Pancreatic Stone Protein: A Multifaceted Biomarker—A Comprehensive Review
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Pancreatic Stone Protein: Evolution of Nomenclature, Function, and Its Role in Pancreatic Health
4.2. Serum PSP Levels: Variations in Health, Disease, and Across the Lifespan
4.3. Multifaceted Roles of PSP in Beta Cell Regeneration, Diabetes, and Biomarker Potential
4.4. Roles of PSP in Renal Function, Tissue Regeneration, and Diabetes-Related Complications
4.5. PSP as a Biomarker and Therapeutic Potential Across Cancer Types
4.6. Therapeutic and Diagnostic Implications of PSP in Gastric, Intestinal, and Inflammatory Disorders
4.7. Reg 1α Overexpression and Autoimmune Implications in Sjögren’s Syndrome
4.8. Emerging Role of PSP in Alzheimer’s Disease and Neurodegenerative Pathologies
4.9. Serum PSP as a Biomarker in Healthy and Complicated Pregnancies
4.10. Reg 1α as a Key Mediator in Orofacial Clefting
4.11. Key Roles of PSP in Antimicrobial Defense and Protection Against Intestinal Pathogens
4.12. PSP as Biomarker in Sepsis Diagnosis, Prognosis, and Critical Care Applications
4.13. Future Directions and Limitations
5. Conclusions
6. Limitations of the Review Process
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PSP | pancreatic stone protein |
PTP | pancreatic thread protein |
Reg | regenerating |
References
- De Caro, A.; Luc, T.; Lafont, H.; Lombardo, D.; Sarles, H. The molecular characteristics of a human pancreatic acidic phosphoprotein that inhibits calcium carbonate crystal growth. Biochem. J. 1984, 222, 669–677. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, S.; Akiyama, T.; Nata, K.; Abe, M.; Tajima, M.; Shervani, N.J.; Unno, M.; Matsuno, S.; Sasaki, H.; Takasawa, S.; et al. Identification of a receptor for Reg (regenerating gene) protein, a pancreatic β-cell regeneration factor. J. Biol. Chem. 2000, 275, 10723–10726. [Google Scholar] [CrossRef] [PubMed]
- Kimura, T.; Fukui, H.; Sekikawa, A.; Yamagishi, H.; Ichikawa, K.; Tomita, S.; Fujii, S.; Imura, J.; Kawamata, H.; Chiba, T.; et al. Involvement of REG Iα protein in the regeneration of ductal epithelial cells in the minor salivary glands of patients with Sjögren’s syndrome. Clin. Exp. Immunol. 2009, 155, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Peterson, K.M.; Guo, X.; Elkahloun, A.G.; Mondal, D.; Bardhan, P.K.; Sugawara, A.; Duggal, P.; Haque, R.; Petri, W.A. The expression of REG 1A and REG 1B is increased during acute amebic colitis. Parasitol. Int. 2011, 60, 296–300. [Google Scholar] [CrossRef] [PubMed]
- Ventura, F.; Tissières, P. The Possible Pathophysiological Role of Pancreatic Stone Protein in Sepsis and Its Potential Therapeutic Implication. Biomedicines 2024, 12, 1790. [Google Scholar] [CrossRef]
- De Caro, A.M.; Bonicel, J.J.; Rouimi, P.; De Caro, J.D.; Sarles, H.; Rovery, M. Complete amino acid sequence of an immunoreactive form of human pancreatic stone protein isolated from pancreatic juice. Eur. J. Biochem. 1987, 168, 201–205. [Google Scholar] [CrossRef]
- Schmiegel, W.; Burchert, M.; Kalthoff, H.; Roeder, C.; Biitzow, G.; Grimm, H.; Kremer, B.; Schreiber, H.-W.; Thiele, H.-G.; Greten, H. Immunochemical Characterization and Quantitative Distribution of Pancreatic Stone Protein in Sera and Pancreatic Secretions in Pancreatic Disorders. Gastroenterology 1990, 99, 1421–1430. [Google Scholar] [CrossRef]
