Theoretical Aspects of Topology and Successful Applications to Glasses and Proteins
Abstract
1. Introduction
2. Topology Explains Why Self-Organized Glasses Form in the Intermediate Phase
3. Topology and Gorilla Glass
4. Topology and Window Glass
5. Topology, Dynamical Protein Structure, and Self-Organization
6. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Topology. Wikipedia. 2 January 2025. Available online: https://en.wikipedia.org/w/index.php?title=Topology&oldid=1266885386 (accessed on 3 January 2025).
- Boolchand, P.; Georgiev, D.G.; Goodman, B. Discovery of the intermediate phase in chalcogenide glasses. J. Optoelectron. Adv. Mater. 2001, 3, 703–720. [Google Scholar]
- Rigidity Theory (Physics). Wikipedia. 16 July 2024. Available online: https://en.wikipedia.org/w/index.php?title=Rigidity_theory_(physics)&oldid=1234898467 (accessed on 3 January 2025).
- Phillips, J.C. Topology of covalent non-crystalline solids I: Short-range order in chalcogenide alloys. J. Non-Cryst. Solids 1979, 34, 153–181. [Google Scholar] [CrossRef]
- Phillips, J.C.; Kerner, R. Structure and function of window glass and Pyrex. J. Chem. Phys. 2008, 128, 174506. [Google Scholar] [CrossRef]
- Micoulaut, M. Topological ordering during flexible to rigid transitions in disordered networks. Comptes Rendus Phys. 2023, 24, 133–154. [Google Scholar] [CrossRef]
- Mauro, J.C. Topological constraint theory of glass. Am. Ceram. Soc. Bull. 2011, 90, 7. [Google Scholar]
- Feng, X.; Bresser, W.J.; Boolchand, P. Direct Evidence for Stiffness Threshold in Chalcogenide Glasses. Phys. Rev. Lett. 1997, 78, 4422–4425. [Google Scholar] [CrossRef]
- Thomas, L. Modulated DSC Technology; T.A. Instruments: New Castle, DE, USA, 2005; Chapters 1–9. [Google Scholar]
- Thomas, L.C.; Instruments, T.; Drive, L.; Castle, N. Modulated DSC® Paper #3 Modulated DSC® Basics; Optimization of MDSC® Experimental Conditions; T.A. Instruments: New Castle, DE, USA, 2005; p. 10. [Google Scholar]
- Thomas, L.C. Modulated DSC® Paper #5 Measurement of Glass Transitions and Enthalpic Recovery; white paper 5; TA Instruments: New Castle, DE, USA, 2005; Available online: http://www.tainstruments.com/pdf/literature/TP_010_MDSC_num_5_Measurement_of_Glass_Transition_and_Enthalpic_Recovery.pdf (accessed on 21 August 2025).
- Bhosle, S.; Gunasekera, K.; Boolchand, P.; Micoulaut, M. Melt Homogenization and Self-Organization in Chalcogenides-Part II. Int. J. Appl. Glass Sci. 2012, 3, 205–220. [Google Scholar] [CrossRef]
- Bhosle, S.V. Direct Evidence for Abrupt Rigidity and Stress Transitions in Dry and Homogeneous Bulk GexSe100-x Glasses. Master’s Thesis, University of Cincinnati, Cincinnati, OH, USA, 2011. Available online: https://etd.ohiolink.edu/acprod/odb_etd/etd/r/1501/10?clear=10&p10_accession_num=ucin1307106143 (accessed on 23 June 2021).
- Gunasekara, K. Fragility, Melt/Glass Homogenization, Self-Organization in Chalcogenide Alloy Systems. Ph.D. Thesis, University of Cincinnati, Cincinnati, OH, USA, 2013. Available online: https://etd.ohiolink.edu/acprod/odb_etd/etd/r/1501/10?clear=10&p10_accession_num=ucin1382372615 (accessed on 23 June 2021).
