, H.; Won, H.J.; Lee, J.Y.; et al. Micro-/Nano-Sized Delivery Systems of Ginsenosides for Improved Systemic Bioavailability. J. Ginseng Res. 2018, 42, 361–369. [Google Scholar] [CrossRef]
- Alexa-Stratulat, T.; Luca, A.; Bădescu, M.; Bohotin, C.-R.; Alexa, I.D. Nutritional Modulators in Chemotherapy-Induced Neuropathic Pain. In Nutritional Modulators of Pain in the Aging Population; Academic Press: Cambridge, MA, USA, 2017; pp. 9–33. [Google Scholar] [CrossRef]
- Courdavault, V.; O’Connor, S.E.; Oudin, A.; Besseau, S.; Papon, N. Towards the Microbial Production of Plant-Derived Anticancer Drugs. Trends Cancer 2020, 6, 444–448. [Google Scholar] [CrossRef]
- Yeung, T.K.; Germond, C.; Chen, X.; Wang, Z. The Mode of Action of Taxol: Apoptosis at Low Concentration and Necrosis at High Concentration. Biochem. Biophys. Res. Commun. 1999, 263, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef]
- Xiao, J.; Gao, M.; Sun, Z.; Diao, Q.; Wang, P.; Gao, F. Recent Advances of Podophyllotoxin/Epipodophyllotoxin Hybrids in Anticancer Activity, Mode of Action, and Structure-Activity Relationship: An Update (2010–2020). Eur. J. Med. Chem. 2020, 208, 112830. [Google Scholar] [CrossRef]
- Reyhanoglu, G. Etoposide. StatPearls [Internet]. U.S. National Library of Medicine. Available online: https://www.ncbi.nlm.nih.gov/books/NBK557864/ (accessed on 29 September 2021).
- Reyhanoglu, G. Irinotecan. StatPearls [Internet]. U.S. National Library of Medicine. Available online: https://www.ncbi.nlm.nih.gov/books/NBK554441/ (accessed on 6 July 2021).
- Tozer, G.M.; Kanthou, C.; Parkins, C.S.; Hill, S.A. The Biology of the combretastatins as Tumour Vascular Targeting Agents. Int. J. Exp. Pathol. 2002, 83, 21–38. [Google Scholar] [CrossRef]
- Choudhari, A.S.; Mandave, P.C.; Deshpande, M.; Ranjekar, P.; Prakash, O. Phytochemicals in Cancer Treatment: From Preclinical Studies to Clinical Practice. Front. Pharmacol. 2020, 10, 1614. [Google Scholar] [CrossRef]
- Skroza, N.; Bernardini, N.; Proietti, I.; Potenza, C. Clinical Utility of Ingenol Mebutate in the Management of Actinic Keratosis: Perspectives from Clinical Practice. Ther. Clin. Risk Manag. 2018, 14, 1879–1885. [Google Scholar] [CrossRef]
- Itokawa, H. Homoharringtonine and Related Compounds. In Anticancer Agents from Natural Products; CRC Press: Boca Raton, FL, USA, 2005; pp. 63–86. [Google Scholar] [CrossRef]
- Short, N.J.; Jabbour, E.; Naqvi, K.; Patel, A.; Ning, J.; Sasaki, K.; Nogueras-Gonzalez, G.M.; Bose, P.; Kornblau, S.M.; Takahashi, K.; et al. A Phase II Study of Omacetaxine Mepesuccinate for Patients with Higher-Risk Myelodysplastic Syndrome and Chronic Myelomonocytic Leukemia after Failure of Hypomethylating Agents. Am. J. Hematol. 2018, 94, 74–79. [Google Scholar] [CrossRef]
- Sung, B.; Ahn, K.S.; Aggarwal, B.B. Noscapine, a Benzylisoquinoline Alkaloid, Sensitizes Leukemic Cells to Chemotherapeutic Agents and Cytokines by Modulating the NF-ΚB Signaling Pathway. Cancer Res. 2010, 70, 3259–3268. [Google Scholar] [CrossRef]
- Foster, K.; Oyenihi, O.; Rademan, S.; Erhabor, J.; Matsabisa, M.; Barker, J.; Langat, M.K.; Kendal-Smith, A.; Asemota, H.; Delgoda, R. Selective Cytotoxic and Anti-Metastatic Activity in DU-145 Prostate Cancer Cells Induced by Annona muricata L. Bark Extract and Phytochemical, Annonacin. BMC Complement. Med. Ther. 2020, 20, 375. [Google Scholar] [CrossRef]
- Langat, L.; Langat, M.K.; Wetschnig, W.; Knirsch, W.; Mulholland, D.A. Antiproliferative Bufadienolides from the Bulbs of Drimia altissima. J. Nat. Prod. 2021, 84, 608–615. [Google Scholar] [CrossRef]
