Gut Health Optimization in Canines and Felines: Exploring the Role of Probiotics and Nutraceuticals
Abstract
:1. Introduction
Microbial Activity | Products | Representative Microbes | Ref. |
---|---|---|---|
Decarboxylation and deamination of amino acids | Ammonia | Clostridium species, Peptostreptococcus species, Peptococcus species | [33] |
Deconjugation and dehydroxylation of bile acids | Secondary bile acids (cholate, deoxycholate) | Clostridium hiranonis, Lactobacillus species | [34] |
Synthesis of vitamins | Vitamin K2, B12, biotin, folate | Enterococcus species, Pseudomonas species, Sphingomonas species, Lactobacillus species | [35] |
Fermentation of carbohydrates | Lactate, propionate, acetate, butyrate | Clostridium cluster XIVa, Prevotella species, Faecalibacterium species, Bifidobacterium species | [36] |
Fermentation of amino acids | Hydrogen, methane, amines, phenols, ammonia, organic acids, hydrogen sulfide | Sulfate-reducing bacteria (SRB), Desulfovibrio species, Clostridium species, Peptostreptococcus species | [37] |
Oxalate degradation | Formate and CO2 | Oxalobacter formigenes | [38] |
Degradation of inulin and starch | Lactate | Bifidobacterium species | [39] |
Metabolism of hydrogen, alcohols, and acetic acid | Methane and CO2 | Methanogenic bacteria | [40] |
Canine and Feline Microbiota
2. Effects of Gut Diseases and Disorders
3. Role of Probiotics on Companion Animal Gut Health
4. Role of Nutraceuticals and Antioxidants in Companion Animal Gut Health
The Challenges Associated with Probiotics and Nutraceuticals Use
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bryce, C.M. Dogs as pets and pests: Global patterns of canine abundance, activity, and health. Integr. Comp. Biol. 2021, 61, 154–165. [Google Scholar] [CrossRef] [PubMed]
- Wernimont, S.M.; Radosevich, J.; Jackson, M.I.; Ephraim, E.; Badri, D.V.; MacLeay, J.M.; Jewell, D.E.; Suchodolski, J.S. The effects of nutrition on the gastrointestinal microbiome of cats and dogs: Impact on health and disease. Front. Microbiol. 2020, 11, 527819. [Google Scholar] [CrossRef] [PubMed]
- Negash, A. Gut Microbiota Ecology Role in Animal Nutrition and Health Performance. J. Clin. Microbiol. Antimicrob. 2022, 6, 1–14. [Google Scholar]
- He, W.; Connolly, E.D.; Wu, G. Characteristics of the digestive tract of dogs and cats. In Nutrition and Metabolism of Dogs and Cats; Springer: Berlin/Heidelberg, Germany, 2024; pp. 15–38. [Google Scholar]
- Leser, T.D.; Mølbak, L. Better living through microbial action: The benefits of the mammalian gastrointestinal microbiota on the host. Environ. Microbiol. 2009, 11, 2194–2206. [Google Scholar] [CrossRef] [PubMed]
- Duarte, A.L.M. Changes in the Feline Gut Microbiota Associated to Toxocara Cati Infections. Master’s Thesis, Universidade de Lisboa, Lisboa, Portugal, 2018. [Google Scholar]
- Ritchie, L.E.; Burke, K.F.; Garcia-Mazcorro, J.F.; Steiner, J.M.; Suchodolski, J.S. Characterization of fecal microbiota in cats using universal 16S rRNA gene and group-specific primers for Lactobacillus and Bifidobacterium spp. Vet. Microbiol. 2010, 144, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Suchodolski, J.S.; Ruaux, C.G.; Steiner, J.r.M.; Fetz, K.; Williams, D.A. Application of molecular fingerprinting for qualitative assessment of small-intestinal bacterial diversity in dogs. J. Clin. Microbiol. 2004, 42, 4702–4708. [Google Scholar] [CrossRef] [PubMed]
- Suchodolski, J.S. Analysis of the gut microbiome in dogs and cats. Vet. Clin. Pathol. 2022, 50, 6–17. [Google Scholar] [CrossRef] [PubMed]
- Larabi, A.B.; Masson, H.L.; Bäumler, A.J. Bile acids as modulators of gut microbiota composition and function. Gut Microbes 2023, 15, 2172671. [Google Scholar] [CrossRef]
- Martin-Gallausiaux, C.; Marinelli, L.; Blottière, H.M.; Larraufie, P.; Lapaque, N. SCFA: Mechanisms and functional importance in the gut. Proc. Nutr. Soc. 2021, 80, 37–49. [Google Scholar] [CrossRef]
- Tedelind, S.; Westberg, F.; Kjerrulf, M.; Vidal, A. Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: A study with relevance to inflammatory bowel disease. World J. Gastroenterol. 2007, 13, 2826. [Google Scholar] [CrossRef]
- Hu, J.; Lin, S.; Zheng, B.; Cheung, P.C. Short-chain fatty acids in control of energy metabolism. Crit. Rev. Food Sci. Nutr. 2018, 58, 1243–1249. [Google Scholar] [CrossRef] [PubMed]
- Traughber, Z.T. Evaluation of Select Fiber and Carbohydrate Sources as Functional Ingredients in Canine Diets. Ph.D. Thesis, University of Illinois at Urbana-Champaign, Champaign, IL, USA, 2020. [Google Scholar]
- Williams, N.T. Probiotics. Am. J. Health-Syst. Pharm. 2010, 67, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Das, T.K.; Pradhan, S.; Chakrabarti, S.; Mondal, K.C.; Ghosh, K. Current status of probiotic and related health benefits. Appl. Food Res. 2022, 2, 100185. [Google Scholar] [CrossRef]
- Vieco-Saiz, N.; Belguesmia, Y.; Raspoet, R.; Auclair, E.; Gancel, F.; Kempf, I.; Drider, D. Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production. Front. Microbiol. 2019, 10, 57. [Google Scholar] [CrossRef] [PubMed]
- Musa, H.H.; Wu, S.; Zhu, C.; Seri, H.; Zhu, G. The potential benefits of probiotics in animal production and health. J. Anim. Vet. Adv. 2009, 8, 313–321. [Google Scholar]
- Peng, M.; Tabashsum, Z.; Anderson, M.; Truong, A.; Houser, A.K.; Padilla, J.; Akmel, A.; Bhatti, J.; Rahaman, S.O.; Biswas, D. Effectiveness of probiotics, prebiotics, and prebiotic-like components in common functional foods. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1908–1933. [Google Scholar] [CrossRef]