- Bimmler, D.; Graf, R.; Scheele, G.A.; Frick, T.W. Pancreatic stone protein (lithostathine), a physiologically relevant pancreatic calcium carbonate crystal inhibitor? J. Biol. Chem. 1997, 272, 3073–3082. [Google Scholar] [CrossRef]
- Gross, J.; Carlson, R.I.; Brauer, A.W.; Margolies, M.N.; Warshaw, A.L.; Wands, J.R. Isolation, characterization, and distribution of an unusual pancreatic human secretory protein. J. Clin. Investig. 1985, 76, 2115–2126. [Google Scholar] [CrossRef]
- Varilh, M.; Acquatella-Tran Van Ba, I.; Silhol, M.; Nieto-Lopez, F.; Moussaed, M.; Lebart, M.C.; Bovolenta, P.; Verdier, J.M.; Rossel, M.; Marcilhac, A.; et al. Reg-1α Promotes Differentiation of Cortical Progenitors via Its N-Terminal Active Domain. Front. Cell Dev. Biol. 2020, 8, 681. [Google Scholar] [CrossRef]
- Hayakawa, T.; Kondo, T.; Shibata, T.; Kitagawa, M.; Sakai, Y.; Sobajima, H.; Tanikawa, M.; Nakae, Y.; Hayakawa, S.; Katsuzaki, T.; et al. Serum Pancreatic Stone Protein in Pancreatic Diseases. Int. J. Pancreatol. 1993, 13, 97–103. [Google Scholar] [CrossRef]
- Schlapbach, L.J.; Giannoni, E.; Wellmann, S.; Stocker, M.; Ammann, R.A.; Graf, R. Normal values for pancreatic stone protein in different age groups. BMC Anesth. 2015, 15, 168. [Google Scholar] [CrossRef]
- Watanabe, T.; Yonemurat, Y.; Yonekura, H.; Suzuki, Y.; Miyashita, H.; Sugiyamat, K.; Moriizumi, S.; Unno, M.; Tanakat, O.; Kondot, H.; et al. Pancreatic beta-cell replication and amelioration of surgical diabetes by Reg protein (Reg gene/diabetes mellitus/Isets of Langerhans/growth factor). Proc. Natl. Acad. Sci. USA 1994, 91, 3589–3592. [Google Scholar] [CrossRef]
- Liu, P.; Xiao, Z.; Lu, X.; Zhang, X.; Huang, J. Pancreatic stone protein inhibits pyroptosis of pancreatic acinar cells in sepsis-associated pancreatic injury. Front. Med. 2025, 12, 1566728. [Google Scholar] [CrossRef] [PubMed]
- Petersen, T.E. The amino-terminal domain of thrombomodulin and pancreatic stone protein are homologous with lectins. FEBS Lett. 1988, 231, 51–53. [Google Scholar] [CrossRef] [PubMed]
- Patthy, L. Homology of human pancreatic stone protein with animal lectins. Biochem. J. 1988, 253, 309.2–311. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Vázquez, V.; Guzmán-Flores, J.M.; Mares-Álvarez, D.; Hernández-Ortiz, M.; Macías-Cervantes, M.H.; Ramírez-Emiliano, J.; Encarnación-Guevara, S. Differential proteomic analysis of the pancreas of diabetic db/db mice reveals the proteins involved in the development of complications of diabetes mellitus. Int. J. Mol. Sci. 2014, 15, 9579–9593. [Google Scholar] [CrossRef]
- Yang, J.; Li, L.; Raptis, D.; Li, X.; Li, F.; Chen, B.; He, J.; Graf, R.; Sun, Z. Pancreatic stone protein/regenerating protein (PSP/reg): A novel secreted protein up-regulated in type 2 diabetes mellitus. Endocrine 2015, 48, 856–862. [Google Scholar] [CrossRef]
- Stone, S.; Abreu, D.; Mahadevan, J.; Asada, R.; Kries, K.; Graf, R.; Marshall, B.A.; Hershey, T.; Urano, F. Pancreatic stone protein/regenerating protein is a potential biomarker for endoplasmic reticulum stress in beta cells. Sci. Rep. 2019, 9, 5199. [Google Scholar] [CrossRef]