- Barré, J.; Bishop, A.R.; Lookman, T.; Saxena, A. Adaptability and “Intermediate Phase” in Randomly Connected Networks. Phys. Rev. Lett. 2005, 94, 208701. [Google Scholar] [CrossRef]
- Mousseau, N.; Drabold, D.A. Numerical studies of the vibrational isocoordinate rule in chalcogenide glasses. Eur. Phys. J. B-Condens. Matter Complex Syst. 2000, 17, 667–671. [Google Scholar] [CrossRef]
- Chubynsky, M.V.; Brière, M.-A.; Mousseau, N. Self-organization with equilibration: A model for the intermediate phase in rigidity percolation. Phys. Rev. E 2006, 74, 016116. [Google Scholar] [CrossRef]
- Yan, L. Entropy favors heterogeneous structures of networks near the rigidity threshold. Nat. Commun. 2018, 9, 1359. [Google Scholar] [CrossRef]
- Kirchner, K.A.; Mauro, J.C. Statistical Mechanical Model of the Self-Organized Intermediate Phase in Glass-Forming Systems With Adaptable Network Topologies. Front. Mater. 2019, 6, 11. [Google Scholar] [CrossRef]
- Kirchner, K.A.; Bødker, M.S.; Smedskjaer, M.M.; Kim, S.H.; Mauro, J.C. Statistical Mechanical Model of Topological Fluctuations and the Intermediate Phase in Binary Phosphate Glasses. J. Phys. Chem. B 2019, 123, 7640–7648. [Google Scholar] [CrossRef] [PubMed]
- Nordell, B.J.; Nguyen, T.D.; Caruso, A.N.; Lanford, W.A.; Henry, P.; Li, H.; Ross, L.L.; King, S.W.; Paquette, M.M. Topological Constraint Theory Analysis of Rigidity Transition in Highly Coordinate Amorphous Hydrogenated Boron Carbide. Front. Mater. 2019, 6, 264. [Google Scholar] [CrossRef]
- Toledo-Marín, J.Q.; Yan, L. Competition Between Entropy and Energy in Network Glass: The Hidden Connection Between Intermediate Phase and Liquid-Liquid Transition. Front. Mater. 2019, 6, 196. [Google Scholar] [CrossRef]
- Brière, M.-A.; Chubynsky, M.V.; Mousseau, N. Self-organized criticality in the intermediate phase of rigidity percolation. Phys. Rev. E 2007, 75, 056108. [Google Scholar] [CrossRef]
- Jacobs, D.J.; Thorpe, M.F. Generic Rigidity Percolation: The Pebble Game. Phys. Rev. Lett. 1995, 75, 4051–4054. [Google Scholar] [CrossRef] [PubMed]
- Moukarzel, C.F. Two rigidity-percolation transitions on binary Bethe networks and the intermediate phase in glass. Phys. Rev. E 2013, 88, 062121. [Google Scholar] [CrossRef]
- Yildirim, C.; Raty, J.-Y.; Micoulaut, M. Revealing the role of molecular rigidity on the fragility evolution of glass-forming liquids. Nat. Commun. 2016, 7, 11086. [Google Scholar] [CrossRef]
- Mohanty, C. Direct Evidence for Topological Phases in Sodium Phosphate Glasses from Raman Scattering, Infrared Reflectance and Modulated DSC. Master’s Thesis, University of Cincinnati, Cincinnati, OH, USA, 2018, (unpublished). [Google Scholar]
- Mauro, J.C.; Yue, Y.; Ellison, A.J.; Gupta, P.K.; Allan, D.C. Viscosity of glass-forming liquids. Proc. Natl. Acad. Sci. USA 2009, 106, 19780–19784. [Google Scholar] [CrossRef]
- Williams, M.L.; Landel, R.F.; Ferry, J.D. The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids. J. Am. Chem. Soc. 1955, 77, 3701–3707. [Google Scholar] [CrossRef]