- Gieryńska, M.; Szulc-Dąbrowska, L.; Struzik, J.; Mielcarska, M.B.; Gregorczyk-Zboroch, K.P. Integrity of the intestinal barrier: The involvement of epithelial cells and microbiota—A mutual relationship. Animals 2022, 12, 145. [Google Scholar] [CrossRef]
- Kocot, A.M.; Jarocka-Cyrta, E.; Drabińska, N. Overview of the importance of biotics in gut barrier integrity. Int. J. Mol. Sci. 2022, 23, 2896. [Google Scholar] [CrossRef] [PubMed]
- Jugan, M.C. Effects of Akkermansia Muciniphila Supplementation on Markers of Intestinal Permeability in Dogs following Antibiotic Treatment. Master’s Thesis, The Ohio State University, Columbus, OH, USA, 2017. [Google Scholar]
- Maldonado Galdeano, C.; Cazorla, S.I.; Lemme Dumit, J.M.; Vélez, E.; Perdigón, G. Beneficial effects of probiotic consumption on the immune system. Ann. Nutr. Metab. 2019, 74, 115–124. [Google Scholar] [CrossRef]
- Daliri, E.B.-M.; Lee, B.H. New perspectives on probiotics in health and disease. Food Sci. Hum. Wellness 2015, 4, 56–65. [Google Scholar] [CrossRef]
- McFarland, L.V. Efficacy of single-strain probiotics versus multi-strain mixtures: Systematic review of strain and disease specificity. Dig. Dis. Sci. 2021, 66, 694–704. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Polk, D.B. Probiotics and probiotic-derived functional factors—Mechanistic insights into applications for intestinal homeostasis. Front. Immunol. 2020, 11, 560388. [Google Scholar] [CrossRef]
- Riaz Rajoka, M.S.; Thirumdas, R.; Mehwish, H.M.; Umair, M.; Khurshid, M.; Hayat, H.F.; Phimolsiripol, Y.; Pallarés, N.; Martí-Quijal, F.J.; Barba, F.J. Role of food antioxidants in modulating gut microbial communities: Novel understandings in intestinal oxidative stress damage and their impact on host health. Antioxidants 2021, 10, 1563. [Google Scholar] [CrossRef] [PubMed]
- Young, D.; Tsao, R.; Mine, Y. Nutraceuticals and antioxidant function. In Functional Foods, Nutraceuticals, and Degenerative Disease Prevention; Wiley Online Library: Hoboken, NJ, USA, 2011; pp. 75–112. [Google Scholar]
- Jain, N.; Ramawat, K.G. Nutraceuticals and antioxidants in prevention of diseases. In Natural Products; Springer: Berlin/Heidelberg, Germany, 2013; pp. 2559–2580. [Google Scholar]
- Catinean, A.; Neag, M.A.; Muntean, D.M.; Bocsan, I.C.; Buzoianu, A.D. An overview on the interplay between nutraceuticals and gut microbiota. PeerJ 2018, 6, e4465. [Google Scholar] [CrossRef] [PubMed]
- Talukder, J. Nutraceuticals in gastrointestinal conditions. In Nutraceuticals in Veterinary Medicine; Springer: Berlin/Heidelberg, Germany, 2019; pp. 467–479. [Google Scholar]
- Salas Garcia, M.C.; Schorr, A.R.; Arnold, W.; Fei, N.; Gilbert, J.A. Pets as a novel microbiome-based therapy. In Pets as Sentinels, Forecasters and Promoters of Human Health; Springer: Berlin/Heidelberg, Germany, 2020; pp. 245–267. [Google Scholar]
- Badri, D.V.; Jackson, M.I.; Jewell, D.E. Dietary protein and carbohydrate levels affect the gut microbiota and clinical assessment in healthy adult cats. J. Nutr. 2021, 151, 3637–3650. [Google Scholar] [CrossRef] [PubMed]
- Ridlon, J.M. Enzymology and Molecular Biology of Bile Acid 7alpha-and 7beta-Dehydroxylation by the Intestinal Bacteria Clostridium Scindens and Clostridium Hylemonae. Ph.D. Thesis, Virginia Commonwealth University, Richmond, VA, USA, 2008. [Google Scholar]
- Suchodolski, J.S. Gastrointestinal microbiota. In Canine and Feline Gastroenterology; W.B. Saunders: St. Louis, MO, USA, 2013; pp. 32–41. [Google Scholar] [CrossRef]
- Flint, H.J.; Duncan, S.H.; Scott, K.P.; Louis, P. Links between diet, gut microbiota composition and gut metabolism. Proc. Nutr. Soc. 2015, 74, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Ceppa, F.A. Diet: Microbiota Interaction in the Gut-Focus on Amino Acid Metabolism. Ph.D. Thesis, Università di Bologna, Bologna, Italy, 2016. [Google Scholar] [CrossRef]
- Allison, M.J.; Dawson, K.A.; Mayberry, W.R.; Foss, J.G. Oxalobacter formigenes gen. nov., sp. nov.: Oxalate-degrading anaerobes that inhabit the gastrointestinal tract. Arch. Microbiol. 1985, 141, 1–7. [Google Scholar] [CrossRef]
- Rossi, M.; Corradini, C.; Amaretti, A.; Nicolini, M.; Pompei, A.; Zanoni, S.; Matteuzzi, D. Fermentation of fructooligosaccharides and inulin by bifidobacteria: A comparative study of pure and fecal cultures. Appl. Environ. Microbiol. 2005, 71, 6150–6158. [Google Scholar] [CrossRef]
- Stams, A.J.; Plugge, C.M. The microbiology of methanogenesis. In Methane and Climate Change; Routledge: London, UK, 2010; pp. 14–26. [Google Scholar]
- Deng, P.; Swanson, K.S. Gut microbiota of humans, dogs and cats: Current knowledge and future opportunities and challenges. Br. J. Nutr. 2015, 113, S6–S17. [Google Scholar] [CrossRef]
- Moon, C.D.; Young, W.; Maclean, P.H.; Cookson, A.L.; Bermingham, E.N. Metagenomic insights into the roles of Proteobacteria in the gastrointestinal microbiomes of healthy dogs and cats. Microbiologyopen 2018, 7, e00677. [Google Scholar] [CrossRef]
- Simpson, J.; Martineau, B.; Jones, W.; Ballam, J.; Mackie, R.I. Characterization of fecal bacterial populations in canines: Effects of age, breed and dietary fiber. Microb. Ecol. 2002, 44, 186–197. [Google Scholar] [CrossRef] [PubMed]