- Cui, C.; Fu, M.; Gao, B. Procalcitonin and pancreatic stone protein function as biomarkers in early diagnosis of pediatric acute osteomyelitis. Med. Sci. Monit. 2017, 23, 5211–5217. [Google Scholar] [CrossRef]
- Zhu, H.; Zhu, X.; Lin, H.; Liu, D.; Dai, Y.; Su, X.; Li, L. Association of Serum PSP/REG i with Renal Function in Type 2 Diabetes Mellitus. J. Diabetes Res. 2020, 2020, 9787839. [Google Scholar] [CrossRef]
- Tatemichi, N.; Kato, M.; Hayakawa, S.; Hayakawa, T.; Naruse, S.; Kitagawa, M.; Sobajima, H.; Nakae2, Y. Immunological Characterization of Pancreatic Stone Protein in Human Urine. J. Clin. Lab. Anal. 1994, 8, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Sobajima, H.; Niwa, T.; Shikano, M.; Naruse, S.; Kitagawa, M.; Nakae, Y.; Ishiguro, H.; Kondo, T.; Hayakawa, T. Urinary Excretion of Pancreatic Stone Protein in Diabetic Nephropathy. Intern. Med. 1998, 37, 500–503. [Google Scholar] [CrossRef]
- Kiji, T.; Dohi, Y.; Takasawa, S.; Okamoto, H.; Nonomura, A.; Taniguchi, S.; Oka-moto, H. Activation of regenerating gene Reg in rat and human hearts in response to acute stress. Am. J. Physiol. Heart Circ. Physiol. 2005, 289, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Fortunato, F.; Deng, X.; Gates, L.K.; McClain, C.J.; Bimmler, D.; Graf, R.; Whitcomb, D.C. Pancreatic response to endotoxin after chronic alcohol exposure: Switch from apoptosis to necrosis? Am. J. Physiol.-Gastrointest. Liver Physiol. 2006, 290, G232–G241. [Google Scholar] [CrossRef]
- Sanchez, D.; Mueller, C.M.; Zenilman, M.E. Pancreatic Regenerating Gene I and Acinar Cell Differentiation Influence on Cellular Lineage. Pancreas 2009, 38, 572–577. [Google Scholar] [CrossRef]
- Bluth, M.; Mueller, C.M.; Pierre, J.; Callender, G.; Kandil, E.; Viterbo, D.; Fu, S.L.; Sugawara, A.; Okamoto, H.; Zenilman, M.E. Pancreatic Regenerating Protein I in Chronic Pancreatitis and Aging Implications for New Therapeutic Approaches to Diabetes. Pancreas 2008, 37, 386–395. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Jia, D.; Graf, R.; Yang, J. Elevated serum level of pancreatic stone protein/regenerating protein (PSP/reg) is observed in diabetic kidney disease. Oncotarget 2017, 8, 38145. [Google Scholar] [CrossRef]
- Wang, X.; Wu, H.; Yang, G.; Xiang, J.; Xiong, L.; Zhao, L.; Liao, T.; Zhao, X.; Kang, L.; Yang, S.; et al. REG1A and RUNX3 Are Potential Biomarkers for Predicting the Risk of Diabetic Kidney Disease. Front. Endocrinol. 2022, 13, 935796. [Google Scholar] [CrossRef]
- Hoorens, A.; Lemoine, N.R.; Mclellan, E.; Morohoshi, T.; Kamisawa, T.; Heitz, P.U.; Stamm, B.; Ruschoff, J.; Wiedenmann, B.; Kloppel, G. Pancreatic Acinar Cell Carcinoma an Analysis of Cell Lineage Markers, p53 Expression, and Ki-ras Mutation. Am. J. Pathol. 1993, 143, 685. [Google Scholar]
- Yonemura, Y.; Sakurai, S.; Yamamoto, H.; Endou, Y.; Kawamura, T.; Bandou, E.; Elnemr, A.; Sugiyama, K.; Sasaki, T.; Akiyama, T.; et al. REG gene expression is associated with the infiltrating growth of gastric carcinoma. Cancer 2003, 98, 1394–1400. [Google Scholar] [CrossRef]