- Novikov, V.N.; Sokolov, A.P. Poisson’s ratio and the fragility of glass-forming liquids. Nature 2004, 431, 7011. [Google Scholar] [CrossRef] [PubMed]
- Ryu, C.W.; Egami, T. Origin of liquid fragility. Phys. Rev. E 2020, 102, 042615. [Google Scholar] [CrossRef] [PubMed]
- Debenedetti, P.G.; Stillinger, F.H. Supercooled liquids and the glass transition. Nature 2001, 410, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Bendert, J.C.; Gangopadhyay, A.K.; Mauro, N.A.; Kelton, K.F. Volume Expansion Measurements in Metallic Liquids and Their Relation to Fragility and Glass Forming Ability: An Energy Landscape Interpretation. Phys. Rev. Lett. 2012, 109, 185901. [Google Scholar] [CrossRef]
- Boolchand, P.; Dash, S.; Welton, A. Understanding the molecular origin of aging in the three topological phases of network glasses. Philos. Mag. 2024, 104, 977–1010. [Google Scholar] [CrossRef]
- Senapati, U.; Varshneya, A.K. Viscosity of chalcogenide glass-forming liquids: An anomaly in the ‘strong’ and ‘fragile’ classification. J. Non-Cryst. Solids 1996, 197, 210–218. [Google Scholar] [CrossRef]
- Böhmer, R.; Angell, C.A. Correlations of the nonexponentiality and state dependence of mechanical relaxations with bond connectivity in Ge-As-Se supercooled liquids. Phys. Rev. B 1992, 45, 10091–10094. [Google Scholar] [CrossRef]
- Tatsumisago, M.; Halfpap, B.L.; Green, J.L.; Lindsay, S.M.; Angell, C.A. Fragility of Ge-As-Se glass-forming liquids in relation to rigidity percolation, and the Kauzmann paradox. Phys. Rev. Lett. 1990, 64, 1549–1552. [Google Scholar] [CrossRef]
- Yang, G.; Gueguen, Y.; Sangleboeuf, J.-C.; Rouxel, T.; Boussard-Plédel, C.; Troles, J.; Lucas, P.; Bureau, B. Physical properties of the GexSe1−x glasses in the 0. J. Non-Cryst. Solids 2013, 377, 54–59. [Google Scholar] [CrossRef]
- Zhao, H.Y.; Koh, Y.P.; Pyda, M.; Sen, S.; Simon, S.L. The kinetics of the glass transition and physical aging in germanium selenide glasses. J. Non-Cryst. Solids 2013, 368, 63–70. [Google Scholar] [CrossRef]
- Zeidler, A.; Salmon, P.S.; Whittaker, D.A.J.; Pizzey, K.J.; Hannon, A.C. Topological Ordering and Viscosity in the Glass-Forming Ge–Se System: The Search for a Structural or Dynamical Signature of the Intermediate Phase. Front. Mater. 2017, 4, 32. [Google Scholar] [CrossRef]
- Thorpe, M.F. Rigidity percolation in glassy structures. J. Non-Cryst. Solids 1985, 76, 109–116. [Google Scholar] [CrossRef]
- Feng, X. Physical nature of stiffness transition in glassy networks. Master’s Thesis, University of Cincinnati, Cincinnati, OH, USA, 1997. [Google Scholar]
- Murase, K.; Fukunaga, T. Optical Effects in Amorphous Semiconductors; American Institute of Physics: New York, NY, USA, 1984; p. 120. [Google Scholar]
- Murase, K.; Fukunaga, T. Percolation Transition and Accumulation of Strain in Chalcogenide Glasses. MRS Online Proc. Libr. OPL 1985, 61, 101. [Google Scholar] [CrossRef]
- Wang, F. Self-Organization and Stress in Network Glasses. Ph.D. Thesis, University of Cincinnati, Cincinnati, OH, USA, 2005. Available online: https://etd.ohiolink.edu/acprod/odb_etd/etd/r/1501/10?clear=10&p10_accession_num=ucin1105424948 (accessed on 26 August 2025).