- Wallis, C.V.; Marshall-Jones, Z.V.; Deusch, O.; Hughes, K.R. Canine and feline microbiomes. In Understanding Host-Microbiome Interactions—An Omics Approach: Omics of Host-Microbiome Association; Springer: Berlin/Heidelberg, Germany, 2017; pp. 279–325. [Google Scholar]
- Lee, D.; Goh, T.W.; Kang, M.G.; Choi, H.J.; Yeo, S.Y.; Yang, J.; Huh, C.S.; Kim, Y.Y.; Kim, Y. Perspectives and advances in probiotics and the gut microbiome in companion animals. J. Anim. Sci. Technol. 2022, 64, 197. [Google Scholar] [CrossRef] [PubMed]
- Karasov, W.H.; Martinez del Rio, C.; Caviedes-Vidal, E. Ecological physiology of diet and digestive systems. Annu. Rev. Physiol. 2011, 73, 69–93. [Google Scholar] [CrossRef] [PubMed]
- Suchodolski, J.S. Intestinal microbiota of dogs and cats: A bigger world than we thought. Vet. Clin. Small Anim. Pract. 2011, 41, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Cassmann, E.; White, R.; Atherly, T.; Wang, C.; Sun, Y.; Khoda, S.; Mosher, C.; Ackermann, M.; Jergens, A. Alterations of the ileal and colonic mucosal microbiota in canine chronic enteropathies. PLoS ONE 2016, 11, e0147321. [Google Scholar] [CrossRef] [PubMed]
- Handl, S.; Dowd, S.E.; Garcia-Mazcorro, J.F.; Steiner, J.M.; Suchodolski, J.S. Massive parallel 16S rRNA gene pyrosequencing reveals highly diverse fecal bacterial and fungal communities in healthy dogs and cats. FEMS Microbiol. Ecol. 2011, 76, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Ciaravolo, S.; Martínez-López, L.M.; Allcock, R.J.; Woodward, A.P.; Mansfield, C. Longitudinal survey of fecal microbiota in healthy dogs administered a commercial probiotic. Front. Vet. Sci. 2021, 8, 664318. [Google Scholar] [CrossRef]
- Anjum, N.; Maqsood, S.; Masud, T.; Ahmad, A.; Sohail, A.; Momin, A. Lactobacillus acidophilus: Characterization of the species and application in food production. Crit. Rev. Food Sci. Nutr. 2014, 54, 1241–1251. [Google Scholar] [CrossRef] [PubMed]
- Manninen, T.J.; Rinkinen, M.L.; Beasley, S.S.; Saris, P.E. Alteration of the canine small-intestinal lactic acid bacterium microbiota by feeding of potential probiotics. Appl. Environ. Microbiol. 2006, 72, 6539–6543. [Google Scholar] [CrossRef]
- Grześkowiak, Ł.; Endo, A.; Beasley, S.; Salminen, S. Microbiota and probiotics in canine and feline welfare. Anaerobe 2015, 34, 14–23. [Google Scholar] [CrossRef]
- Suchodolski, J.S. Companion animals symposium: Microbes and gastrointestinal health of dogs and cats. J. Anim. Sci. 2011, 89, 1520–1530. [Google Scholar] [CrossRef] [PubMed]
- Passos, M.d.C.F.; Moraes-Filho, J.P. Intestinal microbiota in digestive diseases. Arq. Gastroenterol. 2017, 54, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Rowland, I.; Gibson, G.; Heinken, A.; Scott, K.; Swann, J.; Thiele, I.; Tuohy, K. Gut microbiota functions: Metabolism of nutrients and other food components. Eur. J. Nutr. 2018, 57, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Kayama, H.; Okumura, R.; Takeda, K. Interaction between the microbiota, epithelia, and immune cells in the intestine. Annu. Rev. Immunol. 2020, 38, 23–48. [Google Scholar] [CrossRef] [PubMed]
- Ducarmon, Q.; Zwittink, R.; Hornung, B.; Van Schaik, W.; Young, V.; Kuijper, E. Gut microbiota and colonization resistance against bacterial enteric infection. Microbiol. Mol. Biol. Rev. 2019, 83, e00007-19. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, J.M.; Murphy, K.; Stanton, C.; Ross, R.P.; Kober, O.I.; Juge, N.; Avershina, E.; Rudi, K.; Narbad, A.; Jenmalm, M.C. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb. Ecol. Health Dis. 2015, 26, 26050. [Google Scholar] [CrossRef] [PubMed]
- Davies, C.; Bergman, J.; Eshraghi, A.A.; Mittal, R.; Eshraghi, R.S. the gut microbiome: Potential clinical applications in disease management: Novel approaches using diet and nutraceuticals to reduce manifestations of accelerated aging, obesity, type 2 diabetes, gastrointestinal disorders, neurological disorders, immunological disorders, anxiety, and depression. In Gut–Brain Connection, Myth or Reality? Role of The Microbiome in Health and Disease; World Scientific: Singapore, 2022; pp. 195–236. [Google Scholar]
- Guard, B.C.; Barr, J.W.; Reddivari, L.; Klemashevich, C.; Jayaraman, A.; Steiner, J.M.; Vanamala, J.; Suchodolski, J.S. Characterization of microbial dysbiosis and metabolomic changes in dogs with acute diarrhea. PLoS ONE 2015, 10, e0127259. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, O.M. Prevalence of Potential Zoonotic Enteric Bacterial Pathogens in Dogs and Cats and Factors Associated with Potential Transmission Between Animals and Humans. Master’s Thesis, University of Tennessee, Knoxville, TN, USA, 2004. [Google Scholar]
- Kamani, J.; Massetti, L.; Olubade, T.; Balami, J.A.; Samdi, K.M.; Traub, R.J.; Colella, V.; González-Miguel, J. Canine gastrointestinal parasites as a potential source of zoonotic infections in Nigeria: A nationwide survey. Prev. Vet. Med. 2021, 192, 105385. [Google Scholar] [CrossRef]
- Tun, H.M.; Brar, M.S.; Khin, N.; Jun, L.; Hui, R.K.-H.; Dowd, S.E.; Leung, F.C.-C. Gene-centric metagenomics analysis of feline intestinal microbiome using 454 junior pyrosequencing. J. Microbiol. Methods 2012, 88, 369–376. [Google Scholar] [CrossRef]
- Wennogle, S.A.J. Clinical, Clinicopathologic, Histopathologic, and Immunohistochemical Features of Dogs with Chronic Enteropathy with and without Protein-Losing Enteropathy: Focus on the Intestinal Lymphatic Vasculature. Ph.D. Thesis, Colorado State University, Fort Collins, CO, USA, 2018. [Google Scholar]
