Through the Intestines to the Head? That Is, How the Gastrointestinal Microbiota Affects the Behavior of Companion Animals
Abstract
:1. Microbiome—A Brief Characteristic
2. The Role of the Microbiome
3. Microbiome and the Central Nervous System
3.1. Amygdala
3.2. Prefrontal Cortex
3.3. Hippocampus
3.4. The Olfactory System
4. Microbiome Alteration
4.1. Drugs
4.2. Diet
4.3. Prebiotics, Probiotics
4.4. Obesity
4.5. Stress
5. Microbiome’s Correlation with Behavior
- chronic frustration, social anxiety, decreased food intake, inhibition of exploratory and social behaviors, learned helplessness, and stereotypies [81];
- other effects on dogs: deleterious psychological effects of raised levels of glucocorticoids, nervousness and/or restlessness, increased startle responses, food guarding, increased avoidance responses including irritable aggression and increased barking, tail chasing, flank sucking in Dobermans, tail chasing and spinning in German shepherds and bull terriers, and aggressive behavior toward family members or toward dogs living in the same household;
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Suchodolski, J.S. Analysis of the gut microbiome in dogs and cats. Vet. Clin. Pathol. 2021, 50, 6–17. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, A.; Harty, S.; Johnson, K.V.A.; Moeller, A.H.; Carmody, R.N.; Lehto, S.M.; Erdman, S.E.; Dunbar, R.I.; Burnet, P.W. The role of the microbiome in the neurobiology of social behaviour. Biol. Rev. 2020, 95, 1131–1160. [Google Scholar] [CrossRef] [PubMed]
- Pilla, R.; Suchodolski, J.S. The Role of the Canine Gut Microbiome and Metabolome in Health and Gastrointestinal Disease. Front. Vet. Sci. 2020, 7, 582809. [Google Scholar] [CrossRef]
- Zakošek Pipan, M.; Kajdič, L.; Kalin, A.; Plavec, T.; Zdovc, I. Do newborn puppies have their own microbiota at birth? Influence of type of birth on newborn puppy microbiota. Theriogenology 2020, 152, 18–28. [Google Scholar] [CrossRef]
- Ferretti, P.; Pasolli, E.; Tett, A.; Asnicar, F.; Gorfer, V.; Fedi, S.; Armanini, F.; Truong, D.T.; Manara, S.; Zolfo, M.; et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 2018, 24, 133–145. [Google Scholar] [CrossRef] [PubMed]
- Hand, D.; Wallis, C.; Colyer, A.; Penn, C.W. Pyrosequencing the canine fecal microbiota: Breadth and depth of biodiversity. PLoS ONE 2013, 8, e53115. [Google Scholar] [CrossRef]
- Garcia-Mazcorro, J.F.; Dowd, S.E.; Poulsen, J.; Steiner, J.M.; Suchodolski, J.S. Abundance and short-term temporal variability of fecal microbiota in healthy dogs. MicrobiologyOpen 2012, 1, 340–347. [Google Scholar] [CrossRef]
- Tuniyazi, M.; Hu, X.; Fu, Y.; Zhang, N. Canine Fecal Microbiota Transplantation: Current Application and Possible Mechanisms. Vet. Sci. 2022, 9, 396. [Google Scholar] [CrossRef]
- Homer, B.; Judd, J.; Dehcheshmeh, M.M.; Ebrahimie, E.; Trott, D.J. Gut Microbiota and Behavioural Issues in Production, Performance, and Companion Animals: A Systematic Review. Animals 2023, 13, 1458. [Google Scholar] [CrossRef]
- Masuoka, H.; Shimada, K.; Kiyosue-Yasuda, T.; Kiyosue, M.; Oishi, Y.; Kimura, S.; Ohashi, Y.; Fujisawa, T.; Hotta, K.; Yamada, A.; et al. Transition of the intestinal microbiota of cats with age. PLoS ONE 2017, 12, e0178467. [Google Scholar] [CrossRef]