- Sekikawa, A.; Fukui, H.; Zhang, X.; Maruo, T.; Tsumura, T.; Okabe, Y.; Wakasa, T.; Osaki, Y.; Chiba, T.; Tomita, T.; et al. REG Iα is a biomarker for predicting response to chemotherapy with S-1 plus cisplatin in patients with unresectable stage IV gastric cancer. Br. J. Cancer 2013, 108, 395–401. [Google Scholar] [CrossRef]
- Radon, T.P.; Massat, N.J.; Jones, R.; Alrawashdeh, W.; Dumartin, L.; Ennis, D.; Duffy, S.W.; Kocher, H.M.; Pereira, S.P.; Guarner, L.; et al. Identification of a three-biomarker panel in urine for early detection of pancreatic adenocarcinoma. Clin. Cancer Res. 2015, 21, 3512–3521. [Google Scholar] [CrossRef]
- Lyu, J.; Jiang, M.; Zhu, Z.; Wu, H.; Kang, H.; Hao, X.; Cheng, S.; Guo, H.; Shen, X.; Wu, T.; et al. Identification of biomarkers and potential therapeutic targets for pancreatic cancer by proteomic analysis in two prospective cohorts. Cell Genom. 2024, 4, 100561. [Google Scholar] [CrossRef] [PubMed]
- Aboshanif, M.; Kawasaki, Y.; Omori, Y.; Suzuki, S.; Honda, K.; Motoyama, S.; Ishikawa, K. Prognostic role of regenerating gene-I in patients with stage-IV head and neck squamous cell carcinoma. Diagn. Pathol. 2016, 11, 79. [Google Scholar] [CrossRef] [PubMed]
- Xing, H.; Chen, X.; Sun, H.; Han, Y.; Ding, L.; Chen, X. Association of regenerating gene 1A single-nucleotide polymorphisms and nasopharyngeal carcinoma susceptibility in southern Chinese population. Eur. Arch. Oto-Rhino-Laryngol. 2020, 277, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Marzese, D.M.; Ohta, K.; Huang, S.K.; Sim, M.S.; Chong, K.; Hoon, D.S.B. Epigenetic regulation of REG1A and chemosensitivity of cutaneous melanoma. Epigenetics 2013, 8, 1043–1052. [Google Scholar] [CrossRef]
- Kimura, M.; Naito, H.; Tojo, T.; Itaya-Hironaka, A.; Dohi, Y.; Yoshimura, M.; Nakagawara, K.I.; Takasawa, S.; Taniguchi, S. REG Iα gene expression is linked with the poor prognosis of lung adenocarcinoma and squamous cell carcinoma patients via discrete mechanisms. Oncol. Rep. 2013, 30, 2625–2631. [Google Scholar] [CrossRef]
- Alderman, B.M.; Ulaganathan, M.; Judd, L.M.; Howlett, M.; Parker, L.M.; Yeomans, N.D.; Giraud, A.S. Insights into the Mechanisms of Gastric Adaptation to Aspirin-Induced Injury: A Role for Regenerating Protein but Not Trefoil Peptides. Lab. Investig. 2003, 83, 1415–1425. [Google Scholar] [CrossRef]
- Imaoka, H.; Ishihara, S.; Kazumori, H.; Kadowaki, Y.; Monowar Aziz, M.; Binte Rahman, F.; Ose, T.; Fukuhara, H.; Takasawa, S.; Kinoshita, Y. Exacerbation of indomethacin-induced small intestinal injuries in Reg I-knockout mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 299, 311–319. [Google Scholar] [CrossRef]
- Fukui, H.; Franceschi, F.; Penland, R.L.; Sakai, T.; Sepulveda, A.R.; Fujimori, T.; Terano, A.; Chiba, T.; Genta, R.M. Effects of Helicobacter pylori Infection on the Link between Regenerating Gene Expression and Serum Gastrin Levels in Mongolian Gerbils. Lab. Investig. 2003, 83, 1777–1786. [Google Scholar] [CrossRef]
- Sekikawa, A.; Fukui, H.; Fujii, S.; Nanakin, A.; Kanda, N.; Uenoyama, Y.; Sawabu, T.; Hisatsune, H.; Kusaka, T.; Ueno, S.; et al. Possible role of REG Iα protein in ulcerative colitis and colitic cancer. Gut 2005, 54, 1437–1444. [Google Scholar] [CrossRef]