- Zhu, E.; Liu, Y.; Sun, X.; Yin, G.; Jiao, Q.; Dai, S.; Lin, C. Correlation between thermo-mechanical properties and network structure in GexS100–x chalcogenide glasses. J. Non-Cryst. Solids X 2019, 1, 100015. [Google Scholar] [CrossRef]
- Kawamoto, Y.; Tsuchihashi, S. Properties and Structure of Glasses in the System Ge-S. J. Am. Ceram. Soc. 1971, 54, 131–135. [Google Scholar] [CrossRef]
- Kawamoto, Y.; Tsuchihashi, S. Thermal Analysis of Ge-S Glasses. J. Am. Ceram. Soc. 1971, 54, 526–527. [Google Scholar] [CrossRef]
- Hrubý, A. Glass-forming tendency in the GeSx system. Czechoslov. J. Phys. B 1973, 23, 1263–1272. [Google Scholar] [CrossRef]
- Bychkov, E.; Miloshova, M.; Price, D.L.; Benmore, C.J.; Lorriaux, A. Short, intermediate and mesoscopic range order in sulfur-rich binary glasses. J. Non-Cryst. Solids 2006, 352, 63–70. [Google Scholar] [CrossRef]
- Saffarini, G. On topological transitions and chemical ordering in network glasses of the Ge-Ga-S system. Solid State Commun. 1994, 91, 577–580. [Google Scholar] [CrossRef]
- Chakraborty, S. Topological Origin of Glass Formation, Rigidity and Stress Transitions, Conductivity and Fragility in Specially Homogeneous Heavy Metal Oxide and Chalcogenide Systems. Ph.D. Thesis, University of Cincinnati, Cincinnati, OH, USA, 2014. Available online: https://etd.ohiolink.edu/acprod/odb_etd/etd/r/1501/10?clear=10&p10_accession_num=ucin1393237827 (accessed on 26 August 2025).
- Adam, G.; Gibbs, J.H. On the Temperature Dependence of Cooperative Relaxation Properties in Glass-Forming Liquids. J. Chem. Phys. 1965, 43, 139–146. [Google Scholar] [CrossRef]
- Chakravarty, S.; Chbeir, R.; Chen, P.; Micoulaut, M.; Boolchand, P. Correlating Melt Dynamics and Configurational Entropy Change With Topological Phases of AsxS100-xGlasses and the Crucial Role of Melt/Glass Homogenization. Front. Mater. 2019, 6, 166. [Google Scholar] [CrossRef]
- Chakravarty, S. Correlating Melt Dynamics and Configurational Entropy Change with Topological Phases of AsxS100-x Glasses and the Crucial Role of Melt/Glass Homogenization. Ph.D. Thesis, University of Cincinnati, Cincinnati, OH, USA, 2021. Available online: https://etd.ohiolink.edu/acprod/odb_etd/etd/r/1501/10?clear=10&p10_accession_num=ucin1623241710778164 (accessed on 18 August 2025).
- Welton, A.; Chbeir, R.; McDonald, M.; Burger, M.; Almutairi, B.S.; Chakravarty, S.; Boolchand, P. Unusual Role of P–P Bonds on Melt Dynamics and Topological Phases of the Equimolar GexPxSe100−2x Glass System. J. Phys. Chem. C 2020, 124, 25087–25106. [Google Scholar] [CrossRef]
- Chbeir, R.; Bauchy, M.; Micoulaut, M.; Boolchand, P. Evidence for a Correlation of Melt Fragility Index With Topological Phases of Multicomponent Glasses. Front. Mater. 2019, 6, 173. [Google Scholar] [CrossRef]
- Chbeir, R. Correlating Melt Dynamics with Topological Phases of Homogeneous Chalcogenide- and Modified Oxide- Glasses Using Raman Scattering, Infra-Red Spectroscopy, Modulated-Differential Scanning Calorimetry and Volumetric Experiments. Ph.D. Thesis, University of Cincinnati, Cincinnati, OH, USA, 2019. Available online: https://etd.ohiolink.edu/acprod/odb_etd/etd/r/1501/10?clear=10&p10_accession_num=ucin1573224465185235 (accessed on 18 August 2025).
- Almutairi, B.S. Correlating Melt Dynamics with Glass Topological Phases in Especially Homogenized Equimolar GexAsxS100-2x Glasses using Raman Scattering, Modulated- Differential Scanning Calorimetry and Volumetric Experiments. Ph.D. Thesis, University of Cincinnati, Cincinnati, OH, USA, 2020. Available online: https://etd.ohiolink.edu/acprod/odb_etd/etd/r/1501/10?clear=10&p10_accession_num=ucin1593272974284834 (accessed on 18 August 2025).
