Nasopharyngeal Colonization and Antimicrobial Susceptibility of Bacterial Isolates in Children and Young Adults with Acute, Protracted, and Chronic Cough: A Cross-Sectional Bulgarian Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Methods
2.2.1. Identification of Isolates
2.2.2. Antimicrobial Susceptibility Testing
2.2.3. Gradient Diffusion Testing
2.2.4. Genetic Analyses for Pertussis and Mycoplasma
2.3. Ethical Considerations
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Annamalay, A.; Le Souëf, P. Viral-Bacterial Interactions in Childhood Respiratory Tract Infections. In Viral Infections in Children; Springer: Cham, Switzerland, 2017; Volume I, pp. 193–214. [Google Scholar] [CrossRef]
- Tilahun, M.; Fiseha, M.; Ebrahim, E.; Ali, S.; Belete, M.A.; Seid, A.; Demsiss, W.; Gedefie, A.; Tadesse, S.; Belayhun, C. High Prevalence of Asymptomatic Nasopharyngeal Carriage Rate and Multidrug Resistance Pattern of Streptococcus pneumoniae Among Pre-School Children in North Showa Ethiopia. Infect Drug Resist. 2022, 15, 4253–4268, Erratum in Infect. Drug Resist. 2022, 15, 4515–4516. [Google Scholar] [CrossRef] [PubMed]
- Belayhun, C.; Tilahun, M.; Seid, A.; Shibabaw, A.; Sharew, B.; Belete, M.A.; Demsiss, W. Asymptomatic nasopharyngeal bacterial carriage, multi-drug resistance pattern and associated factors among primary school children at Debre Berhan town, North Shewa, Ethiopia. Ann. Clin. Microbiol. Antimicrob. 2023, 22, 9. [Google Scholar] [CrossRef] [PubMed]
- Birhanu, A.; Amare, A.; Tigabie, M.; Getaneh, E.; Assefa, M.; Cherkos, T.; Moges, F. Nasopharyngeal carriage, antimicrobial susceptibility patterns, and associated factors of Gram-positive bacteria among children attending the outpatient department at the University of Gondar Comprehensive Specialized Hospital, Northwest Ethiopia. PLoS ONE 2024, 19, e0308017. [Google Scholar] [CrossRef]
- Lalbiaktluangi, C.; Yadav, M.K.; Singh, P.K.; Singh, A.; Iyer, M.; Vellingiri, B.; Zomuansangi, R.; Zothanpuia Ram, H. A cooperativity between virus and bacteria during respiratory infections. Front Microbiol. 2023, 14, 1279159. [Google Scholar] [CrossRef]
- Diniz, L.M.; Dias, C.S.; Oliveira, M.C.L.; Simões ESilva, A.C.; Colosimo, E.A.; Mak, R.H.; Pinhati, C.C.; Galante, S.C.; Yan, I.O.; Martelli-Júnior, H.; et al. Outcomes of SARS-CoV-2 and Seasonal Viruses Among 2 Million Adults Hospitalized for Severe Acute Respiratory Infection During the COVID-19 Pandemic in Brazil. J. Infect. Dis. 2024, 230, 868–877. [Google Scholar] [CrossRef] [PubMed]
- Asseri, A.A.; Khattab, N.; Ezmigna, D.; Awadalla, N.J.; Daines, C.; Morgan, W. Diagnostic Accuracy of Nasopharyngeal Swab Cultures in Children Less Than Five Years with Chronic Wet Cough. Children 2021, 8, 1161. [Google Scholar] [CrossRef]
- Jorgensen, J.H.; Doern, G.V.; Maher, L.A.; Howell, A.W.; Redding, J.S. Antimicrobial resistance among respiratory isolates of Haemophilus influenzae, Moraxella catarrhalis, and Streptococcus pneumoniae in the United States. Antimicrob. Agents Chemother. 1990, 34, 2075–2080. [Google Scholar] [CrossRef]
- O’Connor, L.; Heyderman, R. The challenges of defining the human nasopharyngeal resistome. Trends Microbiol. 2023, 31, 816–831. [Google Scholar] [CrossRef]
- Frieden, T. Antibiotic Resistance Threats in the United States; Centers Disease Control and Prevention, US Department of Health and Human Services, Centres for Disease Control and Prevention: Washington, DC, USA, 2019.
- Institute for Health Metrics and Evaluation. The Burden of Antimicrobial Resistance (AMR) in Bulgaria. 2023. Available online: https://www.healthdata.org/sites/default/files/2023-09/Bulgaria.pdf (accessed on 6 December 2024).