- Hotel, B.H.; Tams, T.R. Updates in clinical gastroenterology of dogs and cats. Presented at the 2016 Winter Meeting, Vermont Veterinary Medical Association, Los Angeles, CA, USA, 13 February 2016. [Google Scholar]
- Simpson, K.W.; Jergens, A.E. Pitfalls and progress in the diagnosis and management of canine inflammatory bowel disease. Vet. Clin. Small Anim. Pract. 2011, 41, 381–398. [Google Scholar] [CrossRef]
- Belizário, J.E.; Faintuch, J. Microbiome and gut dysbiosis. In Metabolic Interaction in Infection; Springer: Berlin/Heidelberg, Germany, 2018; pp. 459–476. [Google Scholar]
- Giaretta, P.R.; Suchodolski, J.S.; Jergens, A.E.; Steiner, J.M.; Lidbury, J.A.; Cook, A.K.; Hanifeh, M.; Spillmann, T.; Kilpinen, S.; Syrjä, P. Bacterial biogeography of the colon in dogs with chronic inflammatory enteropathy. Vet. Pathol. 2020, 57, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Regañón, D.; García-Sancho, M.; Villaescusa, A.; Sainz, Á.; Agulla, B.; Reyes-Prieto, M.; Rodríguez-Bertos, A.; Rodríguez-Franco, F. Characterization of the fecal and mucosa-associated microbiota in dogs with chronic inflammatory enteropathy. Animals 2023, 13, 326. [Google Scholar] [CrossRef] [PubMed]
- Minamoto, Y.; Minamoto, T.; Isaiah, A.; Sattasathuchana, P.; Buono, A.; Rangachari, V.R.; McNeely, I.H.; Lidbury, J.; Steiner, J.M.; Suchodolski, J.S. Fecal short-chain fatty acid concentrations and dysbiosis in dogs with chronic enteropathy. J. Vet. Intern. Med. 2019, 33, 1608–1618. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Pan, Z.; Yang, R.; Bi, Y.; Xiong, X. The canine gastrointestinal microbiota: Early studies and research frontiers. Gut Microbes 2020, 11, 635–654. [Google Scholar] [CrossRef] [PubMed]
- Janeczko, S.; Atwater, D.; Bogel, E.; Greiter-Wilke, A.; Gerold, A.; Baumgart, M.; Bender, H.; McDonough, P.; McDonough, S.; Goldstein, R. The relationship of mucosal bacteria to duodenal histopathology, cytokine mRNA, and clinical disease activity in cats with inflammatory bowel disease. Vet. Microbiol. 2008, 128, 178–193. [Google Scholar] [CrossRef] [PubMed]
- Maeda, S.; Ohno, K.; Fujiwara-Igarashi, A.; Uchida, K.; Tsujimoto, H. Changes in Foxp3-positive regulatory T cell number in the intestine of dogs with idiopathic inflammatory bowel disease and intestinal lymphoma. Vet. Pathol. 2016, 53, 102–112. [Google Scholar] [CrossRef] [PubMed]
- McMahon, L.; House, A.; Catchpole, B.; Elson-Riggins, J.; Riddle, A.; Smith, K.; Werling, D.; Burgener, I.; Allenspach, K. Expression of Toll-like receptor 2 in duodenal biopsies from dogs with inflammatory bowel disease is associated with severity of disease. Vet. Immunol. Immunopathol. 2010, 135, 158–163. [Google Scholar] [CrossRef]
- Lu, Y.; Li, X.; Liu, S.; Zhang, Y.; Zhang, D. Toll-like receptors and inflammatory bowel disease. Front. Immunol. 2018, 9, 72. [Google Scholar] [CrossRef] [PubMed]
- Grønvold, A.-M.R.; L’Abée-Lund, T.M.; Sørum, H.; Skancke, E.; Yannarell, A.C.; Mackie, R.I. Changes in fecal microbiota of healthy dogs administered amoxicillin. FEMS Microbiol. Ecol. 2009, 71, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Banning, M. Bacteria and the gastrointestinal tract: Beneficial and harmful effects. Br. J. Nurs. 2006, 15, 144–149. [Google Scholar] [CrossRef]
- Mikkelsen, K.H.; Frost, M.; Bahl, M.I.; Licht, T.R.; Jensen, U.S.; Rosenberg, J.; Pedersen, O.; Hansen, T.; Rehfeld, J.F.; Holst, J.J. Effect of antibiotics on gut microbiota, gut hormones and glucose metabolism. PLoS ONE 2015, 10, e0142352. [Google Scholar] [CrossRef]
- Sørum, H.; Sunde, M. Resistance to antibiotics in the normal flora of animals. Vet. Res. 2001, 32, 227–241. [Google Scholar] [CrossRef] [PubMed]
- Bottero, E.; Ferriani, R.; Benvenuti, E.; Ruggiero, P.; Astorina, S.; Giraldi, M.; Bertoldi, L.; Benvenuto, G.; Sattin, E.; Gianella, P. Clinical evaluation and microbiota analysis in 9 dogs with antibiotic-responsive enteropathy: A prospective comparison study. J. Vet. Intern. Med. 2022, 36, 1220–1228. [Google Scholar] [CrossRef] [PubMed]
- Reid, G.; Friendship, R. Alternatives to antibiotic use: Probiotics for the gut. Anim. Biotechnol. 2002, 13, 97–112. [Google Scholar] [CrossRef]
- Sekirov, I.; Russell, S.L.; Antunes, L.C.M.; Finlay, B.B. Gut microbiota in health and disease. Physiol. Rev. 2010, 90, 859–904. [Google Scholar] [CrossRef]
- Juarez, V.M.; Montalbine, A.N.; Singh, A. Microbiome as an immune regulator in health, disease, and therapeutics. Adv. Drug Deliv. Rev. 2022, 188, 114400. [Google Scholar] [CrossRef] [PubMed]
- Balta, I.; Butucel, E.; Mohylyuk, V.; Criste, A.; Dezmirean, D.S.; Stef, L.; Pet, I.; Corcionivoschi, N. Novel insights into the role of probiotics in respiratory infections, allergies, cancer, and neurological abnormalities. Diseases 2021, 9, 60. [Google Scholar] [CrossRef]
- Prabhurajeshwar, C.; Chandrakanth, K. Evaluation of antimicrobial properties and their substances against pathogenic bacteria in-vitro by probiotic Lactobacilli strains isolated from commercial yoghurt. Clin. Nutr. Exp. 2019, 23, 97–115. [Google Scholar] [CrossRef]
- Pessione, E. Lactic acid bacteria contribution to gut microbiota complexity: Lights and shadows. Front. Cell. Infect. Microbiol. 2012, 2, 86. [Google Scholar] [CrossRef]
- Fernández, L.; Martínez, R.; Pérez, M.; Arroyo, R.; Rodríguez, J.M. Characterization of Lactobacillus rhamnosus MP01 and Lactobacillus plantarum MP02 and assessment of their potential for the prevention of gastrointestinal infections in an experimental canine model. Front. Microbiol. 2019, 10, 1117. [Google Scholar] [CrossRef]
