Characterization, Accumulation Profiles, and Antibiotic-Resistance of Bacteria on Worn Disposable Masks at Githurai Market in Nairobi County, Kenya
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Sampling of Respondents
2.3. Sample Collection
2.4. Enumeration of Bacteria on Worn Masks
2.5. Isolation of Bacteria from Masks
2.6. Identification and Characterization of Bacteria from Worn Masks
2.7. Molecular Characterization
2.8. Antibiotic Susceptibility Testing
2.9. Data Analysis
3. Results
3.1. Isolation of Bacteria
3.2. Morphological Identification
3.3. Biochemical Identification
Carbohydrate Fermentation Biochemical Test
3.4. Molecular Identification
Phylogenetic Analysis
3.5. Sources of Isolated Bacteria
3.6. Enumeration Profile of Bacteria
3.7. Bacterial Sensitivity to Different Antibiotics
Antibiotic Sensitivity of Isolated Bacteria to Different Antibiotics
4. Discussion
4.1. Sources of Bacteria on Disposable Surgical and Face Masks
4.2. Enumeration of Bacteria on Masks
4.3. Antibiotic Resistance Profiles of Isolated Bacteria from Disposable Masks
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Park, A.M.; Khadka, S.; Sato, F.; Omura, S.; Fujita, M.; Hashiwaki, K.; Tsunoda, I. Bacterial and Fungal Isolation from Face Masks under the COVID-19 Pandemic. Sci. Rep. 2022, 12, 11361. [Google Scholar] [CrossRef] [PubMed]
- Howard, J.; Huang, A.; Li, Z.; Tufekci, Z.; Zdimal, V.; van der Westhuizen, H.M.; von Delft, A.; Price, A.; Fridman, L.; Tang, L.H.; et al. An Evidence Review of Face Masks against COVID-19. Proc. Natl. Acad. Sci. USA 2021, 118, e2014564118. [Google Scholar] [CrossRef] [PubMed]
- Leonas, K. The Relationship of Fabric Properties and Bacterial Filtration Efficiency for Selected Surgical Face Masks. J. Text. Appar. Technol. Manag. 2003, 3, 1–8. [Google Scholar]
- Desai, A.N.; Mehrotra, P. Medical Masks. JAMA 2020, 323, 1517–1518. [Google Scholar] [CrossRef]
- Oberg, T.; Brosseau, L.M. Surgical Mask Filter and Fit Performance. Am. J. Infect. Control 2008, 36, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Grinshpun, S.A.; Haruta, H.; Eninger, R.M.; Reponen, T.; McKay, R.T.; Lee, S.A. Performance of an N95 Filtering Facepiece Particulate Respirator and a Surgical Mask During Human Breathing: Two Pathways for Particle Penetration. J. Occup. Environ. Hyg. 2009, 6, 593–603. [Google Scholar] [CrossRef]
- Chong, W.H.; Saha, B.K.; Ramani, A.; Chopra, A. State-of-the-Art Review of Secondary Pulmonary Infections in Patients with COVID-19 Pneumonia. Infection 2021, 49, 591–605. [Google Scholar] [CrossRef]
- Jian, Z.; Zeng, L.; Xu, T.; Sun, S.; Yan, S.; Yang, L.; Huang, Y.; Jia, J.; Dou, T. Antibiotic Resistance Genes in Bacteria: Occurrence, Spread, and Control. J. Basic Microbiol. 2021, 61, 1049–1070. [Google Scholar] [CrossRef]
- Moyes, R.B.; Reynolds, J.; Breakwell, D.P. Differential Staining of Bacteria: Gram Stain. Curr. Protoc. Microbiol. 2009, 15, A.3C.1–A.3C.8. [Google Scholar] [CrossRef]