- Barry, K.A.; Middelbos, I.S.; Vester Boler, B.M.; Dowd, S.E.; Suchodolski, J.S.; Henrissat, B.; Coutinho, P.M.; White, B.A.; Fahey, G.C., Jr.; Swanson, K.S. Effects of dietary fiber on the feline gastrointestinal metagenome. J. Proteome Res. 2012, 11, 2381–2391. [Google Scholar] [CrossRef] [PubMed]
- Ganz, H.H.; Jospin, G.; Rojas, C.A.; Martin, A.L.; Dahlhausen, K.; Kingsbury, D.D.; Osborne, C.X.; Entrolezo, Z.; Redner, S.; Ramirez, B.; et al. The Kitty Microbiome Project: Defining the Healthy Fecal “Core Microbiome” in Pet Domestic Cats. Vet. Sci. 2022, 9, 635. [Google Scholar] [CrossRef] [PubMed]
- Minamoto, Y.; Hooda, S.; Swanson, K.S.; Suchodolski, J.S. Feline gastrointestinal microbiota. Anim. Health Res. Rev. 2012, 13, 64–77. [Google Scholar] [CrossRef] [PubMed]
- Handl, S.; German, A.J.; Holden, S.L.; Dowd, S.E.; Steiner, J.M.; Heilmann, R.M.; Grant, R.W.; Swanson, K.S.; Suchodolski, J.S. Faecal microbiota in lean and obese dogs. FEMS Microbiol. Ecol. 2013, 84, 332–343. [Google Scholar] [CrossRef]
- Lee, D.; Goh, T.W.; Kang, M.G.; Choi, H.J.; Yeo, S.Y.; Yang, J.; Huh, C.S.; Kim, Y.Y.; Kim, Y. Perspectives and advances in probiotics and the gut microbiome in companion animals. J. Anim. Sci. Technol. 2022, 64, 197–217. [Google Scholar] [CrossRef]
- Hornef, M. Pathogens, Commensal Symbionts, and Pathobionts: Discovery and Functional Effects on the Host. ILAR J. 2015, 56, 159–162. [Google Scholar] [CrossRef]
- Parke, J.L.; Gurian-Sherman, D. Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. Annu. Rev. Phytopathol. 2001, 39, 225–258. [Google Scholar] [CrossRef]
- Zhang, Y.; Si, X.; Yang, L.; Wang, H.; Sun, Y.; Liu, N. Association between intestinal microbiota and inflammatory bowel disease. Anim. Models Exp. Med. 2022, 5, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Mondo, E.; Marliani, G.; Accorsi, P.A.; Cocchi, M.; Di Leone, A. Role of gut microbiota in dog and cat’s health and diseases. Open Vet. J. 2019, 9, 253–258. [Google Scholar] [CrossRef]
- Rhimi, S.; Kriaa, A.; Mariaule, V.; Saidi, A.; Drut, A.; Jablaoui, A.; Akermi, N.; Maguin, E.; Hernandez, J.; Rhimi, M. The Nexus of Diet, Gut Microbiota and Inflammatory Bowel Diseases in Dogs. Metabolites 2022, 12, 1176. [Google Scholar] [CrossRef]
- O’Mahony, S.M.; Clarke, G.; Borre, Y.E.; Dinan, T.G.; Cryan, J.F. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res. 2015, 277, 32–48. [Google Scholar] [CrossRef] [PubMed]
- Gliński, Z.; Kostro, K. Mikrobiom—Charakterystyka i znaczenie. Życie Weterynaryjne 2015, 90, 7. [Google Scholar]
- Ambrosini, Y.M.; Borcherding, D.; Kanthasamy, A.; Kim, H.J.; Willette, A.A.; Jergens, A.; Allenspach, K.; Mochel, J.P. The Gut-Brain Axis in Neurodegenerative Diseases and Relevance of the Canine Model: A Review. Front. Aging Neurosci. 2019, 11, 156. [Google Scholar] [CrossRef] [PubMed]
- Wise, R.A. Dopamine, learning and motivation. Nat. Rev. Neurosci. 2004, 5, 483–494. [Google Scholar] [CrossRef]
- Baron, A.B.; Søvik, E.; Cornish, J.L. The Roles of Dopamine and Related Compounds in Reward-Seeking Behavior Across Animal Phyla. Front. Behav. Neurosci. 2010, 4, 163. [Google Scholar] [CrossRef] [PubMed]