- Schmitz, S.; Suchodolski, J. Understanding the canine intestinal microbiota and its modification by pro-, pre-and synbiotics–what is the evidence? Vet. Med. Sci. 2016, 2, 71–94. [Google Scholar] [CrossRef] [PubMed]
- Strompfová, V.; Kubašová, I.; Lauková, A. Health benefits observed after probiotic Lactobacillus fermentum CCM 7421 application in dogs. Appl. Microbiol. Biotechnol. 2017, 101, 6309–6319. [Google Scholar] [CrossRef] [PubMed]
- Tytgat, H.L.; Douillard, F.P.; Reunanen, J.; Rasinkangas, P.; Hendrickx, A.P.; Laine, P.K.; Paulin, L.; Satokari, R.; de Vos, W.M. Lactobacillus rhamnosus GG outcompetes Enterococcus faecium via mucus-binding pili: Evidence for a novel and heterospecific probiotic mechanism. Appl. Environ. Microbiol. 2016, 82, 5756–5762. [Google Scholar] [CrossRef] [PubMed]
- Marshall-Jones, Z.V.; Baillon, M.-L.A.; Croft, J.M.; Butterwick, R.F. Effects of Lactobacillus acidophilus DSM13241 as a probiotic in healthy adult cats. Am. J. Vet. Res. 2006, 67, 1005–1012. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Mazcorro, J.F. Evaluation of the Gastrointestinal Microbiota in Response to Dietary and Therapeutic Factors in Cats and Dogs Using Molecular Methods; Texas A&M University: College Station, TX, USA, 2011. [Google Scholar]
- Kumar, S.; Pattanaik, A.K.; Sharma, S.; Jadhav, S.E.; Dutta, N.; Kumar, A. Probiotic potential of a Lactobacillus bacterium of canine faecal-origin and its impact on select gut health indices and immune response of dogs. Probiot. Antimicrob. Proteins 2017, 9, 262–277. [Google Scholar] [CrossRef] [PubMed]
- Gookin, J.L.; Strong, S.J.; Bruno-Bárcena, J.M.; Stauffer, S.H.; Williams, S.; Wassack, E.; Azcarate-Peril, M.A.; Estrada, M.; Seguin, A.; Balzer, J. Randomized placebo-controlled trial of feline-origin Enterococcus hirae probiotic effects on preventative health and fecal microbiota composition of fostered shelter kittens. Front. Vet. Sci. 2022, 9, 923792. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zhao, F.; Hou, Q.; Huang, W.; Liu, Y.; Zhang, H.; Sun, Z. Metagenomic analysis revealed beneficial effects of probiotics in improving the composition and function of the gut microbiota in dogs with diarrhoea. Food Funct. 2019, 10, 2618–2629. [Google Scholar] [CrossRef]
- Pascher, M.; Hellweg, P.; Khol-Parisini, A.; Zentek, J. Effects of a probiotic Lactobacillus acidophilus strain on feed tolerance in dogs with non-specific dietary sensitivity. Arch. Anim. Nutr. 2008, 62, 107–116. [Google Scholar] [CrossRef]
- Sýkora, J.; Valecková, K.; Amlerová, J.; Siala, K.; Dedek, P.; Watkins, S.; Varvarovská, J.; Stožický, F.; Pazdiora, P.; Schwarz, J. Effects of a specially designed fermented milk product containing probiotic Lactobacillus casei DN-114 001 and the eradication of H. pylori in children: A prospective randomized double-blind study. J. Clin. Gastroenterol. 2005, 39, 692–698. [Google Scholar] [CrossRef]
- Seferoğlu, Y.; Kırkan, Ş. Roles of Probiotics in Animal Health. Anim. Health Prod. Hyg. 2022, 11, 40–46. [Google Scholar] [CrossRef]
- Fenimore, A.; Martin, L.; Lappin, M.R. Evaluation of metronidazole with and without Enterococcus faecium SF68 in shelter dogs with diarrhea. Top. Companion Anim. Med. 2017, 32, 100–103. [Google Scholar] [CrossRef]
- Addie, D.D.; Curran, S.; Bellini, F.; Crowe, B.; Sheehan, E.; Ukrainchuk, L.; Decaro, N. Oral Mutian® X stopped faecal feline coronavirus shedding by naturally infected cats. Res. Vet. Sci. 2020, 130, 222–229. [Google Scholar] [CrossRef]
- Nestle, M.; Nesheim, M. Feed Your Pet Right: The Authoritative Guide to Feeding Your Dog and Cat; Simon and Schuster: New York, NY, USA, 2010. [Google Scholar]
- Brown, S. Unlocking the Canine Ancestral Diet: Healthier Dog Food the ABC Way; Dogwise Publishing: Wenatchee, WA, USA, 2009. [Google Scholar]
- Dzanis, D.A.; Marzo, I. Pet Food and Supplement Regulations: Practical Implications. In Applied Veterinary Clinical Nutrition; John Wiley & Sons: Hoboken, NJ, USA, 2023; pp. 72–97. [Google Scholar]
- Colitti, M.; Stefanon, B.; Gabai, G.; Gelain, M.E.; Bonsembiante, F. Oxidative stress and nutraceuticals in the modulation of the immune function: Current knowledge in animals of veterinary interest. Antioxidants 2019, 8, 28. [Google Scholar] [CrossRef]
- Hayek, M.G.; Massimino, S.P.; Ceddia, M.A. Modulation of immune response through nutraceutical interventions: Implications for canine and feline health. Vet. Clin. Small Anim. Pract. 2004, 34, 229–247. [Google Scholar] [CrossRef] [PubMed]
- Pignataro, G.; Di Prinzio, R.; Crisi, P.; Belà, B.; Fusaro, I.; Trevisan, C.; De Acetis, L.; Gramenzi, A. Comparison of the Therapeutic Effect of Treatment with Antibiotics or Nutraceuticals on Clinical Activity and the Fecal Microbiome of Dogs with Acute Diarrhea. Animals 2021, 11, 1484. [Google Scholar] [CrossRef] [PubMed]
- Chaachouay, N.; Zidane, L. Plant-Derived Natural Products: A Source for Drug Discovery and Development. Drugs Drug Candidates 2024, 3, 184–207. [Google Scholar] [CrossRef]
- Foster, B.C.; Arnason, J.T.; Briggs, C.J. Natural health products and drug disposition. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 203–226. [Google Scholar] [CrossRef]
- Zoran, D. Nutritional management of gastrointestinal disease. Clin. Tech. Small Anim. Pract. 2003, 18, 211–217. [Google Scholar] [CrossRef]