- Atashpaz, S.; Khani, S.; Barzegari, A.; Barar, J.; Vahed, S.Z.; Azarbaijani, R.; Omidi, Y. A Robust Universal Method for Extraction of Genomic DNA from Bacterial Species. Microbiology 2010, 79, 538–542. [Google Scholar] [CrossRef]
- Lorenz, T.C. Polymerase Chain Reaction: Basic Protocol Plus Troubleshooting and Optimization Strategies. J. Vis. Exp. JoVE 2012, 63, e3998. [Google Scholar] [CrossRef]
- Yang, X.; Wang, D.; Zhou, Q.; Nie, F.; Du, H.; Pang, X.; Fan, Y.; Bai, T.; Xu, Y. Antimicrobial Susceptibility Testing of Enterobacteriaceae: Determination of Disk Content and Kirby-Bauer Breakpoint for Ceftazidime/Avibactam. BMC Microbiol. 2019, 19, 240. [Google Scholar] [CrossRef] [PubMed]
- Rooney, A.P.; Price, N.P.J.; Ehrhardt, C.; Sewzey, J.L.; Bannan, J.D. Phylogeny and Molecular Taxonomy of the Bacillus subtilis Species Complex and Description of Bacillus subtilis Subsp. Inaquosorum Subsp. Nov. Int. J. Syst. Evol. Microbiol. 2009, 59, 2429–2436. [Google Scholar] [CrossRef] [PubMed]
- Malik, K.; Tokas, J.; Tokkas, J.; Goyal, S. Microbial Pigments: A Review. Int. J. Microb. Resour. Technol. 2012, 1, 361–365. [Google Scholar]
- Shahid, A.; Saeed, M.U. Effects of Different Types of Microbes on Blood Cells, Current Perspectives and Future Directions. Artic. Saudi J. Med. Pharm. Sci. 2021, 7, 1–6. [Google Scholar] [CrossRef]
- MacFaddin, J.F. Biochemical Tests for Identification of Medical Bacteria, 3rd ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2000; Volume 6, No. 1. [Google Scholar]
- Barton, L.L.; Fauque, G.D. Chapter 2 Biochemistry, Physiology and Biotechnology of Sulfate-Reducing Bacteria. Adv. Appl. Microbiol. 2009, 68, 41–98. [Google Scholar] [CrossRef]
- Shoaib, M.; Muzammil, I.; Hammad, M.; Bhutta, Z.A.; Yaseen, I. A Mini-Review on Commonly Used Biochemical Tests for Identification of Bacteria. Int. J. Res. Publ. 2020, 54, 1–7. [Google Scholar] [CrossRef]
- Becker, K.; Skov, R.L.; von Eiff, C. Staphylococcus, Micrococcus, and Other Catalase-Positive Cocci. In Manual of Clinical Microbiology; Wiley: Hoboken, NJ, USA, 2015; pp. 354–382. [Google Scholar] [CrossRef]
- Krahn, I.; Bonder, D.; Torregrosa-Barragán, L.; Stoppel, D.; Krause, J.P.; Rosenfeldt, N.; Meiswinkel, T.M.; Seibold, G.M.; Wendisch, V.F.; Lindner, S.N. Evolving a New Efficient Mode of Fructose Utilization for Improved Bioproduction in Corynebacterium Glutamicum. Front. Bioeng. Biotechnol. 2021, 9, 669093. [Google Scholar] [CrossRef]
- Sabag-Daigle, A.; Wu, J.; Borton, M.A.; Sengupta, A.; Gopalan, V.; Wrighton, K.C.; Wysocki, V.H.; Ahmer, B.M.M. Identification of Bacterial Species That Can Utilize Fructoseasparagine. Appl. Environ. Microbiol. 2018, 84, e01957-17. [Google Scholar] [CrossRef]
- Bintsis, T. Lactic Acid Bacteria as Starter Cultures: An Update in Their Metabolism and Genetics. AIMS Microbiol. 2018, 4, 665. [Google Scholar] [CrossRef]