- Kidskin-Conhaim, L. Physiological and morphological changes in developing peripheral nerves of rat embryos. Brain Res. 1988, 470, 15–28. [Google Scholar] [CrossRef]
- Kania, B.F. The role of gamma-aminobutyric acid (GABA) in animals aggression. Życie Weterynaryjne 2017, 92, 277–279. [Google Scholar]
- Halverson, T.; Alagiakrishnan, K. Gut microbes in neurocognitive and mental health disorders. Ann. Med. 2020, 52, 423–443. [Google Scholar] [CrossRef]
- Crowell-Davis, S.L.; Poggiagliolmi, S. Understanding behavior: Serotonin syndrome. Compend. Contin. Educ. Pract. Vet. 2008, 30, 490–493. [Google Scholar]
- Stanley, A.T.; Post, M.R.; Lacefield, C.; Sulzer, D.; Miniaci, M.C. Norepinephrine release in the cerebellum contributes to aversive learning. Nat. Commun. 2023, 14, 4852. [Google Scholar] [CrossRef]
- Powledge, T.L. Acetylcholine and Its Role in Synaptic Plasticity, Learning, and Memory. Compr. Physiol. 2012, 2, 2553–2580. [Google Scholar] [CrossRef]
- Makris, A.P.; Karianaki, M.; Tsamis, K.I.; Paschou, S.A. The role of the gut-brain axis in depression: Endocrine, neural, and immune pathways. Hormones 2021, 20, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Coelho, L.P.; Kultima, J.R.; Costea, P.I.; Fournier, C.; Pan, Y.; Czarnecki-Maulden, G.; Hayward, M.R.; Forslund, S.K.; Schmidt, T.S.B.; Descombes, P.; et al. Similarity of the dog and human gut microbiomes in gene content and response to diet. Microbiome 2018, 6, 72. [Google Scholar] [CrossRef] [PubMed]
- Phelps, E.A.; LeDoux, J.E. Contributions of the amygdala to emotion processing: From animal models to human behavior. Neuron 2005, 48, 175–187. [Google Scholar] [CrossRef] [PubMed]
- Luczynski, P.; Whelan, S.O.; O’Sullivan, C.; Clarke, G.; Shanahan, F.; Dinan, T.G.; Cryan, J.F. Adult microbiota-deficient mice have distinct dendritic morphological changes: Differential effects in the amygdala and hippocampus. Eur. J. Neurosci. 2016, 44, 2783–2795. [Google Scholar] [CrossRef]
- Herba, C.M.; Glover, V. The Developmental Effects of Prenatal Maternal Stress: Evolutionary Explanations. In Prenatal Stress and Child Development; Wazana, A., Székely, E., Oberlander, T.F., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 23–52. [Google Scholar]
- Mohapatra, A.N.; Wagner, S. The role of the prefrontal cortex in social interactions of animal models and the implications for autism spectrum disorder. Front. Psychiatry 2023, 14, 1205199. [Google Scholar] [CrossRef]
- Hoban, A.E.; Stilling, R.M.; Ryan, F.J.; Shanahan, F.; Dinan, T.G.; Claesson, M.J.; Clarke, G.; Cryan, J.F. Regulation of prefrontal cortex myelination by the microbiota. Transl. Psychiatry 2016, 6, 774. [Google Scholar] [CrossRef]
- Bravo, J.A.; Forsythe, P.; Chew, M.V.; Wscaravage, E.; Savignac, H.M.; Dinan, T.G.; Bienenstock, J.; Cryan, J.F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA 2011, 108, 16050–16055. [Google Scholar] [CrossRef]
- Johnson, A.; Varberg, Z.; Benhardys, J.; Maahs, A.; Schrater, P. The hippocampus and exploration: Dynamically evolving behavior and neural representations. Front. Hum. Neurosci. 2012, 6, 216. [Google Scholar] [CrossRef]