- Hasler, C.M. Regulation of Functional Foods and Nutraceuticals: A Global Perspective; John Wiley & Sons: Hoboken, NJ, USA, 2005; Volume 5. [Google Scholar]
- Makielski, K.; Cullen, J.; O’Connor, A.; Jergens, A.E. Narrative review of therapies for chronic enteropathies in dogs and cats. J. Vet. Intern. Med. 2019, 33, 11–22. [Google Scholar] [CrossRef]
- Banton, S. Investigating the Effects of Supplementing Micronutrients in Grain-Free Dog Diets and the Factors That Contribute to the Consumer’s Choice of Grain-Free Dog Food. Ph.D. Thesis, University of Guelph, Guelph, ON, Canada, 2021. [Google Scholar]
- Aggarwal, B.B.; Harikumar, K.B. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int. J. Biochem. Cell Biol. 2009, 41, 40–59. [Google Scholar] [CrossRef]
- Candellone, A.; Cerquetella, M.; Girolami, F.; Badino, P.; Odore, R. Acute diarrhea in dogs: Current management and potential role of dietary polyphenols supplementation. Antioxidants 2020, 9, 725. [Google Scholar] [CrossRef] [PubMed]
- Leray, V.; Freuchet, B.; Le Bloc’h, J.; Jeusette, I.; Torre, C.; Nguyen, P. Effect of citrus polyphenol-and curcumin-supplemented diet on inflammatory state in obese cats. Br. J. Nutr. 2011, 106, S198–S201. [Google Scholar] [CrossRef] [PubMed]
- Alam, T.; Khan, S.A.; Najam, L. Chemistry, Biological Activities, and Uses of Resin of Boswellia serrata Roxb. In Gums, Resins and Latexes of Plant Origin: Chemistry, Biological Activities and Uses; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–43. [Google Scholar]
- Al-Yasiry, A.R.M.; Kiczorowska, B. Frankincense–therapeutic properties. Adv. Hyg. Exp. Med. 2016, 70, 380–391. [Google Scholar] [CrossRef] [PubMed]
- Biagi, M.; Rigillo, G.; Sarill, M.; Collotta, D.; Di Giacomo, S.; Di Sotto, A.; Grilli, M.; Luceri, C.; Milella, L.; Sangiovanni, E. From preclinical to clinical evidence: Exploring the multiple perspectives and healing power of Boswellia serrata Roxb. ex Colebr. Pharmadvances 2023, 5, 29–53. [Google Scholar] [CrossRef]
- Hęś, M.; Dziedzic, K.; Górecka, D.; Jędrusek-Golińska, A.; Gujska, E. Aloe vera (L.) Webb.: Natural sources of antioxidants–a review. Plant Foods Hum. Nutr. 2019, 74, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Bruni, N.; Martello, E.; Gabriele, V.; Perondi, F. Acid suppressant activity of feed dietary supplements for dogs: An in vitro study. J. Pharm. Nutr. Sci. 2023, 13, 38–44. [Google Scholar] [CrossRef]
- Kazimierska, K.; Biel, W.; Witkowicz, R. Mineral composition of cereal and cereal-free dry dog foods versus nutritional guidelines. Molecules 2020, 25, 5173. [Google Scholar] [CrossRef] [PubMed]
- Sakai, K.; Hatoya, S.; Furuya, M.; Shimamura, S.; Nabetani, T.; Tani, H.; Shimada, T. Decreased serum zinc concentration in dogs with lymphocytic-plasmacytic enteritis, and its associations with disease severity and prognosis. J. Vet. Med. Sci. 2020, 82, 759–763. [Google Scholar] [CrossRef] [PubMed]
- Sinbad, O.O.; Folorunsho, A.A.; Olabisi, O.L.; Ayoola, O.A.; Temitope, E.J. Vitamins as antioxidants. J. Food Sci. Nutr. Res. 2019, 2, 214–235. [Google Scholar]
- McMichael, M.A. Oxidative stress, antioxidants, and assessment of oxidative stress in dogs and cats. J. Am. Vet. Med. Assoc. 2007, 231, 714–720. [Google Scholar] [CrossRef]
- Eroglu, A.; Al’Abri, I.S.; Kopec, R.E.; Crook, N.; Bohn, T. Carotenoids and their health benefits as derived via their interactions with gut microbiota. Adv. Nutr. 2023, 14, 238–255. [Google Scholar] [CrossRef] [PubMed]
- Titmarsh, H.F.; Gow, A.G.; Kilpatrick, S.; Cartwright, J.A.; Milne, E.M.; Philbey, A.W.; Berry, J.; Handel, I.; Mellanby, R.J. Low vitamin D status is associated with systemic and gastrointestinal inflammation in dogs with a chronic enteropathy. PLoS ONE 2015, 10, e0137377. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, P.; Jena, G. Mechanistic insight into beta-carotene-mediated protection against ulcerative colitis-associated local and systemic damage in mice. Eur. J. Nutr. 2015, 54, 639–652. [Google Scholar] [CrossRef]
- Toresson, L.; Steiner, J.; Razdan, P.; Spodsberg, E.; Olmedal, G.; Suchodolski, J.; Spillmann, T. Comparison of efficacy of oral and parenteral cobalamin supplementation in normalising low cobalamin concentrations in dogs: A randomised controlled study. Vet. J. 2018, 232, 27–32. [Google Scholar] [CrossRef]
- Meineri, G.; Martello, E.; Atuahene, D.; Miretti, S.; Stefanon, B.; Sandri, M.; Biasato, I.; Corvaglia, M.R.; Ferrocino, I.; Cocolin, L.S. Effects of Saccharomyces boulardii supplementation on nutritional status, fecal parameters, microbiota, and mycobiota in breeding adult dogs. Vet. Sci. 2022, 9, 389. [Google Scholar] [CrossRef] [PubMed]
- Meineri, G.; Cocolin, L.; Morelli, G.; Schievano, C.; Atuahene, D.; Ferrocino, I. Effect of an Enteroprotective Complementary Feed on Faecal Markers of Inflammation and Intestinal Microbiota Composition in Weaning Puppies. Vet. Sci. 2023, 10, 434. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-Y.; Carroll, M.Q.; Miller, M.J.; Rabot, R.; Swanson, K.S. Supplementation of yeast cell wall fraction tends to improve intestinal health in adult dogs undergoing an abrupt diet transition. Front. Vet. Sci. 2020, 7, 597939. [Google Scholar] [CrossRef] [PubMed]
- Marelli, S.P.; Fusi, E.; Giardini, A.; Martino, P.A.; Polli, M.; Bruni, N.; Rizzi, R. Effects of probiotic Lactobacillus acidophilus D2/CSL (CECT 4529) on the nutritional and health status of boxer dogs. Vet. Rec. 2020, 187, e28. [Google Scholar] [CrossRef]