- World Health Organization. Severe Acute Respiratory Infections Treatment Centre: Practical Manual to Set up and Manage a SARI Treatment Centre and a SARI Screening Facility in Health Care Facilities; World Health Organization: Geneva, Switzerland, 2020; Available online: https://iris.who.int/bitstream/handle/10665/331603/WHO-2019-nCoV-SARI_treatment_center-2020.1-eng.pdf (accessed on 6 December 2024).
- GBD 2019 LRI Collaborators. Age-sex differences in the global burden of lower respiratory infections and risk factors, 1990–2019: Results from the Global Burden of Disease Study 2019. Lancet Infect. Dis. 2022, 22, 1626–1647. [Google Scholar] [CrossRef]
- El Bcheraoui, C.; Mokdad, A.H.; Dwyer-Lindgren, L.; Bertozzi-Villa, A.; Stubbs, R.W.; Morozoff, C.; Shirude, S.; Naghavi, M.; Murray, C.J.L. Trends and Patterns of Differences in Infectious Disease Mortality Among US Counties, 1980–2014. JAMA 2018, 319, 1248–1260. [Google Scholar] [CrossRef]
- Wang, H.; Fu, M.; Chen, W.; Ma, Y. Post-COVID-19 pandemic changes in pertussis incidence among patients with acute respiratory tract infections in Zhejiang, China. Front. Microbiol. 2024, 15, 1448997. [Google Scholar] [CrossRef] [PubMed]
- Principi, N.; Bianchini, S.; Esposito, S. Pertussis Epidemiology in Children: The Role of Maternal Immunization. Vaccines 2024, 12, 1030. [Google Scholar] [CrossRef] [PubMed]
- Lamrani Hanchi, A.; Guennouni, M.; Rachidi, M.; Benhoumich, T.; Bennani, H.; Bourrous, M.; Maoulainine, F.M.R.; Younous, S.; Bouskraoui, M.; Soraa, N. Epidemiology of Respiratory Pathogens in Children with Severe Acute Respiratory Infection and Impact of the Multiplex PCR Film Array Respiratory Panel: A 2-Year Study. Int. J. Microbiol. 2021, 2021, 2276261. [Google Scholar] [CrossRef]
- Kitagawa, D.; Kitano, T.; Furumori, M.; Suzuki, S.; Shintani, Y.; Suzuki, Y.; Nakano, A.; Nakano, R.; Nishiyama, A.; Yoshida, S.; et al. Epidemiology of respiratory tract infections using multiplex PCR in a Japanese acute care hospital during the COVID19 pandemic. Heliyon 2023, 9, e14424. [Google Scholar] [CrossRef]
- Antimicrobial Resistance in the EU/EEA (EARS-Net). Annual Epidemiological Report for 2023. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/antimicrobial-resistance-annual-epidemiological-report-EARS-Net-2023.pdf (accessed on 6 December 2024).
- European Centre for Disease Prevention and Control. Reducing Antimicrobial Resistance: Accelerated Efforts Are Needed to Meet the EU Targets. 2024. Available online: https://www.ecdc.europa.eu/en/news-events/reducing-antimicrobial-resistance-accelerated-efforts-are-needed-meet-eu-targets (accessed on 6 December 2024).
- Council Recommendation on Stepping up EU Actions to Combat Antimicrobial Resistance in a One Health Approach 2023/C 220/01. Antimicrobial Resistance Targets-2024 Update–Bulgaria. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32023H0622%2801%29 (accessed on 6 December 2024).
- Khattak, Z.E.; Anjum, F. Haemophilus influenzae Infection. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK562176/ (accessed on 6 December 2024).