- Ogbonnaya, E.S.; Clarke, G.; Shanahan, F.; Dinan, T.G.; Cryan, J.F.; O’Leary, O.F. Adult hippocampal neurogenesis is regulated by the microbiome. Biol. Psychiatry 2015, 78, e7–e9. [Google Scholar] [CrossRef]
- Kubinyi, E.; Bel Rhali, S.; Sándor, S.; Szabó, A.; Felföldi, T. Gut microbiome composition is associated with age and memory performance in pet dogs. Animals 2020, 10, 1488. [Google Scholar] [CrossRef] [PubMed]
- Zonis, S.; Pechnick, R.N.; Ljubimov, V.A.; Mahgerefteh, M.; Wawrosky, K.; Michelsen, K.S.; Chesnokova, V. Chronic intestinal inflammation alters hippocampal neurogenesis. J. Neuroinflamm. 2015, 12, 65. [Google Scholar] [CrossRef] [PubMed]
- Alvites, R.; Caine, A.; Cherubini, G.B.; Prada, J.; Varejao, A.S.P.; Mauricio, A.C. The olfactory bulb in companion animals—Anatomy, physiology, and clinical importance. Brain Sci. 2023, 13, 713. [Google Scholar] [CrossRef] [PubMed]
- Archie, E.A.; Tung, J. Social behavior and the microbiome. Curr. Opin. Behav. Sci. 2015, 6, 28–34. [Google Scholar] [CrossRef]
- Bienenstock, J.; Kunze, W.A.; Fprsythe, P. Disruptive physiology: Olfaction and the microbiome-gut-brain axis. Biol. Rev. Camb. Philos. Soc. 2018, 93 (Suppl. 1), 390–403. [Google Scholar] [CrossRef]
- Rinanda, T.; Riani, C.; Sasongko, L. Correlation between gut microbiota composition, enteric infections and linear growth impairment: A case–control study in childhood stunting in Pidie, Aceh, Indonesia. Gut Pathog. 2023, 15, 54. [Google Scholar] [CrossRef]
- Schiano Moriello, A.; Di Marzo, V.; Petrosino, S. Mutual links between the endocannabinoidome and the gut microbiome, with special reference to companion animals: A nutritional viewpoint. Animals 2022, 12, 348. [Google Scholar] [CrossRef] [PubMed]
- AlShawaqfeh, M.K.; Wajid, B.; Minamoto, Y.; Markel, M.; Lidbury, J.A.; Steiner, J.M.; Serpedin, E.; Suchodolski, J.S. A dysbiosis index to assess microbial changes in fecal samples of dogs with chronic inflammatory enteropathy. FEMS Microbiol. Ecol. 2017, 93. [Google Scholar] [CrossRef]
- Levy, M.; Kolodziejczyk, A.A.; Thais, C.A.; Elinav, E. Dysbiosis and the immune system. Nat. Rev. Immunol. 2017, 17, 219–232. [Google Scholar] [CrossRef]
- Stavroulaki, E.M.; Suchodolski, J.S.; Xenoulis, P.G. Effects of antimicrobials on the gastrointestinal microbiota of dogs and cats. Vet. J. 2023, 291, 105929. [Google Scholar] [CrossRef]
- Watanangura, A.; Meller, S.; Suchodolski, J.S.; Pilla, R.; Khattab, M.R.; Loderstedt, S.; Becker, L.F.; Bathen-Nöthen, A.; Mazzuoli-Weber, G.; Volk, H.A. The effect of phenobarbital treatment on behavioral comorbidities and on the composition and function of the fecal microbiome in dogs with idiopathic epilepsy. Front. Vet. Sci. 2022, 9, 933905. [Google Scholar] [CrossRef] [PubMed]
- Whitney, E.; Rolfes, S.R. Understanding Nutrition; Cengage Learning: Singapore, 2018. [Google Scholar]
- Kris-Etherton, P.M.; Hecker, K.D.; Bonanome, A.; Coval, S.M.; Binkoski, A.E.; Hilpert, K.F.; Etherton, T.D. Bioactive compounds in foods: Their role in the prevention of cardiovascular disease and cancer. Am. J. Med. 2002, 113, 71–88. [Google Scholar] [CrossRef] [PubMed]