- Burger, M.; Welton, A.; McDonald, M.; Chbeir, R.; Chakravarty, S.; Almutairi, B.S.; Mamedov, S.; Boolchand, P. Evidence for 3-D network of P-centered pyramidal P(Se1/2)3 and quasi-tetrahedral SeP(Se1/2)3 local structures and their 3-membered ring super structure counterparts decoupled from quasi 1D- ethylene-like P2Se2+x (x = 2,1,0) chains in PxSe100−x glasses. J. Alloys Compd. 2022, 895, 162645. [Google Scholar] [CrossRef]
- Burger, M.S. Evidence for the 3-D network of P-centered Pyramidal P(Se1/2)3 and Quasi-tetrahedral Se=P(Se1/2)3 Local Structures and their 3-membered Ring Counterparts Decoupled from the Quasi-1-D Ethylene-like P2Se2+x (x = 2,1,0) Chains in Bulk PxSe100-x Glasses. Master’s Thesis, University of Cincinnati, Cincinnati, OH, USA, 2021. Available online: https://etd.ohiolink.edu/acprod/odb_etd/etd/r/1501/10?clear=10&p10_accession_num=ucin1627664642854937 (accessed on 18 August 2025).
- Vignarooban, K.; Skipper, C.; Welton, A.; Boolchand, P. Linking the ring-morphology of (Li2O)x(B2O3)100-x and (Na2O)x(B2O3)100-x borate glasses with topological phases and melt dynamics. J. Non-Cryst. Solids 2025, 654, 123450. [Google Scholar] [CrossRef]
- Novita, D.I. Evidence for Intermediate Phase in Solid Electrolyte Glasses. Ph.D. Thesis, University of Cincinnati, Cincinnati, OH, USA, 2009. Available online: https://etd.ohiolink.edu/acprod/odb_etd/etd/r/1501/10?clear=10&p10_accession_num=ucin1234751813 (accessed on 29 February 2020).
- Novita, D.I.; Boolchand, P.; Malki, M.; Micoulaut, M. Fast-Ion Conduction and Flexibility of Glassy Networks. Phys. Rev. Lett. 2007, 98, 195501. [Google Scholar] [CrossRef] [PubMed]
- What Happened to the Original iPhone’s Plastic Screen? The Verge. Available online: https://www.theverge.com/2019/7/9/20687299/plastic-iphone-gorilla-glass-origin-story-steve-jobs (accessed on 3 January 2025).
- Gorilla Glass. Wikipedia. 9 December 2024. Available online: https://en.wikipedia.org/w/index.php?title=Gorilla_Glass&oldid=1262089054 (accessed on 3 January 2025).
- Mauro, J.C.; Ellison, A.J.; Allan, D.C.; Smedskjaer, M.M. Topological Model for the Viscosity of Multicomponent Glass-Forming Liquids. Int. J. Appl. Glass Sci. 2013, 4, 408–413. [Google Scholar] [CrossRef]
- Cristallo. Wikipedia. 12 November 2024. Available online: https://en.wikipedia.org/w/index.php?title=Cristallo&oldid=1257012919 (accessed on 11 February 2025).
- Chbeir, R.; Welton, A.; Burger, M.; Chakravarty, S.; Dash, S.; Bhosle, S.; Gunasekera, K.; Almutairi, B.S.; Goodman, B.; Micoulaut, M.; et al. Glass transition, topology, and elastic models of Se-based glasses. J. Am. Ceram. Soc. 2023, 106, jace.19003. [Google Scholar] [CrossRef]
- Vaills, Y.; Qu, T.; Micoulaut, M.; Chaimbault, F.; Boolchand, P. Direct evidence of rigidity loss and self-organization in silicate glasses. J. Phys. Condens. Matter 2005, 17, 4889–4896. [Google Scholar] [CrossRef]
- Vignarooban, K. Boson Mode, Dimensional Crossover, Medium Range Structure and Intermediate Phase in Lithium-and Sodium-Borate Glasses. Ph.D. Thesis, University of Cincinnati, Cincinnati, OH, USA, 2012. [Google Scholar]
- Skipper, C. Melt Dynamics Correlated with Glass Topological Phases in dry Li- and Na- Borates. Master’s Thesis, University of Cincinnati, Cincinnati, OH, USA, 2019. Available online: https://etd.ohiolink.edu/acprod/odb_etd/etd/r/1501/10?clear=10&p10_accession_num=ucin1562672753116725 (accessed on 24 February 2020).