- Park, D.H.; Kothari, D.; Niu, K.-M.; Han, S.G.; Yoon, J.E.; Lee, H.-G.; Kim, S.-K. Effect of fermented medicinal plants as dietary additives on food preference and fecal microbial quality in dogs. Animals 2019, 9, 690. [Google Scholar] [CrossRef]
- Atuahene, D.; Costale, A.; Martello, E.; Mannelli, A.; Radice, E.; Ribaldone, D.G.; Chiofalo, B.; Stefanon, B.; Meineri, G. A Supplement with Bromelain, Lentinula edodes, and Quercetin: Antioxidant Capacity and Effects on Morphofunctional and Fecal Parameters (Calprotectin, Cortisol, and Intestinal Fermentation Products) in Kennel Dogs. Vet. Sci. 2023, 10, 486. [Google Scholar] [CrossRef]
- Atuahene, D.; Zuniga-Chaves, I.; Martello, E.; Stefanon, B.; Suen, G.; Balouei, F.; Meineri, G. The Canine Gut Health: The Impact of a New Feed Supplement on Microbiota Composition. Animals 2024, 14, 1189. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, X.; Yuan, W.; Zhang, X.; Mao, A.; Zhao, W.; Yao, N.; Deng, X.; Xu, C. Effects of Platycladus orientalis leaf extract on the growth performance, fur-production, serum parameters, and intestinal microbiota of raccoon dogs. Animals 2023, 13, 3151. [Google Scholar] [CrossRef] [PubMed]
- Schlieck, T.M.M.; Petrolli, T.G.; Bissacotti, B.F.; Copetti, P.M.; Bottari, N.B.; Morsch, V.M.; da Silva, A.S. Addition of a blend of essential oils (cloves, rosemary and oregano) and vitamin E to replace conventional chemical antioxidants in dog feed: Effects on food quality and health of beagles. Arch. Anim. Nutr. 2021, 75, 389–403. [Google Scholar] [CrossRef] [PubMed]
- Cannas, S.; Tonini, B.; Belà, B.; Di Prinzio, R.; Pignataro, G.; Di Simone, D.; Gramenzi, A. Effect of a novel nutraceutical supplement (Relaxigen Pet dog) on the fecal microbiome and stress-related behaviors in dogs: A pilot study. J. Vet. Behav. 2021, 42, 37–47. [Google Scholar] [CrossRef]
- White, R.; Atherly, T.; Guard, B.; Rossi, G.; Wang, C.; Mosher, C.; Webb, C.; Hill, S.; Ackermann, M.; Sciabarra, P. Randomized, controlled trial evaluating the effect of multi-strain probiotic on the mucosal microbiota in canine idiopathic inflammatory bowel disease. Gut Microbes 2017, 8, 451–466. [Google Scholar] [CrossRef] [PubMed]
- Watson, V.E.; Jacob, M.E.; Bruno-Bárcena, J.M.; Amirsultan, S.; Stauffer, S.H.; Píqueras, V.O.; Frias, R.; Gookin, J.L. Influence of the intestinal microbiota on disease susceptibility in kittens with experimentally-induced carriage of atypical enteropathogenic Escherichia coli. Vet. Microbiol. 2019, 231, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Fusi, E.; Rizzi, R.; Polli, M.; Cannas, S.; Giardini, A.; Bruni, N.; Marelli, S.P. Effects of Lactobacillus acidophilus D2/CSL (CECT 4529) supplementation on healthy cat performance. Vet. Rec. Open 2019, 6, e000368. [Google Scholar] [CrossRef]
- Li, Y.; Ali, I.; Lei, Z.; Li, Y.; Yang, M.; Yang, C.; Li, L. Effect of a multistrain probiotic on feline gut health through the fecal microbiota and its metabolite SCFAs. Metabolites 2023, 13, 228. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Liang, S.; Sun, J.; Tao, H.; Wang, Z.; Liu, B.; Wang, X.; Liu, J.; Wang, J. The Effect of Lactobacillus plantarum on the Fecal Microbiota, Short Chain Fatty Acids, Odorous Substances, and Blood Biochemical Indices of Cats. Microorganisms 2024, 12, 91. [Google Scholar] [CrossRef]
- Ephraim, E.; Jewell, D.E. Effect of Nutrition on Age-Related Metabolic Markers and the Gut Microbiota in Cats. Microorganisms 2021, 9, 2430. [Google Scholar] [CrossRef]
- Wolfe, W.; Xiang, Z.; Yu, X.; Li, P.; Chen, H.; Yao, M.; Fei, Y.; Huang, Y.; Yin, Y.; Xiao, H. The challenge of applications of probiotics in gastrointestinal diseases. Adv. Gut Microbiome Res. 2023, 2023, 1984200. [Google Scholar] [CrossRef]
- Hernández-González, J.C.; Martínez-Tapia, A.; Lazcano-Hernández, G.; García-Pérez, B.E.; Castrejón-Jiménez, N.S. Bacteriocins from lactic acid bacteria. A powerful alternative as antimicrobials, probiotics, and immunomodulators in veterinary medicine. Animals 2021, 11, 979. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, R.A.; Moghadasian, M.H. Nutraceuticals and nutrition supplements: Challenges and opportunities. Nutrients 2020, 12, 1593. [Google Scholar] [CrossRef] [PubMed]
Supplement Source | Amount | Animal (n) | Purpose of Testing | Results | Ref. |
---|---|---|---|---|---|
Saccharomyces boulardii | 1 × 109 CFU di/kg of feed/day for 35 days | Healthy American Staffordshire Terrier dogs; age: 2–8 years (25) | Analysis of gut microbiota and mycobiota composition | decreased fecal calprotectin immunoglobulin A; improved gut health | [130] |
Ultramicronised Palmitoylethanolamide (PEA), bovine colostrum and Bacillus subtilis | PEA, 100 mg; Bacillus subtilis, 1.5 × 109 CFU bovine colostrum, 200 mg/stick dose: 1 stick/10 kg body weight (BW)/animal for 30 days | Healthy Golden Retriever weaning puppies; age: 4 weeks (29) | Analysis of gut health and microbiome | gut inflammations were significantly decreased | [131] |
Saccharomyces cerevisiae | 96.36% dry matter, 14.65% crude protein along with dietary fiber | Healthy female Beagles age: ~5 years (12) | measurement calprotectin, immunoglobulin A (IgA), Escherichia coli, and Clostridium perfringens | better IgA levels, reduced calprotectin levels compared to controls, and improved gut health | [132] |