- Wernimont, S.M.; Radosevich, J.; Jackson, M.I.; Ephraim, E.; Badri, D.V.; MacLeay, J.M.; Jewell, D.E.; Suchodolski, J.S. The effects of nutrition on the gastrointestinal microbiome of cats and dogs: Impact on health and disease. Front. Microbiol. 2020, 11, 1266. [Google Scholar] [CrossRef] [PubMed]
- Butowski, C.F.; Moon, C.D.; Thomas, D.G.; Young, W.; Bermingham, E.N. The effects of raw-meat diets on the gastrointestinal microbiota of the cat and dog: A review. N. Z. Vet J. 2022, 70, 1–9. [Google Scholar] [CrossRef]
- Handl, S.; Dowd, S.E.; Garcia-Mazcorro, J.F.; Steiner, J.M.; Suchodolski, J.S. Massive parallel 16S rDNA sequencing highlights influences of age, diet, and environment on canine intestinal microbiome. PLoS ONE 2011, 6, e26659. [Google Scholar] [CrossRef]
- Badri, D.V.; Jackson, M.I.; Jewell, D.E. Dietary Protein and Carbohydrate Levels Affect the Gut Microbiota and Clinical Assessment in Healthy Adult Cats. J. Nutr. 2021, 151, 3637–3650. [Google Scholar] [CrossRef]
- Bermingham, E.N.; Maclean, P.; Thomas, D.G.; Cave, N.J.; Young, W. Key bacterial families (Clostridiaceae, Erysipelotrichaceae and Bacteroidaceae) are related to the digestion of protein and energy in dogs. PeerJ 2017, 5, e3019. [Google Scholar] [CrossRef]
- Schmidt, M.; Unterer, S.; Suchodolski, J.S.; Honneffer, J.B.; Guard, B.C.; Lidbury, J.A.; Steiner, J.M.; Fritz, J.; Kölle, P. The fecal microbiome and metabolome differs between dogs fed Bones and Raw Food (BARF) diets and dogs fed commercial diets. PLoS ONE 2018, 13, e0201279. [Google Scholar] [CrossRef]
- Pan, Y. Enhancing brain functions in senior dogs: A new nutritional approach. Top. Companion Anim. Med. 2011, 16, 10–16. [Google Scholar] [CrossRef]
- Bindels, L.A.; Delzenne, N.M.; Cani, P.D.; Walter, J. Towards a more comprehensive concept for prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 380–388. [Google Scholar] [CrossRef]
- Alexander, C.; Cross, T.L.; Devendran, S.; Neumer, F.; Theis, S.; Ridlon, J.M.; de Godoy, M.R.C.; Swanson, K.S. Effects of prebiotic inulin-type fructans on blood metabolite and hormone concentrations and fecal microbiota and metabolites in overweight dogs. Br. J. Nutr. 2018, 120, 711–720. [Google Scholar] [CrossRef] [PubMed]
- Zentek, J.; Marquart, B.; Pietrzak, T.; Ballevre, O.; Rochat, F. Dietary effects on bifidobacteria and Clostridium perfringens in the canine intestinal tract. J. Anim. Physiol. Anim. Nutr. 2003, 87, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Pinna, C.; Vecchiato, C.G.; Bolduan, C.; Grandi, M.; Stefanelli, C.; Windish, W.; Zaghini, G.; Biagi, G. Influence of dietary protein and fructooligosaccharides on fecal fermentative end-products, fecal bacterial populations, and apparent total tract digestibility in dogs. BMC Vet. Res. 2018, 14, 106. [Google Scholar] [CrossRef]
- Yeh, Y.-M.; Lye, X.Y.; Lin, H.Y.; Yi, W.J. Effects of Lactiplantibacillus plantarum PS128 on alleviating canine aggression and separation anxiety. Appl. Anim. Behav. Sci. 2022, 247, 105569. [Google Scholar] [CrossRef]