- Morrison, I.J.; Zhang, J.; Lin, J.; Murray, J.E.; Porter, R.; Langat, M.K.; Sadgrove, N.J.; Barker, J.; Zhang, G.; Delgoda, R. Potential Chemopreventive, Anticancer and Anti-Inflammatory Properties of a Refined Artocarpin-Rich Wood Extract of Artocarpus heterophyllus Lam. Sci. Rep. 2021, 11, 6854. [Google Scholar] [CrossRef]
- Hassan, S.M.A.; Aboonq, M.S.; Albadawi, E.A.; Aljehani, Y.; Abdel-Latif, H.M.; Mariah, R.A.; Shafik, N.M.; Soliman, T.M.; Abdel-Gawad, A.R.; Omran, F.M.; et al. The Preventive and Therapeutic Effects of Ajwa Date Fruit Extract Against Acute Diclofenac Toxicity-Induced Colopathy: An Experimental Study. Drug Des. Dev. Ther. 2022, 16, 2601–2616. [Google Scholar] [CrossRef]
- Halegoua-DeMarzio, D.; Navarro, V.; Ahmad, J.; Avula, B.; Barnhart, H.; Barritt, A.S.; Bonkovsky, H.L.; Fontana, R.J.; Ghabril, M.S.; Hoofnagle, J.H.; et al. Liver Injury Associated with Turmeric—A Growing Problem: Ten Cases from the Drug-Induced Liver Injury Network [DILIN]. Am. J. Med. 2023, 136, 200–206. [Google Scholar] [CrossRef]
- Dong, H.; Ma, J.; Li, T.; Xiao, Y.; Zheng, N.; Liu, J.; Gao, Y.; Shao, J.; Jia, L. Global deregulation of ginseng products may be a safety hazard to warfarin takers: Solid evidence of ginseng-warfarin interaction. Sci. Rep. 2017, 7, 5813. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, Y.; Yang, Y.; Hu, Y.; Zou, X.; Yu, B.; Qi, J. Allergens in red ginseng extract induce the release of mediators associated with anaphylactoid reactions. J. Transl. Med. 2017, 15, 148. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, J.Y.; Lim, K.M.; Kim, S.Y.; Bae, O.N.; Noh, J.Y.; Chung, S.M.; Kim, K.; Shin, Y.S.; Lee, M.Y.; Chung, J.H. Vascular smooth muscle dysfunction and remodeling induced by ginsenoside Rg3, a bioactive component of ginseng. Toxicol. Sci. 2010, 117, 505–514. [Google Scholar] [CrossRef]
- Paik, D.J.; Lee, C.H. Review of cases of patient risk associated with ginseng abuse and misuse. J. Ginseng Res. 2015, 39, 89–93. [Google Scholar] [CrossRef]
- Trumbo, P.R. Are there adverse effects of lycopene exposure? J. Nutr. 2020, 135, 2060S–2061S. [Google Scholar] [CrossRef] [PubMed]
- Mellert, W.; Deckardt, K.; Gembardt, C.; Schulte, S.; Van Ravenzwaay, B.; Slesinski, R. Thirteen-Week Oral Toxicity Study of Synthetic Lycopene Products in Rats. Food Chem. Toxicol. 2002, 40, 1581–1588. [Google Scholar] [CrossRef] [PubMed]
- Erdmann, J.; Kujaciński, M.; Wiciński, M. Beneficial Effects of Ursolic Acid and Its Derivatives-Focus on Potential Biochemical Mechanisms in Cardiovascular Conditions. Nutrients 2021, 13, 3900. [Google Scholar] [CrossRef] [PubMed]
Natural Products Extraction | Bioactive Compound(s) | Common Method of Extraction | Cancer Use | Mechanism of Action | Targeted Key Signaling Pathways | Side Effects | Other Therapeutical Roles |
---|---|---|---|---|---|---|---|
Ajwa date (Phoenix dactylifera L.) | -Phytosterols, Polyphenols, Flavonoids and Glycosides | -Ethanol based extractions -Methanol based extraction | -Breast cancer, Colorectal cancer, hepatocellular carcinoma, and Prostate cancer | -Restricts cancer progression and development -Cell shrinkage -Cell apoptosis and cell cycle arrest | -Stimulation of p53 mediated cell signalling -Downregulation of Bcl-2 pathway -Downregulation of AKT/mTOR pathway | -No reported side effects | -Anti-diabetic activity in controlling blood glucose -Ant-inflammatory activity -Anti-microbial andante-bacterial activity -Neuroprotective effect |