- Turenne, C.Y.; Snyder, J.W.; Alexander, D.C. Bacillus and Other Aerobic Endospore-Forming Bacteria. In Manual of Clinical Microbiology; Wiley: Hoboken, NJ, USA, 2015; pp. 441–461. [Google Scholar] [CrossRef]
- Delanghe, L.; Cauwenberghs, E.; Spacova, I.; De Boeck, I.; Van Beeck, W.; Pepermans, K.; Claes, I.; Vandenheuvel, D.; Verhoeven, V.; Lebeer, S. Cotton and Surgical Face Masks in Community Settings: Bacterial Contamination and Face Mask Hygiene. Front. Med. 2021, 8, 732047. [Google Scholar] [CrossRef]
- Schaffer, J.N.; Pearson, M.M. Proteus Mirabilis and Urinary Tract Infections. In Urinary Tract Infections: Molecular Pathogenesis and Clinical Management; Wiley: Hoboken, NJ, USA, 2015; Volume 3. [Google Scholar] [CrossRef]
- Monalisa, A.C.; Padma, K.B.; Manjunath, K.; Hemavathy, E.; Varsha, D. Microbial Contamination of the Mouth Masks Used By Post-Graduate Students in a Private Dental Institution: An In-Vitro Study. IOSR J. Dent. Med. Sci. 2017, 16, 61–67. [Google Scholar] [CrossRef]
- Nicodemo, A.C.; Paez, J.I.G. Antimicrobial Therapy for Stenotrophomonas Maltophilia Infections. Eur. J. Clin. Microbiol. Infect. Dis. 2007, 26, 229–237. [Google Scholar] [CrossRef]
- Beharrysingh, R. Myroides Bacteremia: A Case Report and Concise Review. IDCases 2017, 8, 34–36. [Google Scholar] [CrossRef]
- Enosi Tuipulotu, D.; Mathur, A.; Ngo, C.; Man, S.M. Bacillus Cereus: Epidemiology, Virulence Factors, and Host–Pathogen Interactions. Trends Microbiol. 2021, 29, 458–471. [Google Scholar] [CrossRef] [PubMed]
- Hasan, N.A.; Young, B.A.; Minard-Smith, A.T.; Saeed, K.; Li, H.; Heizer, E.M.; McMillan, N.J.; Isom, R.; Abdullah, A.S.; Bornman, D.M.; et al. Microbial Community Profiling of Human Saliva Using Shotgun Metagenomic Sequencing. PLoS ONE 2014, 9, e97699. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, G.H. Salivary Factors That Maintain the Normal Oral Commensal Microflora. J. Dent. Res. 2020, 99, 644–649. [Google Scholar] [CrossRef] [PubMed]
- Ralph, F.; Large, D.R.; Burnett, G.; Lang, A.; Morris, A. U Can’t Touch This! Face Touching Behaviour Whilst Driving: Implications for Health, Hygiene and Human Factors. Ergonomics 2022, 65, 943–959. [Google Scholar] [CrossRef]
- McCaig, L.F.; McDonald, L.C.; Mandal, S.; Jernigan, D.B. Staphylococcus Aureus–Associated Skin and Soft Tissue Infections in Ambulatory Care. Emerg. Infect. Dis. 2006, 12, 1715. [Google Scholar] [CrossRef]
- Monini, S.; Meliante, P.G.; Salerno, G.; Filippi, C.; Margani, V.; Covelli, E.; Barbara, M. The Impact of Surgical Masks on the Nasal Function in the COVID-19 Era. Acta Otolaryngol. 2021, 141, 941–947. [Google Scholar] [CrossRef]
- Furnaz, S.; Baig, N.; Ali, S.; Rizwan, S.; Khawaja, U.A.; Usman, M.A.; Haque, M.T.U.; Rizwan, A.; Ali, F.; Karim, M. Knowledge, Attitude and Practice of Wearing Mask in the Population Presenting to Tertiary Hospitals in a Developing Country. PLoS ONE 2022, 17, e0265328. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D. Living with In-Mask Micro-Climate. Med. Hypotheses 2020, 144, 110010. [Google Scholar] [CrossRef]