- Laurent, O.; Mantisi, B.; Micoulaut, M. Structure and Topology of Soda-Lime Silicate Glasses: Implications for Window Glass. J. Phys. Chem. B 2014, 118, 12750–12762. [Google Scholar] [CrossRef] [PubMed]
- Kerner, R.; Phillips, J.C. Quantitative principles of silicate glass chemistry. Solid State Commun. 2000, 117, 47–51. [Google Scholar] [CrossRef]
- Xiang, Y.; Du, J. Effect of Strontium Substitution on the Structure of 45S5 Bioglasses. Chem. Mater. 2011, 23, 2703–2717. [Google Scholar] [CrossRef]
- Micoulaut, M. Relaxation and physical aging in network glasses: A review. Rep. Prog. Phys. 2016, 79, 066504. [Google Scholar] [CrossRef] [PubMed]
- Zachariasen, W.H. The Atomic Arrangement in Glass. J. Am. Chem. Soc. 1932, 54, 3841–3851. [Google Scholar] [CrossRef]
- Thorpe, M.F.; Jacobs, D.J.; Chubynsky, M.V.; Phillips, J.C. Self-organization in network glasses. J. Non-Cryst. Solids 2000, 266–269, 859–866. [Google Scholar] [CrossRef]
- Hendrickson, W.A. Synchrotron crystallography. Trends Biochem. Sci. 2000, 25, 637–643. [Google Scholar] [CrossRef]
- Dill, K.A.; Ozkan, S.B.; Shell, M.S.; Weikl, T.R. The Protein Folding Problem. Annu. Rev. Biophys. 2008, 37, 289–316. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zeng, X.; Zhao, Y.; Chen, R. AlphaFold2 and its applications in the fields of biology and medicine. Signal Transduct. Target. Ther. 2023, 8, 115. [Google Scholar] [CrossRef]
- Rader, A.J.; Hespenheide, B.M.; Kuhn, L.A.; Thorpe, M.F. Protein unfolding: Rigidity lost. Proc. Natl. Acad. Sci. USA 2002, 99, 3540–3545. [Google Scholar] [CrossRef]
- Phillips, J.C. Fractals and self-organized criticality in proteins. Phys. A Stat. Mech. Its Appl. 2014, 415, 440–448. [Google Scholar] [CrossRef]
- Moret, M.A.; Phillips, J.C. Why and how did the COVID pandemic end abruptly? Eur. Phys. J. B 2024, 97, 123. [Google Scholar] [CrossRef]
- Liu, J.; Yu, Y.; Jian, F.; Yang, S.; Song, W.; Wang, P.; Yu, L.; Shao, F.; Cao, Y. Enhanced immune evasion of SARS-CoV-2 variants KP.3.1.1 and XEC through N-terminal domain mutations. Lancet Infect. Dis. 2025, 25, e6–e7. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boolchand, P.; Phillips, J.C.; Micoulaut, M.; Welton, A. Theoretical Aspects of Topology and Successful Applications to Glasses and Proteins. Int. J. Topol. 2025, 2, 14. https://doi.org/10.3390/ijt2030014
Boolchand P, Phillips JC, Micoulaut M, Welton A. Theoretical Aspects of Topology and Successful Applications to Glasses and Proteins. International Journal of Topology. 2025; 2(3):14. https://doi.org/10.3390/ijt2030014
Chicago/Turabian StyleBoolchand, Punit, James Charles Phillips, Matthieu Micoulaut, and Aaron Welton. 2025. "Theoretical Aspects of Topology and Successful Applications to Glasses and Proteins" International Journal of Topology 2, no. 3: 14. https://doi.org/10.3390/ijt2030014
APA StyleBoolchand, P., Phillips, J. C., Micoulaut, M., & Welton, A. (2025). Theoretical Aspects of Topology and Successful Applications to Glasses and Proteins. International Journal of Topology, 2(3), 14. https://doi.org/10.3390/ijt2030014