- Meinieri, G.; Martello, E.; Atuahene, D.; Miretti, S.; Stefanon, B.; Sandri, M.; Biasato, I.; Corvaglia, M.R.; Ferrocino, I.; Cocolin, L.S. Effects of Saccharomyces boulardii supplementation on nutritional status, fecal parameters, microbiota, and mycobiota in breeding adult dogs. Vet. Sci. 2022, 9, 389. [Google Scholar] [CrossRef]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef] [PubMed]
- German, A.J. The growing problem of obesity in dogs and cats. J. Nutr. 2006, 136, 1940S–1946S. [Google Scholar] [CrossRef]
- Laflamme, D.P. Understanding and managing obesity in dogs and cats. Vet. Clin. N. Am. Small Anim. Pract. 2006, 36, 1283–1295. [Google Scholar] [CrossRef] [PubMed]
- Lazarus, R.S.; Folkman, S. Stress, Appraisal and Coping; Springer: New York, NY, USA, 1984. [Google Scholar]
- Bueno, L.P.; Fioramonti, J. Effects of corticotropin-releasing factor, corticotropin, and cortisol on gastrointestinal motility in dogs. Peptides 1986, 7, 73–77. [Google Scholar] [CrossRef]
- Dreschel, N.A.; Granger, D.A. Methods of collection for salivary cortisol measurement in dogs: Effect on salivary cortisol and its applicability in behavioral research. Physiol. Behav. 2009, 97, 609–614. [Google Scholar] [CrossRef]
- Carlstead, K.; Brown, J.L.; Strawn, W. Behavioral and physiological correlates of stress in laboratory cats. Appl. Anim. Behav. Sci. 1993, 38, 143–158. [Google Scholar] [CrossRef]
- German, A. Obesity in companion animals. Clin. Pract. 2010, 32, 42–50. [Google Scholar] [CrossRef]
- Chandler, M.; Cunningham, S.A.; Lund, E.M.; Khanna, C. Obesity and associated comorbidities in people and companion animals: A One Health perspective. J. Comp. Pathol. 2017, 156, 296–309. [Google Scholar] [CrossRef] [PubMed]
- Laflamme, D.P. Obesity in dogs and cats: What is wrong with being fat? J. Anim. Sci. 2012, 90, 1653–1662. [Google Scholar] [CrossRef]
- Kirchoff, N.S.; Udell, M.A.R.; Sharpton, T.J. The gut microbiome correlates with conspecific aggression in a small population of rescued dogs (Canis familiaris). PeerJ 2019, 7, e6103. [Google Scholar] [CrossRef]
- Kelly, J.R.; Borre, Y.; O’Brien, C.; Patterson, E.; El Aidy, S.; Deane, J.; Kennedy, P.J.; Beers, S.; Scott, K.; Moloney, G.; et al. Transferring the blues: Depression-associated gut microbiota induces neurobehavioral changes in the rat. J. Psychiatr. Res. 2016, 82, 109–118. [Google Scholar] [CrossRef]
- Watanangura, A.; Meller, S.; Farhat, N.; Suchodolski, J.S.; Pilla, R.; Khattab, M.R.; Lopes, B.C.; Bathen-Nöthen, A.; Fischer, A.; Busch-Hahn, K.; et al. Behavioral comorbidities treatment by fecal microbiota transplantation in canine epilepsy: A pilot study of a novel therapeutic approach. Front. Vet. Sci. 2024, 11, 1385469. [Google Scholar] [CrossRef]
- Stella, J.L.; Croney, C.C. Environmental aspects of domestic cat care and management: Implications for cat welfare. Sci. World J. 2016, 2016, 6296315. [Google Scholar] [CrossRef]
- Mills, D.S.; Karagiannis, C.; Zulch, H. Stress—Its effects on health and behavior: A guide for practitioners. Vet. Clin. N. Am. Small Anim. Pract. 2014, 44, 525–541. [Google Scholar] [CrossRef]
- Zhang, L.; Bian, Z.; Liu, Q.; Deng, B. Dealing with stress in cats: What is new about the olfactory strategy? Front. Vet. Sci. 2022, 9, 928943. [Google Scholar] [CrossRef]