- Liu, Z.; Chang, Y.; Chu, W.; Yan, M.; Mao, Y.; Zhu, Z.; Wu, H.; Zhao, J.; Dai, K.; Li, H.; et al. Surgical Masks as Source of Bacterial Contamination during Operative Procedures. J. Orthop. Transl. 2018, 14, 57–62. [Google Scholar] [CrossRef]
- Urban-Chmiel, R.; Marek, A.; Stępień-Pyśniak, D.; Wieczorek, K.; Dec, M.; Nowaczek, A.; Osek, J. Antibiotic Resistance in Bacteria—A Review. Antibiotics 2022, 11, 1079. [Google Scholar] [CrossRef]
- Rice, L.B. Progress and Challenges in Implementing the Research on ESKAPE Pathogens. Infect. Control. Hosp. Epidemiol. 2010, 31, S7–S10. [Google Scholar] [CrossRef]
- Nightingale, M.; Mody, M.; Rickard, A.; Cassone, M. Bacterial Contamination on Used Face Masks in Healthcare Personnel. Antimicrob. Steward. Healthc. Epidemiol. 2022, 2, s86–s87. [Google Scholar] [CrossRef]
- Ding, G.; Li, G.; Liu, M.; Sun, P.; Ren, D.; Zhao, Y.; Gao, T.; Yang, G.; Fang, Y.; Li, W. Bacterial Contamination of Medical Face Mask Wearing Duration and the Optimal Wearing Time. Front. Cell. Infect. Microbiol. 2023, 13, 1231248. [Google Scholar] [CrossRef]
- Shimamura, Y.; Ozaki, M.; Shinya, M.; Oishi, R.; Komuro, M.; Sasaki, K.; Tanaka, H.; Masuda, S. Factors Influencing Bacterial Viability on Face Masks and Bactericidal Effect of Disinfection Methods. Sci. Rep. 2025, 15, 24357. [Google Scholar] [CrossRef] [PubMed]
Isolate | Molecular Identity | Accession Numbers | Genera | Isolation Source | % Similarity Index |
---|---|---|---|---|---|
SD4 | Bacillus acidiproducens | PP412020 | Bacillus | Worn face mask | 96.75 |
SD38 | Klebsiella pneumoniae | PP406796 | Klebsiella | Nose | 98.79 |
SD39 | Bacillus subtilis | PP406797 | Bacillus | Worn surgical mask | 94.48 |
SD45 | Bacillus cereus | PP406798 | Bacillus | Worn surgical mask | 99.51 |
SD46 | Mammaliicoccus sciuri | PP406799 | Mammaliicoccus | Won surgical mask | 95.63 |
SD56 | Staphylococcus aureus | PP406800 | Staphylococcus | Mouth | 96.14 |
SD53 | Klebsiella pneumoniae | PP406801 | Klebsiella | Worn face mask | 90.31 |
SD18 | Bacillus licheniformis | PP406802 | Bacillus | Skin | 94.64 |
SD49 | Enterococcus faecalis | PP406803 | Enterococcus | Mouth | 99.69 |
SD48 | Lysinibacillus xylanilyticus | PP406804 | Lysinibacillus | Worn face mask | 95.34 |
SD2 | Bacillus toyonensis | PP412026 | Bacillus | Worn surgical mask | 94.39 |
SD3 | Bacillus cereus | PP406805 | Bacillus | Nose | 96.54 |
SD6 | Bacillus pumilus | PP406806 | Bacillus | Worn face mask | 95.90 |
SD8 | Lysinibacillus sphaericus | PP406807 | Lysinibacillus | Worn surgical mask | 100 |
SD20 | Enterococcus faecalis | PP406808 | Enterococcus | Mouth | 99.11 |
SD21 | Bacillus cereus | PP406809 | Bacillus | Nose | 99.78 |
SD30 | Stenotrophomonas maltophilia | PP406810 | Stenotrophomonas | Nose | 98.73 |
SD28 | Staphylococcus aureus | PP406811 | Staphylococcus | Skin | 99.21 |
SD24 | Bacillus cereus | PP406812 | Bacillus | Nose | 100 |
SD23 | Bacillus proteolyticus | PP406813 | Bacillus | Worn surgical mask | 100 |