- Van Beelen Granlund, A.; Beisvag, V.; Torp, S.H.; Flatberg, A.; Kleveland, P.M.; Østvik, A.E.; Waldum, H.L.; Sandvik, A.K. Activation of REG family proteins in colitis. Scand. J. Gastroenterol. 2011, 46, 1316–1323. [Google Scholar] [CrossRef] [PubMed]
- Van Beelen Granlund, A.; Østvik, A.E.; Brenna, Ø.; Torp, S.H.; Gustafsson, B.I.; Sandvik, A.K. REG gene expression in inflamed and healthy colon mucosa explored by in situ hybridisation. Cell Tissue Res. 2013, 352, 639–646. [Google Scholar] [CrossRef]
- Sim, W.H.; Wagner, J.; Cameron, D.J.; Catto-Smith, A.G.; Bishop, R.F.; Kirkwood, C.D. Expression profile of genes involved in pathogenesis of pediatric Crohn’s disease. J. Gastroenterol. Hepatol. 2012, 27, 1083–1093. [Google Scholar] [CrossRef]
- Yoshimoto, K.; Fujimoto, T.; Itaya-Hironaka, A.; Miyaoka, T.; Sakuramoto-Tsuchida, S.; Yamauchi, A.; Takeda, M.; Kasai, T.; Nakagawara, K.; Nonomura, A.; et al. Involvement of autoimmunity to REG, a regeneration factor, in patients with primary Sjögren’s syndrome. Clin. Exp. Immunol. 2013, 174, 1–9. [Google Scholar] [CrossRef]
- Ozturkt, M.; De, S.M.; Montet, L.A.; Gross, J.; Wandst, J.R. Elevated levels of an exocrine pancreatic secretory protein in Alzheimer disease brain (pancreatic thread protein/monoclonal antibodies/immunoradiometric assays/Down syndrome). Proc. Natl. Acad. Sci. USA 1989, 86, 419–423. [Google Scholar] [CrossRef]
- De La Monte, S.M.; Ozturk, M.; Wands, J.R. Rapid Publication Enhanced Expression of an Exocrine Pancreatic Protein in Alzheimer’s Disease and the Developing Human Brain. J. Clin. Investig. 1990, 86, 1004–1013. [Google Scholar] [CrossRef]
- Duplan, L.; Michel, B.; Boucraut, J.; Barthellémy, S.; Desplat-Jego, S.; Marin, V.; Gambarelli, D.; Bernard, D.; Berthézène, P.; Alescio-Lautier, B.; et al. Lithostathine and pancreatitis-associated protein are involved in the very early stages of Alzheimer’s disease. Neurobiol. Aging 2001, 22, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Laurine, E.; Grégoire, C.; Fändrich, M.; Engemann, S.; Marchal, S.; Thion, L.; Mohr, M.; Monsarrat, B.; Michel, B.; Dobson, C.M.; et al. Lithostathine Quadruple-helical Filaments Form Proteinase K-resistant Deposits in Creutzfeldt-Jakob Disease. J. Biol. Chem. 2003, 278, 51770–51778. [Google Scholar] [CrossRef] [PubMed]
- Marchal, S.; Givalois, L.; Verdier, J.M.; Mestre-Francés, N. Distribution of lithostathine in the mouse lemur brain with aging and Alzheimer’s-like pathology. Neurobiol. Aging 2012, 33, 431.e15–431.e25. [Google Scholar] [CrossRef]
- Lebart, M.C.; Trousse, F.; Valette, G.; Torrent, J.; Denus, M.; Mestre-Frances, N.; Marcilhac, A. Reg-1α, a New Substrate of Calpain-2 Depending on Its Glycosylation Status. Int. J. Mol. Sci. 2022, 23, 8591. [Google Scholar] [CrossRef]
- Vonzun, L.; Brun, R.; Gadient-Limani, N.; Schneider, M.A.; Reding, T.; Graf, R.; Limani, P.; Ochsenbein-Kölble, N. Serum Pancreatic Stone Protein Reference Values in Healthy Pregnant Women: A Prospective Cohort Study. J. Clin. Med. 2023, 12, 3200. [Google Scholar] [CrossRef]
- Brun, R.; Vonzun, L.; Cliffe, B.; Gadient-Limani, N.; Schneider, M.A.; Reding, T.; Graf, R.; Limani, P.; Ochsenbein-Kölble, N. The Role of Pancreatic Stone Protein (PSP) as a Biomarker of Pregnancy-Related Diseases. J. Clin. Med. 2023, 12, 4428. [Google Scholar] [CrossRef]