Substance | Physiological Function | Behavioral Function | Microbial Origin | Additional Information |
---|---|---|---|---|
Dopamine | Control of the motor functions and coordination, regulation of cardiovascular and renal function [24]. | An important role in the reward system and may also facilitate social bonding [25]. | Secreted in the gut by Bacillus spp. and Serratia spp. [2,9]. | Microbiome can influence central dopaminergic signaling, e.g., by converting levodopa into dopamine, which may lead to reduced central dopamine availability in the brain. Peripheral dopamine cannot cross the blood-brain barrier (BBB) in contrast to its precursor, levodopa [2,25]. |
Gamma-Aminobutyric Acid (Gaba) | By mechanisms of pre- and postsynaptic inhibition suppresses synaptic transmission [26]. | Important inhibitory neurotransmitter that behaviorally has a calming effect [27]. | Manufactured by Lactobacillus spp. and Bifidobacterium spp. [28]. | |
Serotonin | Regulation of the gastrointestinal, excretory, cardiovascular functions [2], affects vasoconstriction, platelet aggregation, uterine contractions, intestinal peristalsis, and bronchoconstriction [29]. | A role in emotion regulation, social behavior and cognition, aggression, sleep, sexual functions [29]. | Produced by Escherichia spp., Enterococcus spp., Candida spp., and Streptococcus spp. [9]. | |
Norepinephrine | Blood pressure regulation, increasing blood glucose levels. | Affects alertness, fear, anger, and stress [30]. | Produced by Escherichia spp., Bacillus spp., and Saccharomyces spp. [28]. | |
Acetylcholine | Regulation of blood pressure, glandular secretion, intestinal peristalsis and cardiac contractions [31]. | Enabling learning and memorizing [9]; plays a role in arousal, attention, and behavioral activity. | Produced by Lactobacillus spp. [9]. | |
Tryptophan | A precursor to serotonin. | Tryptophan and its metabolites can cross the BBB increasing the concentration of serotonin in the central nervous system; indole (tryptophan metabolite) decreases pro-inflammatory responses from astrocytes [32]. | Fabricated by Clostridium spp., Bacteroides spp., Escherichia spp., Burkholderia spp., Streptomyces spp., Pseudomonas spp., and Bacillus spp. [9]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorzelanna, Z.; Miszczak, M. Through the Intestines to the Head? That Is, How the Gastrointestinal Microbiota Affects the Behavior of Companion Animals. Pets 2024, 1, 201-215. https://doi.org/10.3390/pets1030015
Gorzelanna Z, Miszczak M. Through the Intestines to the Head? That Is, How the Gastrointestinal Microbiota Affects the Behavior of Companion Animals. Pets. 2024; 1(3):201-215. https://doi.org/10.3390/pets1030015
Chicago/Turabian StyleGorzelanna, Zofia, and Marta Miszczak. 2024. "Through the Intestines to the Head? That Is, How the Gastrointestinal Microbiota Affects the Behavior of Companion Animals" Pets 1, no. 3: 201-215. https://doi.org/10.3390/pets1030015
APA StyleGorzelanna, Z., & Miszczak, M. (2024). Through the Intestines to the Head? That Is, How the Gastrointestinal Microbiota Affects the Behavior of Companion Animals. Pets, 1(3), 201-215. https://doi.org/10.3390/pets1030015