Curcumin | -Polyphenol | -Fractionated by silica gel 60 column chromatography | -Breast cancer, Colon cancer, Pancreatic cancer, Bladder and Prostate cancer | -Inhibits proliferation, survival, metastasis, invasion, and angiogenesis -Modulates cell growth and cell cycle -Stimulates apoptosis -Induces cell cycle arrest | -Stimulation of Caspase death receptor pathway -Induces WNT/- catenin β pathway -Downregulation of NFkB signalling -Inactivation of the PI3K/Akt pathway | -May promote Liver impairment in individuals with jaundice | -Anti-diabetic effect -Anti-inflammatory activity -Antioxidant activity -Anri-bacteria, anti-fungal, anti-microbial activity -Analgesic |
Ginseng | - Ginsenosides, Alkaloids and Gintonin | - Liquid-solid column chromatography. | -Melanoma, Cervical carcinoma, and Lung cancer | -Induce apoptosis -Reduces cell viability | -Induces WNT/- catenin β pathway -Inhibition of CREB/MITF pathway | -Anti-coagulant ginseng interaction -Allergic reaction -Cardiovascular toxicity | -Hypotensive -Anti-oxidant activity -Sedative -Analgesic role |
Lycopene | -Lycopersicum esculentum | -Hexane- based extractions -Acetone-based extractions -Ethanol-based extractions | -Prostate cancer, Colon carcinoma, B-chronic lymphocytic leukaemia, erythroleukemia, and Burkitt lymphoma | -Induces apoptosis -Inhibits metastasis -Prevents oxidative stress | -Stimulation of Caspase-3 and -9 death receptor pathway | -Orange-coloured appearance ‘lycopenemia’ -Diarrhoea -Allergic reaction | -Mitigates metabolic diseases -Anti-diabetic -Anti inflammatory -Neuroprotection -Sperm quality enhancement and fertility promotion |
Ursolic acid | -Pentacyclic Triterpenoid | -Ethyl-acetate extractions | -Colon adenocarcinoma | -Inhibits proliferation and tumorigenesis -Induces apoptosis -Inhibits migration and invasion | -Inhibition of JAK2/STAT3 pathway -Inhibition of EGFR/MAPK pathway -Regulation of TGF-β1 signalling pathway | -Nausea -Gastrointestinal (GI) problems | -Anti-inflammatory -Anti-oxidant -Anti-microbial -Anti-diabetic -Anti-obesity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karagil, S.; Szczesnowska, A.; Haddad, N.; Magura Gamaethige, S.; Coakley, E.; Dawood, N.; Rama, V.J.; Barker, J.; Langat, M.K.; Morgan, H.; et al. How Natural Therapies Can Combat Neoplastic Disease by Targeting Key Survival Mechanisms and Signaling Pathways. Therapeutics 2025, 2, 5. https://doi.org/10.3390/therapeutics2010005
Karagil S, Szczesnowska A, Haddad N, Magura Gamaethige S, Coakley E, Dawood N, Rama VJ, Barker J, Langat MK, Morgan H, et al. How Natural Therapies Can Combat Neoplastic Disease by Targeting Key Survival Mechanisms and Signaling Pathways. Therapeutics. 2025; 2(1):5. https://doi.org/10.3390/therapeutics2010005
Chicago/Turabian StyleKaragil, Simge, Aleksandra Szczesnowska, Natalia Haddad, Sara Magura Gamaethige, Ellen Coakley, Nabila Dawood, Vernard J. Rama, James Barker, Moses K. Langat, Huda Morgan, and et al. 2025. "How Natural Therapies Can Combat Neoplastic Disease by Targeting Key Survival Mechanisms and Signaling Pathways" Therapeutics 2, no. 1: 5. https://doi.org/10.3390/therapeutics2010005
APA StyleKaragil, S., Szczesnowska, A., Haddad, N., Magura Gamaethige, S., Coakley, E., Dawood, N., Rama, V. J., Barker, J., Langat, M. K., Morgan, H., Wehida, N., & Elbediwy, A. (2025). How Natural Therapies Can Combat Neoplastic Disease by Targeting Key Survival Mechanisms and Signaling Pathways. Therapeutics, 2(1), 5. https://doi.org/10.3390/therapeutics2010005