- Pereira, J.; Melo, S.; Ferreira, R.M.; Carneiro, P.; Yang, V.; Maia, A.F.; Carvalho, J.; Figueiredo, C.; Machado, J.C.; Morais-de-Sá, E.; et al. E-cadherin variants associated with oral facial clefts trigger aberrant cell motility in a REG1A-dependent manner. Cell Commun. Signal. 2024, 22, 152. [Google Scholar] [CrossRef]
- Medveczky, P.; Szmola, R.; Sahin-Tóth, M. Proteolytic activation of human pancreatitis-associated protein is required for peptidoglycan binding and bacterial aggregation. Biochem. J. 2009, 420, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Iovanna, J.; Frigerio, J.M.; Dusetti, N.; Ramare, F.; Raibaud, P.; Dagorn, J.C. Lithostathine, an Inhibitor of CaCO, Crystal Growth in Pancreatic Juice, Induces Bacterial Aggregation. Pancreas 1993, 8, 647–653. [Google Scholar] [CrossRef] [PubMed]
- Pieper, R.; Zhang, Q.; Clark, D.J.; Parmar, P.P.; Alami, H.; Suh, M.J.; Kuntumalla, S.; Braisted, J.C.; Huang, S.T.; Tzipori, S. Proteomic View of Interactions of Shiga Toxin-Producing Escherichia coli with the Intestinal Environment in Gnotobiotic Piglets. PLoS ONE 2013, 8, e66462. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, S.J.; Al-Musawi, A.T.; Al-Fraji, A.S.; Kareem, H.S. Comparison of three culture media in assessing the sensitivity of antibiotics to common foodborne microorganisms. J. Med. Life 2022, 15, 645–649. [Google Scholar] [CrossRef]
- Reding, T.; Palmiere, C.; Pazhepurackel, C.; Schiesser, M.; Bimmler, D.; Schlegel, A.; Süss, U.; Steiner, S.; Mancina, L.; Seleznik, G.; et al. The pancreas responds to remote damage systemic stress by secretion of the pancreatic secretory proteins PSP/regI and PAP/regIII. Oncotarget 2017, 8, 30162. [Google Scholar] [CrossRef]
- Que, Y.A.; Delodder, F.; Guessous, I.; Graf, R.; Bain, M.; Calandra, T.; Liaudet, L.; Eggimann, P. Pancreatic stone protein as an early biomarker predicting mortality in a prospective cohort of patients with sepsis requiring ICU management. Crit. Care 2012, 16, R114. [Google Scholar] [CrossRef] [PubMed]
- Kouroupis, D.; Zarras, C.; Koufakis, T.; Terzaki, M.; Pateinakis, P.; Chalvantzis, A.; Mpani, K.; Issa, A.; Soukiouroglou, P.; Sarvani, A.; et al. Pancreatic stone protein levels accurately predict severity in sepsis of various causes earlier than other biomarkers. J. Microbiol. Methods 2025, 232–234, 107129. [Google Scholar] [CrossRef]
- Boeck, L.; Graf, R.; Eggimann, P.; Pargger, H.; Raptis, D.A.; Smyrnios, N.; Thakkar, N.; Siegemund, M.; Rakic, J.; Tamm, M.; et al. Pancreatic stone protein: A marker of organ failure and outcome in ventilator-associated pneumonia. Chest 2011, 140, 925–932. [Google Scholar] [CrossRef] [PubMed]
- Belletti, A.; Bonizzoni, M.A.; Labanca, R.; Osenberg, P.; Bugo, S.; Pontillo, D.; Pieri, M.; Landoni, G.; Zangrillo, A.; Scandroglio, A.M. Pancreatic Stone Protein as Sepsis Biomarker in Patients Requiring Mechanical Circulatory Support: A Pilot Observational Study. J. Cardiothorac. Vasc. Anesth. 2025, 39, 1229–1235. [Google Scholar] [CrossRef]
- Ceccato, A.; Camprubí-Rimblas, M.; Bos, L.D.J.; Povoa, P.; Martin-Loeches, I.; Forné, C.; Areny-Balagueró, A.; Campaña-Duel, E.; Morales-Quinteros, L.; Quero, S.; et al. Evaluation of the Kinetics of Pancreatic Stone Protein as a Predictor of Ventilator-Associated Pneumonia. Biomedicines 2023, 11, 2676. [Google Scholar] [CrossRef]
