Growth Media on Performance of Mycobacteria Identification Using Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mycobacterial Isolates
2.2. MALDI-TOF MS Identification
2.3. Data Analysis
3. Results
3.1. Mycobacteria Identification Rates from Growth on Different Media Types
3.2. Cut-Off Score Analysis of Different Mycobacteria Species
3.3. Precision of MALDI-TOF Identification for Mycobacteria
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Mycobacteria Species | Liquid Broth | LJ Agar | 7H11 Agar | ||
---|---|---|---|---|---|
Detection Rate | Detection Rate | p-Value | Detection Rate | p-Value | |
Mycobacterium abscessus complex | 2/4 (50) | 3/3 (100) | 0.43 | 2/3 (66) | 1.0 |
Mycobacterium avium complex | 17/22 (77.3) | 7/11 (63.6) | 0.44 | 5/5 (100) | 0.55 |
Mycobacterium chelonae | 0/1 (0) | 2/2 (100) | 0.33 | - | n/a |
Mycobacterium fortuitum | 8/8 (100) | 4/5 (80) | 0.38 | 4/4 (100) | 1.0 |
Mycobacterium gordonae | 3/8 (37.5) | 3/3 (100) | 0.19 | 1/1 (100) | 0.44 |
Mycobacterium immunogenum | 0/1 (0) | 2/2 (100) | 0.33 | - | n/a |
Mycobacterium kansasii | 1/2 (50) | 1/1 (100) | 1.0 | 2/2 (100) | 1.0 |
Mycobacterium marinum | 1/1 (100) | 1/1 (100) | 1.0 | - | n/a |
Mycobacterium mucogenicum phocaicum group | 2/2 (100) | - | n/a | - | n/a |
Mycobacterium simiae | 1/1 (100) | - | n/a | - | n/a |
Mycobacterium smegmatis | 2/2 (100) | 2/2 (100) | 1.0 | 2/2 (100) | 1.0 |
Mycobacterium tuberculosis complex | 6/8 (75) | 9/9 (100) | 0.21 | 6/7 (85.7) | 1.0 |
Mycobacterium arupense | - | 1/1 (100) | n/a | - | n/a |
Overall | 43/60 (72) | 35/40 (88) | 0.08 | 22/24 (92) | 0.08 |
References
- Koh, W.J. Nontuberculous Mycobacteria-Overview. Microbiol. Spectr. 2017, 5. [Google Scholar] [CrossRef] [PubMed]
- Brosch, R.; Gordon, S.V.; Marmiesse, M.; Brodin, P.; Buchrieser, C.; Eiglmeier, K.; Garnier, T.; Gutierrez, C.; Hewinson, G.; Kremer, K.; et al. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc. Natl. Acad. Sci. USA 2002, 99, 3684–3689. [Google Scholar] [CrossRef]
- Riojas, M.A.; McGough, K.J.; Rider-Riojas, C.J.; Rastogi, N.; Hazbón, M.H. Phylogenomic analysis of the species of the Mycobacterium tuberculosis complex demonstrates that Mycobacterium africanum, Mycobacterium bovis, Mycobacterium caprae, Mycobacterium microti and Mycobacterium pinnipedii are later heterotypic synonyms of Mycobacterium tuberculosis. Int. J. Syst. Evol. Microbiol. 2018, 68, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Mohammadnabi, N.; Shamseddin, J.; Emadi, M.; Bodaghi, A.B.; Varseh, M.; Shariati, A.; Rezaei, M.; Dastranj, M.; Farahani, A. Mycobacterium tuberculosis: The Mechanism of Pathogenicity, Immune Responses, and Diagnostic Challenges. J. Clin. Lab. Anal. 2024, 38, e25122. [Google Scholar] [CrossRef] [PubMed]