SD19 | Bacillus thuringiensis | PP412025 | Bacillus | Worn surgical mask | 91.15 |
SD58 | Bacillus altitudinis | PP412024 | Bacillus | Worn surgical mask | 100 |
SD60 | Pseudomonas stutzeri | PP412023 | Pseudomonas | Mouth | 98.16 |
SD12 | Bacillus cereus | PP412022 | Bacillus | Nose | 99.51 |
SD31 | Proteus vulgaris | PP412021 | Proteus | Mouth | 100 |
SD35 | Enterobacter asburiae | PP406814 | Enterobacter | Skin | 100 |
SD52 | Acinetobacter haemolyticus | PP406815 | Acinetobacter | Mouth | 98.09 |
SD5 | Klebsiella aerogenes | PP406816 | Klebsiella | Nose | 94.89 |
SD1 | Myroides odoratus | PP406817 | Myroides | Worn surgical mask | 99.92 |
SD36 | Neisseria perflava | PP406818 | Neisseria | Worn face mask | 92.33 |
Mask Type | CFUs/1 µL |
---|---|
Face mask | 196.29 ± 16.77 b |
Surgical | 246.48 ± 15.60 a |
Face mask control | 42.00 ± 0.99 c |
Surgical control | 31.11 ± 0.08 c |
Time | |
Two | 51.39 ± 3.16 c |
Four | 101.39 ± 7.29 b |
Six | 234.13 ± 16.87 a |
Location | |
Inside | 141.40 ± 11.32 a |
Outside | 116.54 ± 8.50 b |
p values of the main effect and their interactions | |
Mask type | <0.0001 |
Time | <0.0001 |
Location | <0.0001 |
Mask type × Time | <0.0001 |
Mask type × Location | <0.0001 |
Location × Time | 0.0070 |
Mask type × Location × Time | 0.0002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Oman Medical Association. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouma, D.A.; Mutai, M.; Njeru, E.M.; Oyore, J.P.; Neondo, J.O.; Jagongo, A.; Omwenga, G.; Ngugi, M.P.; Otieno Ngayo, M.; Oduor, R.O. Characterization, Accumulation Profiles, and Antibiotic-Resistance of Bacteria on Worn Disposable Masks at Githurai Market in Nairobi County, Kenya. J. Oman Med. Assoc. 2025, 2, 12. https://doi.org/10.3390/joma2020012
Ouma DA, Mutai M, Njeru EM, Oyore JP, Neondo JO, Jagongo A, Omwenga G, Ngugi MP, Otieno Ngayo M, Oduor RO. Characterization, Accumulation Profiles, and Antibiotic-Resistance of Bacteria on Worn Disposable Masks at Githurai Market in Nairobi County, Kenya. Journal of the Oman Medical Association. 2025; 2(2):12. https://doi.org/10.3390/joma2020012
Chicago/Turabian StyleOuma, Damaris Apiyo, Mourine Mutai, Ezekiel Mugendi Njeru, John P. Oyore, Johnstone O. Neondo, Ambrose Jagongo, George Omwenga, Mathew Piero Ngugi, Musa Otieno Ngayo, and Richard O. Oduor. 2025. "Characterization, Accumulation Profiles, and Antibiotic-Resistance of Bacteria on Worn Disposable Masks at Githurai Market in Nairobi County, Kenya" Journal of the Oman Medical Association 2, no. 2: 12. https://doi.org/10.3390/joma2020012
APA StyleOuma, D. A., Mutai, M., Njeru, E. M., Oyore, J. P., Neondo, J. O., Jagongo, A., Omwenga, G., Ngugi, M. P., Otieno Ngayo, M., & Oduor, R. O. (2025). Characterization, Accumulation Profiles, and Antibiotic-Resistance of Bacteria on Worn Disposable Masks at Githurai Market in Nairobi County, Kenya. Journal of the Oman Medical Association, 2(2), 12. https://doi.org/10.3390/joma2020012