- Lis, D.O.; Górny, R.L. Haemophilus influenzae as an airborne contamination in child day care centers. Am. J. Infect. Control 2013, 41, 438–442. [Google Scholar] [CrossRef]
- Amatya, N.; Paudel, G.; Saud, B.; Wagle, S.; Shrestha, V.; Adhikari, B. Prevalence of Moraxella catarrhalis as a Nasal Flora among Healthy Kindergarten Children in Bhaktapur, Nepal. Interdiscip. Perspect. Infect. Dis. 2022, 2022, 3989781. [Google Scholar] [CrossRef]
- Calderaro, A.; Buttrini, M.; Farina, B.; Montecchini, S.; De Conto, F.; Chezzi, C. Respiratory Tract Infections and Laboratory Diagnostic Methods: A Review with A Focus on Syndromic Panel-Based Assays. Microorganisms 2022, 10, 1856. [Google Scholar] [CrossRef] [PubMed]
- Su, L.H.; Kuo, A.J.; Chia, J.H.; Li, H.C.; Wu, T.L.; Feng, Y.; Chiu, C.H. Evolving pneumococcal serotypes and sequence types in relation to high antibiotic stress and conditional pneumococcal immunization. Sci. Rep. 2015, 5, 15843. [Google Scholar] [CrossRef]
- Watts, V.; Balasegaram, S.; Brown, C.S.; Mathew, S.; Mearkle, R.; Ready, D.; Saliba, V.; Lamagni, T. Increased Risk for Invasive Group A Streptococcus Disease for Household Contacts of Scarlet Fever Cases, England, 2011–2016. Emerg. Infect. Dis. 2019, 25, 529–537. [Google Scholar] [CrossRef]
- Garancini, N.; Ricci, G.; Ghezzi, M.; Tommasi, P.; Zunica, F.; Mandelli, A.; Zoia, E.; D’Auria, E.; Zuccotti, G.V. Invasive Group A streptococcal infections: Are we facing a new outbreak? A case series with the experience of a single tertiary center. Ital. J. Pediatr. 2023, 49, 88. [Google Scholar] [CrossRef]
- Theodorakis, N.; Feretzakis, G.; Hitas, C.; Kreouzi, M.; Kalantzi, S.; Spyridaki, A.; Boufeas, I.Z.; Sakagianni, A.; Paxinou, E.; Verykios, V.S.; et al. Antibiotic Resistance in the Elderly: Mechanisms, Risk Factors, and Solutions. Microorganisms 2024, 12, 1978. [Google Scholar] [CrossRef]
- Dunne, E.M.; Murad, C.; Sudigdoadi, S.; Fadlyana, E.; Tarigan, R.; Indriyani, S.A.K.; Pell, C.L.; Watts, E.; Satzke, C.; Hinds, J.; et al. Carriage of Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, and Staphylococcus aureus in Indonesian children: A cross-sectional study. PLoS ONE 2018, 13, e0195098. [Google Scholar] [CrossRef] [PubMed]
- Candel, F.J.; Salavert, M.; Basaras, M.; Borges, M.; Cantón, R.; Cercenado, E.; Cilloniz, C.; Estella, Á.; García-Lechuz, J.M.; Garnacho Montero, J.; et al. Ten Issues for Updating in Community-Acquired Pneumonia: An Expert Review. J. Clin. Med. 2023, 12, 6864. [Google Scholar] [CrossRef] [PubMed]
- Shim, J.Y. Current perspectives on atypical pneumonia in children. Clin. Exp. Pediatr. 2020, 63, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A.A. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef]
- Ezzeddine, Z.; Ghssein, G. Towards new antibiotics classes targeting bacterial metallophores. Microb. Pathog. 2023, 182, 106221. [Google Scholar] [CrossRef]
- Frei, A.; Verderosa, A.D.; Elliott, A.G.; Zuegg, J.; Blaskovich, M.A.T. Metals to combat antimicrobial resistance. Nat. Rev. Chem. 2023, 7, 202–224. [Google Scholar] [CrossRef]
Overall Data | ||
---|---|---|
Bacterial Species | Number of Isolates | % |
Haemophilus influenzae | 235 | 26.23 |
Moraxella catarrhalis | 211 | 23.55 |
Streptococcus pneumoniae | 202 | 22.54 |
Staphylococcus aureus | 53 | 5.92 |
Streptococcus pyogenes | 68 | 7.59 |
Haemophilus parainfluenzae | 46 | 5.13 |
Mycoplasma pneumoniae (serology) | 24 | 2.68 |
Corynebacterium spp. | 19 | 2.12 |
Other | 38 | 4.24 |
Total | 896 | 100 |
Individuals aged 0–10 years | ||
Bacterial species | Number of isolates | |
Haemophilus influenzae | 142 | |
Moraxella catarrhalis | 198 | |
Streptococcus pneumoniae | 73 | |
Staphylococcus aureus | 38 | |
Streptococcus pyogenes | 45 | |