- Cloud, J.L.; Carroll, K.C.; Cohen, S.; Anderson, C.M.; Woods, G.L. Interpretive criteria for use of AccuProbe for identification of Mycobacterium avium complex directly from 7H9 broth cultures. J. Clin. Microbiol. 2005, 43, 3474–3478. [Google Scholar] [CrossRef]
- Louro, A.P.; Waites, K.B.; Georgescu, E.; Benjamin, W.H., Jr. Direct identification of Mycobacterium avium complex and Mycobacterium gordonae from MB/BacT bottles using AccuProbe. J. Clin. Microbiol. 2001, 39, 570–573. [Google Scholar] [CrossRef]
- Adékambi, T.; Drancourt, M. Dissection of phylogenetic relationships among 19 rapidly growing Mycobacterium species by 16S rRNA, hsp65, sodA, recA and rpoB gene sequencing. Int. J. Syst. Evol. Microbiol. 2004, 54, 2095–2105. [Google Scholar] [CrossRef]
- Singhal, N.; Kumar, M.; Kanaujia, P.K.; Virdi, J.S. MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis. Front. Microbiol. 2015, 6, 791. [Google Scholar] [CrossRef]
- Croxatto, A.; Prod’hom, G.; Greub, G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol. Rev. 2012, 36, 380–407. [Google Scholar] [CrossRef]
- Buchan, B.W.; Riebe, K.M.; Timke, M.; Kostrzewa, M.; Ledeboer, N.A. Comparison of MALDI-TOF MS with HPLC and nucleic acid sequencing for the identification of Mycobacterium species in cultures using solid medium and broth. Am. J. Clin. Pathol. 2014, 141, 25–34. [Google Scholar] [CrossRef]
- Rodriguez-Temporal, D.; Rodríguez-Sánchez, B.; Alcaide, F. Evaluation of MALDI Biotyper Interpretation Criteria for Accurate Identification of Nontuberculous Mycobacteria. J. Clin. Microbiol. 2020, 58, e01103-20. [Google Scholar] [CrossRef]
- Bruker Daltonics GmbH & Co. KG. Instructions for Use MBT Mycobacteria Kit; Bruker Daltonics GmbH & Co. KG: Bremen, Germany, 2021. [Google Scholar]
- Alcolea-Medina, A.; Fernandez, M.T.C.; Montiel, N.; García, M.P.L.; Sevilla, C.D.; North, N.; Lirola, M.J.M.; Wilks, M. An improved simple method for the identification of Mycobacteria by MALDI-TOF MS (Matrix-Assisted Laser Desorption- Ionization mass spectrometry). Sci. Rep. 2019, 9, 20216. [Google Scholar] [CrossRef]
- Martin, E.C.; Limousin, L.; Renaux, C.; Catherinot, E.; Vasse, M. Evaluation of the mycobacteria MBT kit for identification of nontuberculous mycobacteria by MALDI-TOF Biotyper (Bruker). Diagn. Microbiol. Infect. Dis. 2023, 107, 116044. [Google Scholar] [CrossRef] [PubMed]
- Lotz, A.; Ferroni, A.; Beretti, J.L.; Dauphin, B.; Carbonnelle, E.; Guet-Revillet, H.; Veziris, N.; Heym, B.; Jarlier, V.; Gaillard, J.L.; et al. Rapid identification of mycobacterial whole cells in solid and liquid culture media by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 2010, 48, 4481–4486. [Google Scholar] [CrossRef] [PubMed]
- Bacanelli, G.; Araujo, F.R.; Verbisck, N.V. Improved MALDI-TOF MS Identification of Mycobacterium tuberculosis by Use of an Enhanced Cell Disruption Protocol. Microorganisms 2023, 11, 1692. [Google Scholar] [CrossRef]