Lactobacillus acidophilus | Lactobacillus acidophilus 5.0 × 109 cfu/kg of dry food for 28 days | Healthy adult Boxer dogs; age: >1 year (40) | Effect on fecal quality and gut welfare of dogs | improved nutritional status and fecal parameters | [133] |
Medicinal plants fermented by Enterococcus faecium | Turmeric, glasswort and Ganghwa mugwort (5%, 2.5% and 2.5% w/v) fermented and added in diet plan for 16 days | Healthy Beagles; age: 5–10 years (9) | Effect on fecal microbiota and antioxidant potential | increased number of beneficial bacteria in fecal matter, indicating antioxidant potential of the additives | [134] |
Lentinula edodes, Quercetin, And Bromelain | Lentinula edodes, 10.0 mg/g; Quercetin, 13.5 mg/g; bromelain, 13.5 mg/g; maltodextrin, 583.4 mg/g; appetite stimulants, 379.6 mg/g dose: 1 g/10 kg of BW for 28 days | Healthy American Staffordshire Terrier adult female dogs; age: 5 ± years (30) | Analysis of anti-inflammatory and immunomodulatory function and gut health | increase in short-chain fatty acids and decrease in fecal calprotectin, cortisol, indole/skatole, and N-methylhistamine increases in Bifidobacterium and Lactobacillus | [135,136] |
Platycladus orientalis leaf extracts (PLE) | Food additive (0, 0.25, 0.50, and 1.00 g/kg PLE/food) for 125 days | Healthy male black Raccoon Dogs; age: ~85 days (60) | Analysis of growth, impact on fur quality and serum parameters, along with effect on intestinal microbiota | decrease in number of harmful bacteria such as Prevotella copri | [137] |
Clove, rosemary, and oregano | Blend of clove, rosemary, and oregano along with vitamin E for 28 days | Healthy adult Beagle dogs; age: N/a (10) | Analysis of effects of plant-based antioxidants on animals’ gut health | lower oxidative stress and increased systemic antioxidant enzymes | [138] |
Commercial Nutraceutical | ZT455C 1: 500 mg, Mannooligosaccharides (prebiotics): 300 mg, Carob flour (dietary fiber): 140 mg, Nucleotides: 50 mg, Enterococcus faecium (probiotic): 40 mg at 35 × 109 CFU/g, Vitamin B12: 5 mg for 1400mg tablets (daily 1 tablet per 5 kg of BW for 6 days) | Dogs with acute non-hemorrhagic diarrhea; age: N/a (30) | Analysis of effects of treatments on the intestinal microbiota | similar therapeutic effects as antibiotics | [107] |
Relaxigen Pet dog® tablet | Relaxigen pet dog® daily for 60 days | Stressed and healthy dogs; age: 1 to 10 years (30 + 10) | Analysis of nutraceutical on the fecal microbiome and stress-related behaviors | increased concentration of lactobacilli in fecal matter | [139] |
Multistrain probiotic (Visbiome™) | 112–225 × 109 CFU/10 kg capsules daily for 8 weeks | A mix of breeds with IBD; age: N/a (34) | Effect of probiotics on mucosal bacteria | enhanced tight junction protein expression to maintain gut microbiome homeostasis | [140] |
Amount | Animal (n) | Purpose of Testing | Results | Ref. | |
---|---|---|---|---|---|
Enterococcus hirae | 2.85–4.28 × 108 CFU/day | Kittens (16) | Analysis of methods for preventing atypical Enteropathogenic E. coli (aEPEC) in the gut | helped lessen the negative effects of an E. coli infection on overall gut health and prevented dehydration | [141] |
Lactobacillus acidophilus | food with the addition of 10 g/100 kg of L. acidophilus, corresponding to (at least) 5 × 109 CFUs /kg food | Adult Maine Coon cats (10) | Analysis of improvement in gut health | improved fecal quality parameters, reduced coliform counts | [142] |
Saccharomyces boulardii and Pediococcus acidilactici | Saccharomyces boulardii, 2.0 × 1010 CFU/g and Pediococcus acidilactici 2.5 × 1010 CFU/g in addition to basic diet (0.5 g/kg BW) for 28 days | Short-haired domestic cats (10) | Analysis of gut health and colonization of beneficial bacterial species | positively influenced gut health by promoting beneficial bacteria, raising SCFAs and antioxidants, and lowering inflammatory markers in stool | [143] |
Lactobacillus plantarum | Lactobacillus plantarum 109 CFU/kg feed/day for 28 days | Healthy adult cats (12) | Analysis of fecal microbiota, SCFAs, odorous substances | odorous substances are reduced to improve the digestibility of nutrients | [144] |
Test food containing natural vegetables | Beet pulp, carnitine, chicken, corn gluten meal, fiber blend (broccoli and tomato pomace), fish oil, oat groats, pea, soybean oil, and brown rice for 40 days | Healthy domestic shorthair cats | Analysis of fecal microbiota and antiaging potential | increase in beneficial microbiota in the fecal matter | [145] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atuahene, D.; Mukarram, S.A.; Balouei, F.; Antwi, A. Gut Health Optimization in Canines and Felines: Exploring the Role of Probiotics and Nutraceuticals. Pets 2024, 1, 135-151. https://doi.org/10.3390/pets1020011
Atuahene D, Mukarram SA, Balouei F, Antwi A. Gut Health Optimization in Canines and Felines: Exploring the Role of Probiotics and Nutraceuticals. Pets. 2024; 1(2):135-151. https://doi.org/10.3390/pets1020011
Chicago/Turabian StyleAtuahene, David, Shaikh Ayaz Mukarram, Fatemeh Balouei, and Amos Antwi. 2024. "Gut Health Optimization in Canines and Felines: Exploring the Role of Probiotics and Nutraceuticals" Pets 1, no. 2: 135-151. https://doi.org/10.3390/pets1020011
APA StyleAtuahene, D., Mukarram, S. A., Balouei, F., & Antwi, A. (2024). Gut Health Optimization in Canines and Felines: Exploring the Role of Probiotics and Nutraceuticals. Pets, 1(2), 135-151. https://doi.org/10.3390/pets1020011