- Llewelyn, M.J.; Berger, M.; Gregory, M.; Ramaiah, R.; Taylor, A.L.; Curdt, I.; Lajaunias, F.; Graf, R.; Blincko, S.J.; Drage, S.; et al. Sepsis biomarkers in unselected patients on admission to intensive or high-dependency care. Crit. Care 2013, 17, R60. [Google Scholar] [CrossRef]
- Schlapbach, L.J.; Graf, R.; Woerner, A.; Fontana, M.; Zimmermann-Baer, U.; Glauser, D.; Giannoni, E.; Roger, T.; Müller, C.; Nelle, M.; et al. Pancreatic stone protein as a novel marker for neonatal sepsis. Intensive Care Med. 2013, 39, 754–763. [Google Scholar] [CrossRef] [PubMed]
- Rass, A.A.; Talat, M.A.; Arafa, M.A.; El-Saadany, H.F.; Amin, E.K.; Abdelsalam, M.M.; Mansour, M.A.; Khalifa, N.A.; Kamel, L.M. The Role of Pancreatic Stone Protein in Diagnosis of Early Onset Neonatal Sepsis. Biomed. Res. Int. 2016, 2016, 1035856. [Google Scholar] [CrossRef]
- Dündar, M.A.; Ceran, E.; Akyildiz, B.N. Prognostic and diagnostic utility of pancreatic stone protein in pediatric sepsis and mortality. Turk. J. Med. Sci. 2024, 54, 744–751. [Google Scholar] [CrossRef]
- Wu, Q.; Nie, J.; Wu, F.X.; Zou, X.L.; Chen, F.Y. Prognostic value of high-sensitivity C-reactive protein, procalcitonin and pancreatic stone protein in pediatric sepsis. Med. Sci. Monit. 2017, 23, 1533–1539. [Google Scholar] [CrossRef]
- Bottari, G.; Caruso, M.; Paionni, E.; De Luca, M.; Romani, L.; Pisani, M.; Grandin, A.; Gargiullo, L.; Zampini, G.; Gagliardi, C.; et al. Accuracy of Pancreatic Stone Protein for diagnosis of sepsis in children admitted to pediatric intensive care or high-dependency care: A pilot study. Ital. J. Pediatr. 2023, 49, 134. [Google Scholar] [CrossRef]
- Gouel-Chéron, A.; Dupin, M.; Chanteperdix, M.; Chaillol, I.; Venet, F.; Pachot, A.; Monneret, G.; Floccard, B.; Allaouchiche, B. Concomitant assessment of PSP and NT-proCNP as predictive markers of sepsis in severe trauma patients under mechanical ventilation. Crit. Care 2013, 17, 434. [Google Scholar] [CrossRef]
- Filippidis, P.; Hovius, L.; Tissot, F.; Orasch, C.; Flückiger, U.; Siegemund, M.; Pagani, J.-L.; Eggimann, P.; Marchetti, O.; Lamoth, F. Serial monitoring of pancreatic stone protein for the detection of sepsis in intensive care unit patients with complicated abdominal surgery: A prospective, longitudinal cohort study. J. Crit. Care 2024, 82, 154772. [Google Scholar] [CrossRef] [PubMed]
- Prazak, J.; Irincheeva, I.; Llewelyn, M.J.; Stolz, D.; García de Guadiana Romualdo, L.; Graf, R.; Reding, T.; Klein, H.J.; Eggimann, P.; Que, Y.A. Accuracy of pancreatic stone protein for the diagnosis of infection in hospitalized adults: A systematic review and individual patient level meta-analysis. Crit. Care 2021, 25, 182. [Google Scholar] [CrossRef]
- Van Singer, M.; Brahier, T.; Brochu Vez, M.J.; Gerhard Donnet, H.; Hugli, O.; Boillat-Blanco, N. Pancreatic stone protein for early mortality prediction in COVID-19 patients. Crit. Care 2021, 25, 267. [Google Scholar] [CrossRef]
- Melegari, G.; Giuliani, E.; Di Pietro, G.; Alberti, F.; Campitiello, M.; Bertellini, E.; Rosa, A.; Pioda, A.; Battaglia, P.; Quarto, M.; et al. Point-of-care pancreatic stone protein measurement in critically ill COVID-19 patients. BMC Anesth. 2023, 23, 226. [Google Scholar] [CrossRef] [PubMed]