- Pastrone, L.; Curtoni, A.; Criscione, G.; Scaiola, F.; Bottino, P.; Guarrasi, L.; Iannaccone, M.; Timke, M.; Costa, C.; Cavallo, R. Evaluation of Two Different Preparation Protocols for MALDI-TOF MS Nontuberculous Mycobacteria Identification from Liquid and Solid Media. Microorganisms 2023, 11, 120. [Google Scholar] [CrossRef] [PubMed]
- Topić Popović, N.; Kazazić, S.P.; Bojanić, K.; Strunjak-Perović, I.; Čož-Rakovac, R. Sample preparation and culture condition effects on MALDI-TOF MS identification of bacteria: A review. Mass Spectrom. Rev. 2023, 42, 1589–1603. [Google Scholar] [CrossRef]
- Ferraro, V.; Bisognin, F.; Sorella, F.; Ruin, F.; Dal Monte, P. Use of BD BACTEC™ MGIT™ for the detection of non-tuberculous mycobacteria in sanitary water samples. Front. Microbiol. 2024, 15, 1492360. [Google Scholar] [CrossRef]
- Forbes, B.A.; Hall, G.S.; Miller, M.B.; Novak, S.M.; Rowlinson, M.C.; Salfinger, M.; Somoskövi, A.; Warshauer, D.M.; Wilson, M.L. Practical Guidance for Clinical Microbiology Laboratories: Mycobacteria. Clin. Microbiol. Rev. 2018, 31, e00038-17. [Google Scholar] [CrossRef]
- Buckwalter, S.P.; Olson, S.L.; Connelly, B.J.; Lucas, B.C.; Rodning, A.A.; Walchak, R.C.; Deml, S.M.; Wohlfiel, S.L.; Wengenack, N.L. Evaluation of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Identification of Mycobacterium species, Nocardia species, and Other Aerobic Actinomycetes. J. Clin. Microbiol. 2016, 54, 376–384. [Google Scholar] [CrossRef]
- Mather, C.A.; Rivera, S.F.; Butler-Wu, S.M. Comparison of the Bruker Biotyper and Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry systems for identification of mycobacteria using simplified protein extraction protocols. J. Clin. Microbiol. 2014, 52, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Neville, S.A.; Lecordier, A.; Ziochos, H.; Chater, M.J.; Gosbell, I.B.; Maley, M.W.; van Hal, S.J. Utility of matrix-assisted laser desorption ionization-time of flight mass spectrometry following introduction for routine laboratory bacterial identification. J. Clin. Microbiol. 2011, 49, 2980–2984. [Google Scholar] [CrossRef] [PubMed]
- Buchan, B.W.; Riebe, K.M.; Ledeboer, N.A. Comparison of the MALDI Biotyper system using Sepsityper specimen processing to routine microbiological methods for identification of bacteria from positive blood culture bottles. J. Clin. Microbiol. 2012, 50, 346–352. [Google Scholar] [CrossRef] [PubMed]
Liquid Broth (n/Total, %) | LJ Agar (n/Total, %) | 7H11 Agar (n/Total, %) | |
---|---|---|---|
Rapid Grower | 10/13 (76.9) | 9/10 (90.0) | 6/7 (85.7) |
Non-rapid Grower | 33/47 (70.2) | 26/30 (86.7) | 16/17 (94.1) |
Pigment Producer | 5/11 (45.5) | 5/5 (100) | 3/3 (100) |
Non-pigment Producer | 38/49 (77.5) | 30/35 (85.7) | 19/21 (90.1) |