Haemophilus parainfluenzae | 28 | |
Mycoplasma pneumoniae | 3 | |
Corynebacterium spp. | 16 | |
Other | 16 | |
Individuals aged 10–20 years | ||
Bacterial species | Number of isolates | |
Haemophilus influenzae | 93 | |
Moraxella catarrhalis | 13 | |
Streptococcus pneumoniae | 129 | |
Staphylococcus aureus | 15 | |
Streptococcus pyogenes | 23 | |
Haemophilus parainfluenzae | 18 | |
Mycoplasma pneumoniae | 21 | |
Corynebacterium spp. | 3 | |
Other | 22 |
Streptococcus pneumoniae (n = 202) | S, % | R, % | I, % | MIC Range, µg/mL |
---|---|---|---|---|
Amoxicillin/clavulanic acid | 83.53 | 4.12 | 12.35 | 0.016–8 |
Azithromycin | 37.81 | 62.19 | 0.00 | 0.02−256 |
Cefpodoxime | 99.38 | 0.62 | 0.00 | 0.016–0.5 |
Ceftriaxone | 100.00 | 0.00 | 0.00 | 0.016–0.2 |
Cefuroxime | 91.07 | 8.93 | 0.00 | 0.016–4 |
Clarithromycin | 37.81 | 62.19 | 0.00 | |
Clindamycin | 56.21 | 43.79 | 0.00 | |
Levofloxacin | 89.22 | 4.19 | 6.59 | <0.001–4 |
Moxifloxacin | 100.00 | 0.00 | 0.00 | |
Rifampicin | 85.80 | 14.20 | 0.00 |
Moraxella catarrhalis (n = 211) | S, % | R, % |
---|---|---|
Amoxicillin/clavulanic acid | 100.00 | |
Ampicillin | 0.00 | 100.00 |
Azithromycin | 75.33 | 24.67 |
Cefpodoxime | 100.00 | |
Cefuroxime | 95.40 | 1.97 |
Clarithromycin | 75.50 | 24.50 |
Clindamycin | 58.82 | |
Levofloxacin | 99.33 | 0.67 |
Rifampicin | 93.38 | 5.96 |
Trimethoprim/sulfamethoxazole | 77.56 | 21.79 |
Producer of β-lactamase (positive cefinase test) | 100% |
Haemophilus influenzae (n = 235) | S, % | R, % | I, % | MIC Range, µg/mL |
---|---|---|---|---|
Moxicillin/clavulanic acid | 68.44 | 9.02 | 22.54 | |
Ampicillin | 40.41 | 43.01 | 16.58 | 0.02–4 |
Ampicillin/sulbactam | 69.58 | 9.17 | 21.25 | |
Azithromycin | 7.43 | 92.57 | 0.00 | |
Cefixime | 84.21 | 4.82 | 10.96 | 0.12–2 |
Cefpodoxime | 97.86 | 1.28 | 0.85 | 0.05–0.5 |
Ceftriaxone | 98.41 | 0.00 | 1.59 | 0.05–0.5 |
Cefuroxime | 52.48 | 27.27 | 20.25 | 0.5–2 |
Ciprofloxacin | 97.38 | 2.18 | 0.44 | 0.05–0.5 |
Clarithromycin | 2.34 | 97.66 | 0.00 | |
Levofloxacin | 97.13 | 2.87 | 0.00 | 0.03–1 |
Moxifloxacin | 98.33 | 0.00 | 1.67 | 0.03–0.5 |
Rifampicin | 67.63 | 31.95 | 0.41 | 0.25–1.25 |
Trimethoprim/sulfamethoxazole | 41.32 | 58.68 | 0.00 | |
Producer of β-lactamase (positive cefinase test) | 28% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Hellenic Society for Microbiology. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velikova, T.; Ali, H.; Tomov, L.; Velinov, T.; Lazova, S. Nasopharyngeal Colonization and Antimicrobial Susceptibility of Bacterial Isolates in Children and Young Adults with Acute, Protracted, and Chronic Cough: A Cross-Sectional Bulgarian Study. Acta Microbiol. Hell. 2025, 70, 10. https://doi.org/10.3390/amh70010010
Velikova T, Ali H, Tomov L, Velinov T, Lazova S. Nasopharyngeal Colonization and Antimicrobial Susceptibility of Bacterial Isolates in Children and Young Adults with Acute, Protracted, and Chronic Cough: A Cross-Sectional Bulgarian Study. Acta Microbiologica Hellenica. 2025; 70(1):10. https://doi.org/10.3390/amh70010010
Chicago/Turabian StyleVelikova, Tsvetelina, Hassan Ali, Latchezar Tomov, Tzvetan Velinov, and Snezhina Lazova. 2025. "Nasopharyngeal Colonization and Antimicrobial Susceptibility of Bacterial Isolates in Children and Young Adults with Acute, Protracted, and Chronic Cough: A Cross-Sectional Bulgarian Study" Acta Microbiologica Hellenica 70, no. 1: 10. https://doi.org/10.3390/amh70010010
APA StyleVelikova, T., Ali, H., Tomov, L., Velinov, T., & Lazova, S. (2025). Nasopharyngeal Colonization and Antimicrobial Susceptibility of Bacterial Isolates in Children and Young Adults with Acute, Protracted, and Chronic Cough: A Cross-Sectional Bulgarian Study. Acta Microbiologica Hellenica, 70(1), 10. https://doi.org/10.3390/amh70010010