- Zuercher, P.; Moser, A.; Garcia de Guadiana-Romualdo, L.; Llewelyn, M.J.; Graf, R.; Reding, T.; Eggimann, P.; Que, Y.A.; Prazak, J. Discriminative performance of pancreatic stone protein in predicting ICU mortality and infection severity in adult patients with infection: A systematic review and individual patient level meta-analysis. Infection 2023, 51, 1797–1807. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.E.; Dick, K.; Cooper, J.T.; Chami, N. Pancreatic stone protein point-of-care testing can reduce healthcare expenditure in sepsis. Health Econ. Rev. 2022, 12, 39. [Google Scholar] [CrossRef]
- de Hond, T.A.P.; Oosterheert, J.J.; van Hemert-Glaubitz, S.J.M.; Musson, R.E.A.; Kaasjager, K.A.H. Pancreatic Stone Protein as a Biomarker for Sepsis at the Emergency Department of a Large Tertiary Hospital. Pathogens 2022, 11, 559. [Google Scholar] [CrossRef]
- Lee, G.H.; Kim, H.; Moon, H.W.; Yun, Y.M.; Park, M.; Lee, S.; Hur, M. Diagnostic and Prognostic Utilities of Pancreatic Stone Protein in Patients with Suspected Sepsis. Diagnostics 2024, 14, 2076. [Google Scholar] [CrossRef]
Condition | PSP Levels (ng/ML) | Notes | |
---|---|---|---|
Healthy adults | 25.2–161.1 (mean 78.6; 95% range 15–142.2) | Above 142.2 = high; below 15 = low | |
General population | 1–99.4 (median 9.2) | No gender differences | |
Children | Very preterm newborns | Median 2.6 | Age-dependent increase |
Term newborns | Median 6.3 | ||
Older children | Median 16.1 | ||
Pregnancy | Singleton | 7.9 ± 2.6 | |
Multiple | 9.17 ± 3.06 | Significantly higher than singleton | |
1st trimester | 6.94 ± 2.53 | Progressive rise with gestation | |
2nd trimester | 7.42 ± 2.21 | ||
3rd trimester | 8.33 ± 2.68 | ||
Neonatal sepsis | Significantly elevated | Better negative predictive value | |
Sepsis | 167 (cutoff) | Comparable or superior early prediction | |
Diabetes Type 2 | Elevated, correlates with HbA1c | Reflects chronic inflammation | |
Renal dysfunction | High due to reduced clearance | Reflects renal impariment |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Hellenic Society for Microbiology. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vlahović Vlašić, N.; Zibar, L.; Smajić, P.; Švitek, L.; Drenjančević, D. Pancreatic Stone Protein: A Multifaceted Biomarker—A Comprehensive Review. Acta Microbiol. Hell. 2025, 70, 35. https://doi.org/10.3390/amh70030035
Vlahović Vlašić N, Zibar L, Smajić P, Švitek L, Drenjančević D. Pancreatic Stone Protein: A Multifaceted Biomarker—A Comprehensive Review. Acta Microbiologica Hellenica. 2025; 70(3):35. https://doi.org/10.3390/amh70030035
Chicago/Turabian StyleVlahović Vlašić, Nika, Lada Zibar, Petra Smajić, Luka Švitek, and Domagoj Drenjančević. 2025. "Pancreatic Stone Protein: A Multifaceted Biomarker—A Comprehensive Review" Acta Microbiologica Hellenica 70, no. 3: 35. https://doi.org/10.3390/amh70030035
APA StyleVlahović Vlašić, N., Zibar, L., Smajić, P., Švitek, L., & Drenjančević, D. (2025). Pancreatic Stone Protein: A Multifaceted Biomarker—A Comprehensive Review. Acta Microbiologica Hellenica, 70(3), 35. https://doi.org/10.3390/amh70030035