All | 43/60 (71.7) | 35/40 (87.5) | 22/24 (91.7) |
Mycobacteria Species | Liquid Broth (Mean, 95% CI) | CV | Solid Agar (Mean, 95% CI) | CV | p-Value |
---|---|---|---|---|---|
Mycobacterium abscessus complex | 1.7 (1.6,1.8) | 3.6% | 2.0 (1.8, 2.2) | 11.3% | 0.007 |
Mycobacterium avium complex | 1.9 (1.8, 1.9) | 7.7% | 2.0 (1.9, 2.0) | 8.6% | 0.03 |
Mycobacterium chelonae | - | - | 2.0 (1.8, 2.2) | 8.8% | n/a |
Mycobacterium fortuitum | 1.9 (1.8, 2.0) | 9.2% | 2.1 (2.0, 2.2) | 10.9% | 0.001 |
Mycobacterium gordonae | 1.9 (1.8, 1.9) | 5.0% | 2.0 (1.9, 2.0) | 5.4% | 0.11 |
Mycobacterium immunogenum | - | - | 1.7 (1.6, 1.8) | 4.7% | n/a |
Mycobacterium kansasii | 2.1 (1.9, 2.4) | 4.2% | 2.0 (2.0, 2.1) | 7.6% | 0.13 |
Mycobacterium marinum | 2.2 (2.1, 2.4) | 3.4% | 2.2 (2.2, 2.3) | 2.3% | 0.46 |
Mycobacterium mucogenicum phocaicum group | 1.9 (1.6–2.2) | 12.5% | - | - | n/a |
Mycobacterium simiae | - | - | - | - | n/a |
Mycobacterium smegmatis | 2.1 (2.0, 2.2) | 5.3% | 2.0 (2.0, 2.2) | 12.7% | 0.37 |
Mycobacterium tuberculosis complex | 1.9 (1.8,2.1) | 6.4% | 2.2 (2.1, 2.2) | 8.5% | 0.0000030 |
Mycobacterium arupense | - | - | 1.9 (1.8, 2.1) | 5.3% | n/a |
Mycobacteria Species | LJ Agar (Mean, 95% CI) | CV | 7H11 Agar (Mean, 95% CI) | CV | p-Value |
---|---|---|---|---|---|
Mycobacterium abscessus complex | 2.0 (1.8, 2.3) | 10.3% | 1.7 (1.6,1.9) | 5.9% | 0.01 |
Mycobacterium avium complex | 2.0 (1.9, 2.1) | 9.4% | 1.9 (1.8, 2.0) | 7.0% | 0.34 |
Mycobacterium chelonae | 2.0 (1.8, 2.2) | 8.8% | - | - | n/a |
Mycobacterium fortuitum | 2.1 (1.9, 2.3) | 13.8% | 2.1 (2.0, 2.3) | 6.7% | 0.82 |
Mycobacterium gordonae | 2.0 (1.8, 2.1) | 6.2% | 1.9 (1.7, 2.1) | 3.7% | 0.93 |
Mycobacterium immunogenum | 1.7 (1.6, 1.8) | 4.7% | - | - | n/a |
Mycobacterium kansasii | 2.2 (2.0, 2.4) | 2.8%% | 1.9 (1.8, 2.0) | 4.0% | 0.003 |
Mycobacterium marinum | 2.2 (2.0, 2.3) | 2.3% | - | - | n/a |
Mycobacterium mucogenicum phocaicum group | - | - | - | - | n/a |
Mycobacterium simiae | - | - | - | - | n/a |
Mycobacterium smegmatis | 2.3 (2.1, 2.3) | 3.2% | 1.8 (1.6, 2.0) | 9.8% | 0.001 |
Mycobacterium tuberculosis complex | 2.2 (2.2, 2.3) | 3.9% | 2.0 (1.9, 2.1) | 10.7% | 0.001 |
Mycobacterium arupense | 1.9 (1.6, 2.1) | 5.3% | - | - | n/a |
Mycobacteria Species | Detection in Technical Replicates (n, %) | ||
---|---|---|---|
1/3 Spot (#/Total, %) | 2/3 Spots (#/Total, %) | 3/3 Spots (#/Total, %) | |
Mycobacterium abscessus complex | 2/7 (28.6) | 2/7 (28.6) | 3/7 (42.8) |
Mycobacterium avium complex | 2/30 (6.7) | 7/30 23.3) | 21/30 (70) |
Mycobacterium chelonae | 0/2 (0) | 0/2 (0) | 2/2 (100) |
Mycobacterium fortuitum | 1/16 (6.3) | 1/16 (6.3) | 14/16 (87.4) |
Mycobacterium gordonae | 0/7 (0) | 1/7 (14.3) | 6/7 (85.7) |
Mycobacterium immunogenum | 0/2 (0) | 0/2 (0) | 2/2 (100) |
Mycobacterium kansasii | 0/4 (0) | 0/4 (0) | 4/4 (100) |
Mycobacterium marinum | 0/2 (0) | 0/2 (0) | 2/2 (100) |
Mycobacterium mucogenicum phocaicum group | 0/2 (0) | 0/2 (0) | 2/2 (100) |
Mycobacterium simiae | 1/1 (100) | 0/1 (0) | 0/1 (0) |
Mycobacterium smegmatis | 0/6 (0) | 0/6 (0) | 6/6 (100) |
Mycobacterium tuberculosis complex | 1/21 (4.8) | 0/21 (0) | 20/21 (95.2) |
Mycobacterium arupense | 0/1 (0) | 0/1 (0) | 1/1 (100) |
Mycobacteria Species | Liquid Broth Technical Replicate (#/Total, %) | LJ Agar Technical Replicate (#/Total, %) | 7H11 Agar Technical Replicate (#/Total, %) | ||||||
---|---|---|---|---|---|---|---|---|---|
1/3 spot | 2/3 spots | 3/3 spots | 1/3 spot | 2/3 spots | 3/3 spots | 1/3 spot | 2/3 spots | 3/3 spots | |
Mycobacterium abscessus complex | 2/2 (100) | 1/3 (33) | 2/3 (67) | 1/2 (50) | 1/2 (50) | ||||
Mycobacterium avium complex | 2/17 (11.8) | 3/17 (17.6) | 12/17 (70.6) | 2/8 (25) | 6/8 (75) | 2/5 (40) | 3/5 (60) | ||
Mycobacterium chelonae | 2/2 (100) | ||||||||
Mycobacterium fortuitum | 1/8 (12.5) | 7/8 (87.5) | 4/4 (100) | 1/4 (25) | 3/4 (75) | ||||
Mycobacterium gordonae | 3/3 (100) | 1/3 (33) | 2/3 (67) | 1/1 (100) | |||||
Mycobacterium immunogenum | 2/2 (100) | ||||||||
Mycobacterium kansasii | 1/1 (100) | 1/1 (100) | 2/2 (100) | ||||||
Mycobacterium marinum | 1/1 (100) | 1/1 (100) | |||||||
Mycobacterium mucogenicum phocaicum group | 2/2 (100) | ||||||||
Mycobacterium simiae | 1/1 (100) | ||||||||
Mycobacterium smegmatis | 2/2 (100) | 2/2 (100) | 2/2 (100) | ||||||
Mycobacterium tuberculosis complex | 1/6 (16.7) | 5/6 (83.3) | 9/9 (100) | 6/6 (100) | |||||
Mycobacterium arupense | 1/1 (100) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mamilla, D.; Hung, S.; Demessie, G.; Nault, D.; Ayala Soriano, C.; Mendoza, S.; Yee, R. Growth Media on Performance of Mycobacteria Identification Using Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry. LabMed 2025, 2, 6. https://doi.org/10.3390/labmed2020006
Mamilla D, Hung S, Demessie G, Nault D, Ayala Soriano C, Mendoza S, Yee R. Growth Media on Performance of Mycobacteria Identification Using Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry. LabMed. 2025; 2(2):6. https://doi.org/10.3390/labmed2020006
Chicago/Turabian StyleMamilla, Divya, Stevephen Hung, Gizachew Demessie, Deneen Nault, Carla Ayala Soriano, Salome Mendoza, and Rebecca Yee. 2025. "Growth Media on Performance of Mycobacteria Identification Using Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry" LabMed 2, no. 2: 6. https://doi.org/10.3390/labmed2020006
APA StyleMamilla, D., Hung, S., Demessie, G., Nault, D., Ayala Soriano, C., Mendoza, S., & Yee, R. (2025). Growth Media on Performance of Mycobacteria Identification Using Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry. LabMed, 2(2), 6. https://doi.org/10.3390/labmed2020006